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ABSTRACT. In this paper we propose a new approach of monaural speech separation in an
unsupervised manner. This approach is based on the amplitude and phase spectrum of principal
component analysis (PCA). It consists in using sparse matrix decomposition and low-rank technique
in the spectral domain. This technique is able to distinguish a variable foreground from a relatively
more regular background. The proposed method decomposes the composite matrix into two sub-
matrices, and then the masking technique is applied on the real part of each subspace giving three
different separated signals in three channels. The channel classification is done by means of the Fuzzy
logic; it is mainly based on our transformation of the multi-scale product analysis. Importantly, the
proposed approach requires only the mixture signal as input with no prior knowledge about the
mixing process or about the desired speaker and it works independently from pitch. We evaluate
our approach on the Cooke database. The performance results are compared to other studies.
Experimental results refer its satisfying effectiveness compared to the state-of-the-art methods.

Key Words: Monaural speech separation, Subspace decomposition, Binary mask, Fuzzy logic,

Multi-scale product.

1. Introduction

The sound is important to human beings because of its contents. However, the
voice is a spoken language which the human brain can, normally, recognize and deal
with naturally but it is a challenge to make a machine execute the same task. This
problem received a lot of attention but it has always been negotiable. The most
difficult case of separation remains that of mono-channel case because there is no
mutual relationship between the channels. In a real environment the mono-channel
case is the only case to be treated and that is what motivated us to move towards it.
While monaural speech segregation by machines remains a great challenge, several
mathematical and technical tools have been developed to help researchers to perform
this task.

In literature, the methods that were used for speech separation are divided into

three main categories: the first one is based on computational auditory scene analysis

Received May 7, 2016 1061-5369 $15.00 (©)Dynamic Publishers, Inc.



490 B. WIEN, B. M. M. ANOUAR, AND B. AICHA

(CASA) [1, 2, 3], the second one uses sinusoidal modeling [4, 5, 6] and the last is
subspaces decomposition methods [7, 8, 9, 10].

A CASA system generally follows four steps: analysis device, the extraction of
its properties, the segmentation and grouping. The peripheral processing decomposes
the auditory scene representation in a two-dimensional time-frequency (TF) through
a filter bandwidth and a windowing function of time. The second step extracts aural
properties, according to the principles of ASA, required in the segmentation and
grouping stages. In fact, in the segmentation and grouping, the system produces the
segments for target signal and for the concurrent one then groups them from the
target in a stream. This flow corresponds to a sound source from which the separated

target signal will be synthesized in the last step [1, 2, 3].
CASA approach offers a rich field for the experimentation of ideas. In fact, it

has numerous limitations; grouping stage is based on periodicity thus it could only be
applied for voiced segments of speech. In addition, due to its dependency on pitch,
the performances achieved by CASA-based approaches are affected by the accuracy

of the multi-pitch estimator.

Sinusoidal Modeling (SM) of a speech signal is a spectral modeling defined as a
superposition of sine waves whose frequency ratio determines the fundamental fre-
quency of the signal [4]. Tt is therefore a new representation of the speech signal
based on a mathematical model. To establish this model, a number of parameters
that are namely the frequency, amplitude and phase is required. This may use sta-
tistical methods, pre-trained models based on Codebooks and Codevectors. The
SM has shown increased efficiency in co-channel speech separation as well as single
channel speech separation, not only for the harmonic signals but also for unvoiced
ones. In this context, the method proposed by Macon and Clements in [5], is based
on analysis-by-synthesis/overlap-add (ABS/OLA) which deals with unvoiced signals
while keeping the signal characteristics. Also the approach described in [6] determines
SM of unvoiced components with a minimum number of parameters to be determined

and without tonal artifacts.

As SM-based methods are based on mathematical and probabilistic models, the
extraction of their parameters leads to significantly complex mixture estimator al-
gorithms and increases the complexity of the resolution. Thus they are difficult to

implement in real time systems.

The decomposition into subspaces has been of great effectiveness in speech sepa-
ration as well as speech enhancement and denoising [7, 8, 9].It has been first used in
single channel source separation by Casey et al. [7]; the approach involves the sepa-
ration of audio mixed sources based on independent subspace analysis. It proposes a
method of grouping components by partitioning a matrix of independent component

of cross-entropies; also known as ixegram which measures the mutual similarities of
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the sources in a segment and when regrouping it, it gives the subspace sources and
time trajectories. This approach has some limitations, for example the separation is
carried out by finding a decomposition where the sources are statistically independent
or nonredundant which is not always the case. In addition, the performance of un-
supervised clustering was not sufficient hence improved in [8]. In fact, Virtanen has
also developed unsupervised learning algorithm for monaural sound source separation
using nonnegative matrix factorization with temporal continuity and sparseness cri-
teria [8]. The weakness of this approach is that it requires the original signals which

could not be available in most of real applications.

The prior knowledge constraint has been resolved in Molla and Hirose’s approach
[9]; they developed a new way of source separation from a single-mixture audio us-
ing the empirical mode decomposition (EMD) and Hilbert spectrum and without
any prior knowledge about the sources [8]. But as the EMD deeply rely on derived
independent basis, that are only stationary over time, good separation quality can
be achieved only if the vectors are statistically independent. For example when the
talkers are characterized with similar features it becomes difficult to obtain an inde-
pendent basis vectors thus the separation cannot be done. In the proposed approach,
the constraint of prior knowledge about the original signal is relaxed. Importantly,
our approach requires only the mixture signal as input and does not make any as-
sumption on the mixing process or about the desired speaker. In fact, we extend
the Principal Component Analysis (PCA) in such a way that it achieves precise sub-
space separation. PCA is a powerful tool widely used in the high-dimensional data
analysis as well as subspaces learning. It is based on the assumption of projecting
the high-dimensional data in a linear subspace with smaller dimension. A correct
estimation of the subspace allows the data size reduction and facilitates other tasks
such as speech separation. The PCA process runs mainly on three essential steps; the
first step substrates the mean from each of the database dimensions and calculates
their covariance matrix. In the second step, eigenvectors (and eigenvalues) of the
covariance matrix are extracted, thus the extracting lines that characterize the data
would be possible. The last step derives the new data by choosing components and
forming a feature vectors. For speech processing, subspaces decomposition could be
done to construct a background model, which is represented by the mean of signal
and the projection matrix comprising the first significant eigenvectors of PCA. In this
way, foreground segmentation is accomplished by computing the difference between

the input signal and its reconstruction.

The PCA have been extensively investigated in the field of speech processing and
extended in so many ways; it has been used in [10] for speech denoising, in [11] for

speech enhancement and has been added to Independent Component Analysis (ICA)
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in [12] for speech separation and with Multidimensional Scaling (MDS) to determine

the dimensions of speech quality [13].
Research in PCA has inspired considerable work in Robust PCA (RPCA) which

combines projection pursuit ideas with robust scatter matrix estimation [14].RPCA
shows a very nice framework for speech denoising but still in need of extra assump-
tions to achieve speech separation. Another well-known extensions of PCA is Robust
Sparse PCA (RSPCA), whose robustness makes the analysis resistant to outlying
observations, and Kernel PCA (KPCA) which has been used for feature extraction in
speech recognition. This approach represents speech features as the projection of the
mel-cepstral coefficients mapped into a feature space via a non-linear mapping onto
the principal components [15]. However, it requires prior learning in order to improve

classification rates.

In this paper, we extend PCA into a new way in order to separate the dominant
speech signal from the intrusion or noisy speech in an unsupervised manner using
sparse matrix decomposition and the low-rank technique. The proposed method
directly decomposes the time-frequency matrix of composite speech into two sub-
matrices, X = Lo + S, where S and Lo represent the target structure matrix and
the intrusion structure matrix, respectively. This technique is able to distinguish a
variable foreground from a relatively more regular background by maintaining only
the real part. Then we apply a binary ideal mask. Finally, we apply a fuzzy logic
classification to determine the best channel by means of our proposed multi-scale
product analysis technique. The rest of this paper is organized as follows. Section 2
presents the technical details of our approach. In section 3, we report objective and

subjective results. Finally, conclusions and perspective are presented in Section 4.

2. Proposed Approach

2.1. Modified PCA. The speech signal x(t) whether it is a mixture of two speakers

or it is a speaker altered by noise, can be described as follows:
(2.1) z(t) = s1(t) + s2(t)

As we focus on double-talk separation problem, s;(¢) and sy(t) denote the first and
the second target speaker, respectively. Our goal is to extract dominant speaker from
the mixture, and that is to get either s;(t) or so(t) from x(t), depending on the
parameters of evaluation. Through linear transformation we can get clean speech in

the transform domain. Performing the Fast Fourier Transform (FFT), we get:
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where n =1: N and k = 1 : K are the time and frequency indices. Considering the

real and imaginary parts of X separately, we have:

(2.3) Xreal(n, k) = Sireal(n, k) + Syreal(n, k)

(2.4) Ximg(n, k) = Syimg(n, k) + Satmg(n, k)

Now we are supposed to get S or S, from X which is a matrix decomposition problem.
Considering at every moment that target speech is combined of only a limited number
of frequencies, it can be modeled as a sparse matrix on spectrogram. On the other
hand, compared to clean speech, mixture speech spectra within different time frames
are more likely to highly correlate with each other, so we can assume intrusion to
be a low-rank matrix. Now we have transformed the speech separation question
into a matrix decomposition problem, which is to decompose a matrix into a sparse
matrix and a low-rank matrix. In this work, we want to get the sparse and low-rank

components of a matrix which is to get the solution of the following question:

(2.5) min rank(Lo) + ||S]lo s.t X = Lo+ S

In which X € R*"™*2 Lo € R"™*"2 S € R"™"2 rank(Lo) is the rank of the matrix
Lo [16], || - ||o is the Lo norm which is the number of non-zero entries in a matrix and
A > 0 is a trade-off parameter between the rank of Lo and the sparsity of S. However
this is a highly non-convex optimization problem and we can obtain an optimization

problem by relaxing equation (2.5) to the following convex problem:
(2.6) rgligl|]L0H*+)\HSH1 st X=Lo+S

|| - ||« denotes the nuclear norm of a matrix defined as the summation of its singular
values [16, 17] and || - ||; is the L; norm which is the sum of the absolute values of
matrix entries [16]. We expect Lo to be the intrusion and S to be the clean speech
and perform the decomposition as follows: First of all, we get the spectrogram of
noisy speech, calculated from the FFT after overlapped framing and zero padding.
Secondly, we adopt a fast and accurate algorithm for low rank and sparse decompo-
sition, namely the inexact augmented Lagrange multiplier (IALM) technique. The
recommended value of A is as it is shown in the equation below [18, 19]:

1

(2.7) A= ——
max(nq,ng)

where n; and ns are the dimensions of input matrix X. The choice of A must adequate

in order to control the amount of each subspace, and thus is related to scale issue.

This issue is in fact a perennial challenge in many subspaces-decomposition problems.

The TALM technique is applied to solve equation (2.6), separately given the real and

imaginary parts of mixture spectrogram. Then we synthesize the two S, and L,, which

are the real parts of the sparse and low separated speech’s spectrogram, respectively.
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F1GURE 1. Overview of the proposed approach

In this paper, we don’t apply a time-frequency masking but use the result from
decomposition directly, as this can clearly reflect the statistical differences between
target speech and intrusion. The diagram of the proposed modified PCA is shown in
figure 2.

Real Spectrogram of § : Sy,
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FI1GURE 2. Block diagram of the proposed scheme of subspace decom-
position: PCA

2.2. Binary Masking. Binary masking is a technique that has proven its effective-
ness in speech separation as well as denoising. It allows the elimination of unwanted
segments of the signal by assigning a “0” value to them, and preserves others by
assigning to them a “1” value. That is therefore a hard masking (awarded label can
only take 1 or 0) but there exist other masking types including the label that can take
a value varying from zero to one which is called the soft masking. There exist several
approaches to estimate the binary mask; those based on Bayesian classification, pitch
continuity, sound localization cues and those who estimate the Posterior Signal to
Noise Ratio (SNR) [20]. The binary mask M (k,m) is estimated by comparing the
energy of each time-frequency region of these two signals, it aims at retaining the
dominant time-frequency cells in the mixture. In this work, we apply binary masking
on S;, and Loy, obtained from the modified PCA then we obtain two masks M; and
M, and by applying them as shown in equation (8). Then the separated signals are
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represented as:

Outy(n, k) = My(n, k)Si.(n, k)
(2.8) Outy(n, k) = My(n, k)Loy.(n, k)
Outs(n, k) = X (n, k) — Outy(n, k)

such as Outy, Outy and Outs are the separated signals output of the proposed ap-
proach. The speech signals will be converted back to temporal domain using the
Inverse STFT (ISTFT), we obtain then three channels. The first contains out,, the
second contains outs and the third contains outs, as shown in the figure 1. Choosing
the desired channel will be made according to well-determined parameters by means

of the Fuzzy logic, this will be discussed in the next section.

Speech of chanmel;

l

Framing

l

Multiscale-Product

l

FFT

|

Com pression

l

Fo

F1cURE 3. Block diagram of algorithm of fundamental frequency determining

2.3. Candidates Selection: Fuzzy Logic. The fuzzy nature of awarding a quality
to a signal (result of a separation procedure) and the desire of simulating the behavior
of the human brain have led us to opt for Fuzzy logic to do the channels classification.
The first attempts of exploitation of fuzzy logic in signal processing are old but are
still scarce. The fuzzy logic was used in [21] to make multilevel speech classification
by developing a fuzzy voicing detector (FVD) system which allows the determining
of a range between voiced and unvoiced segments. It was also used in [22] to classify
audio-events in broadcast news. Despite the difference in the classification techniques
using fuzzy logic in signal processing, the principle remains the same and it is based on
three main steps: determining the parameters of the choice (inputs), the establishing
functions and classifying rules and finally defining decisions (outputs). In our case,
we have chosen the Fj values of each channel and the average of Perceptual Quality
of Speech Quality (PESQ) [23] and Signal to Noise Ratio (SNR) [23] to be the inputs.
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2.3.1. Parameters Determining. We have applied a pitch estimation method to deter-
mine the fundamental frequency of the target speaker [24], as illustrated in figure3.
After framing the input signal, the multi scale product (MP) is applied. The MP
consists to compute the product of the speech wavelet transform coefficients at three
successive dyadic scales. The obtained product is then weighted by a sliding window.
By applying a short time Fourier transform (FFT), a peak with a clear maximum
corresponding to the fundamental frequency is obtained. From the values range of
Fy we can relatively know whether the speaker is a male or is a female. We assume
that if Fy is in the range of 50 — 180H z the speaker a male and if Fj is in the range
of 180 — 400H 2z then the speaker is a female. Or in our case, the dominant speaker
is a male that’s why the threshold will be 180 — 400H z. The second parameter that
influences the choice of channel is the average of SNR and PESQ, the first factor
reflects the objective assessment and the second reflects the subjective assessment,
then the threshold will mean the average of SNR and PESQ of mixed signal before

treatment.
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F1GURE 4. Block diagram of the Fuzzy logic scheme

2.3.2. Classification Rules. As the number of channels is three therefore there will be

eight rules as follows:

e R1: If Fy(channel;) < Fy(channely) & Avg(channel;) > Fpy(channel2) then
choose channel;

e R2: If Fy(channel;) < Fy(channely) & Avg(channel;) < Fpy(channel2) then
choose channels

e R3: If Fy(channel;) > Fy(channely) & Avg(channel;) < Fpy(channel2) then
choose channels

e R4: If Fy(channel;) > Fy(channely) & Avg(channel;) > Fpy(channel2) then
choose channel;

e R5: If Fy(channel;) < Fy(channel;) & Avg(channel;) > Fy(channel3) then
choose channel;

e R6: If Fy(channely) < Fy(channel;) & Avg(channel;) < Fj (channel3) then

choose channel;
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e R7: If Fy(channel;) > Fy (channely) & Avg(channel;) < Fpy(channel3) then
choose channel;
e R8: If Fy(channel;) > Fy(channel;) & Avg(channel;) > Fpy(channel3) then

choose channel;

Such as Fpy(channel;) denotes the fundamental frequencies of the channel number i
and Avg(channel;) denotes the average of SNR and PESQ of the channel number ¢, i
can take the value 1, 2 or 3. We compare the frequencies one by one. If the number of
frequencies of the channel 7 is bigger than those corresponding to channel;, then the
channel; is chosen. The classification strategy using fuzzy logic is given in figure 4.
From which it is illustrated that the channel classification is done in three essential
steps. The first step consists on getting the three outputs of the proposed approach.
The second step is to compute SNR and PESQ whose average is the first parameter
of the fuzzy classification. For that the original mixture is required. The second
parameter is the fundamental frequency that we calculate using our MP analysis
algorithm .These parameters are then fed to the fuzzy controller bloc. The strategy
we have adopted for the selection of channels enabled us to make the operation

automatic and even intuitive.

3. Evaluation

In general, the sound evaluation is performed by objective or subjective methods.
On the one hand, objective methods measure the quality based on the mathematical
analysis comparing the original and coded samples. The signal to noise ratio (SNR),
the deformation of Itukura-Saito, the rate of logarithmic likelihood, segmental signal
to noise ratio (SSNR) are among the objective methods [23]. However, to verify the
accuracy of these methods, it is usually necessary to correlate with results obtained by
subjective tests of speech quality. On the other hand, the subjective methods tend to
measure speech intelligibility; the perceptual evaluation of speech quality (PESQ) is
among these methods. In this section, we describe at first the data used in simulations
to evaluate the performance of our proposed approach then the evaluation results are
compared to those obtained by Hu-Wang [2], Wang-Brown [1] and Li-Guan method
[3]. The evaluation will take place over two phases: an objective evaluation and a
subjective evaluation. Six widely used speech quality measures were evaluated: SNR
and segmental SNR (SSNR) (for objective evaluation) and perceptual evaluation of
speech quality (PESQ), log likelihood ratio (LLR), weighted-slope spectral (WSS)
distance (for subjective evaluation). In addition to that we used composite measures:
Clig for signal distortion, C,,; for overall quality. Cj;, is linear combination of LLR,
PESQ and WSS, C,,; is linear combination of PESQ and LLR and WSS as shown in
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the equation (3.1) [23]:

Csig = 3.093 — 1.029LLR + 0.603PESQ — 0.009W SS

3.1
3:1) Cop = 1.594 — 0.805PESQ — 0.512LLR — 0.00TW SS

3.1. Evaluation environment. To quantitatively evaluate our proposed approach
the speech corpus used in our simulations is the Cooke database [25]; a body of
composite sounds (number of 100) often used in systems analysis Computational
Auditory Scene. The sounds composites are obtained by mixing ten voiced Vi speech
signals, with ten interference signals Nj representing a variety of acoustic sounds,
such as i vary from 0 to 9 and j = {1,2,3,4,7,8,9}. The signals Vi are speech signals
uttered by ten male speakers. The message pronounced is the text “Why are you
all weary”. Interference is rated N1: white noise, N2: impulse noise, N3: Cocktail
noise party, N4: rock music, N7: speech signal uttered by a woman, N8: speech
signal uttered by a man and NO: signal speech delivered by a woman 2. The text
of the interference corresponds to the phrase “Don’t ask me to carry an oily rag like
that”. All signals are sampled are sampled at 16kH z. On this basis, interference can
be classified into three main categories: no interference without pitch, interference

with a certain quality of pitch, speech interference.

TABLE 1. Objective Evaluation: SNE and SSNR measurements

Intrusions M1 M2 N3 M4 N7 NE Ng

Measures | SHR SS5NR  SNR S5MR SNR SS5MR  SNR SS5MR SNR S5NR SNR S5NR SNR S5NR
speakers
Vo 4,13 354 1734 1758 6.25 6.29 7.29 652 98.91 5.63 11.45 14.35 5.02 3.57
Vi 2.61 3.86 1401 1212 3.33 557 7.11 6.66 9.98 7.88 13.84 12.32 4.20 4.35
V2 4,58 2.68 21.65 18.08 7.15 470 6.26 712 S8.54 8.56 12.55 11.53 4.58 4.81
V3 7.55 495 2077 18.88 B8.28 6.86 8.26 6.62 9.16 8.43 12,32 13.9% 5.58 4.80
Va4 3.95 252 1530 148 646 643 6.22 7.24 1077 9.83 11.45 13.88 4.28 5.81
V5 3.44 386 1481 1546 6.67 8.26 476 858 835 8.75 12,88 11.81 4.87 3.53
Vo 4.62 2.87 1616 17.50 6.44 6.65 7.8 7.31 10.33 8.65 13.74 1252 401 6.71
V7 6.82 498 2047 2035 8.86 852 863 752 9.38 10,55 13.57 5.54 5.50 4.28
va 4,57 3.87 1543 18953 706 674 678 6.24 981 8.44 12,17 14.08 4.58 5.05
Vo 418 375 1417 1653 6.84 6.77 6.09 7.B0 8.9 7.592 1257 1161 4.88 7.62
Average | 455 3.6 16.41 1717 6.73 6.6 7.08 7.09 9.68 9.00 13.84 12.64 479 5.09

3.2. Objective Evaluation. To objectively evaluate our approach, we set two ob-
jective experiments: the signal-to-noise ratio (SNR), given in the equation (3.2), and

the segmental signal-to-noise ratio (SSNR) [23].

o > iy (i)’
(3.2) SNR = log S (s(i) — 2(i))2

such as s is the separated signal, x is the mixture and n is the length of both signals.

The least square error of the separated signal and the original one is considered as
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noise. The table 1 illustrates the SNR results our approach as well as the SSNR
measurements. We also report the LLR and WSS measurements in table 2 and Csig
and Covl measurements in table 3. The objective results show that the proposed

approach that fairly good separation quality is achieved.

3.3. Subjective Evaluation. The performance of the approach in terms of per-
ceived quality of the received data is evaluated by means of an objective measurement
of the quality provided by the PESQ tool. This algorithm compares the received sig-
nal and the original signal and provides an objective and automated measurement for
assessing the speech quality. The PESQ is characterized by the fact of being indepen-
dent of the auditors and even of the number of auditors [23]. In our experiments we
have used the code provided by Loizou [20]. The following table gives PESQ measure-
ments according to our method where PESQ, and PESQ, denote respectively the
PESQ values before and after treatment. Table 5 shows that our approach improves

the intelligibility of the separated signals compared to original signals.

TABLE 2. Objective Evaluation: LLR and WSS measurements

Intrusions | M1 TH ['E] M4 NT ME ['E)

Measures | [LR WSS LLR WSS LLR WSS LIR WSs5 LLR WSs5 LLR WSs5s LLR WSs5s
Speakers
Vo 3.35 2426 1l.64 83.62 1.B8 05281 3.37 6232 2.48  47.58 1.585 107.80 1.92 152.70
Vi 3.74 71.0% 1.65 96.07 1.04 83.27 3.18 9799 2,31 7447 2.17  90.38 0.65 783.54
V2 3.70 59,80 1.54 8018 2.07 1364 146 6854 2,93 110,04 2,23 109.26 196  130.51
Vi 3.26 2195 1.60 77.52 212 130.6 3.05 116.8 2.66 106.56 1.97 §97.93 1.87 118.90
va 3.18 23732 1.5%9 76.55 1.2 1256 3.09 1504 2.38  59.10 1.87 BL.79 1.58 125.50
V5 344 5233 1.57 8441 153 1484 112 6131 2,24 117.88 157 107.30 1.85 142.80
V6 3.32 4546 171 6459 1.78 1192 285 137.20 213 8828 1.59 83.95 1.89 135.10
V7 2.70 164 1.3%9 8273 178 1135 3.26 100.60 243 83.57 2.08 78.72 1.83 129.20
Va 3.02 4786 1.55 64.65 2.18 1014 274 11730 219 8l.a3 164 72.86 1.62 112.50
] 4,20 69.01 179 7073 196 118.7 256 118.80 0.65 41.98 1.73 82.57 1.52 97.22
Average 3.92 121.2 1l.62 7811 1.87 113.0 2.67 103.20 2.27 8513 1.52 91.16 1.71 127.30

4. Discussions

The performance of our approach has been compared to the Wang and Brown
method [1], Hu and Wang method [2] and to Li and Guan method [3]. Thus we give
a general overview of each one. Wang and Brown’s model performs separation using
the neural network. In fact it treats the ASA model from a neurocomputational
perspective; it uses the oscillatory correlations as a mechanism for the ASA. This
model consists of two levels: in the first level the system goes through the mixed signal
and seeks an optimal source description. In the second level, the neurobiological level,
recombination is done according to the features of distributed neurons. Hu and Wang
approach separates voiced signals; it segregates resolved harmonics and unresolved

harmonics by two different ways. For the first category, the system decomposes the
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TABLE 3. Objective Evaluation: C; and C,; measurements

Intrusions N1 Nz N3 N4 NT ME [T

Measures l:sig Cou cs's Cou E:gg Cou c:ig Cou cs'g Cou C:gg Cou C:gg Cou
Speak

VO 206 0.22 231 2.38 071 210 1.09 184 0.56 2.27 1.17 2.14 5.02 187
Vi 0.76 0.02 2.58 2.67 208 155 066 007 047 1.57 0.28 1.16 420 1.84
V2 0.58 019 2.49 2.51 0.61 074 177 142 0.31 0.14 0.86 105 458 0.37
V3 1.74 054 2.64 2.75 0.7 115 0.28 036 044 0.38 L38 1.38 3.538 118
va 1.98 1.25 2.66 2.76 .00 103 073 01% 087 1.64 1.64 1.71 4.28 1.61
Vs 0.14 050 3.39 2.51 0.58 0.65 2.01 147 0.62 0.75 L.57 116 4,87  0.64
Ve 0.06 049 2.64 2.78 1.13 210 040 018 107 128 L.56 1.92 4.01 0.597
V7 0.76 0.35 2.58 2.71 1.15 1.23 0.28 0.26 0.64 0.35 1.46 1.55 2.80 0.95
Va 0.30 0.72 2.86 2.94 0.98 116 0.02 0.69 108 1.14 1.86 1.72 4.58 1.35
Vo 1.67 1.11 2.50 2.70 1.01 110 018 0559 3.22 2.58 174 1.65 4.88 1.57

Average 1.01 0.34 267 2.67 .02 123 074 069 093 1.21 1.40 1.66 473 124

TABLE 4. Subjective Evaluation: PESQ measurements before (PESQy) and after (PESQ,) treatment

Intrusions M1 NZ N3 M4 N7 NE Mg

- PE5SQ, PESQ, PESQ, PESQ, PESQ, PESQ., PESQ, PESQ. PESQ, PESQ. PESQ, PESQ, PESQ, PESQ,

spaaluarE
Vo 148 1.43 2.15 3.74 1.81 1.66 1.62 157 2.20 2.38 1.89 2.28 1.87 2.18
Vi 1.00 1.79 148 3.29 1.32 299 1.30 1.47 1.67 1.65 1.81 213 1.47 1.60
V2 1.06 1.45 1.01 322 143 1.65 1.19 151 1.737 143 1.87 1.84 156 1.69
Vi 1.07 1.52 1.71 3.34 1.77 1.85 1.44 155 2.04 2.24 1.86 2.31 1.97 1.82
va 1.34 1.50 2.24 343 1.71 187 1.52 1.65 212 2.38 2.35 2.50 194 2.00
V5 1.38 1.39 2.07 3.87 1.25 167 0.84 1.38 205 1.89 207 1.94 183 1.56
V& 1.05 2.34 1.85 345 152 1.85 1.46 1.76 182 191 2.02 242 1.79 186
V7 0.97 2.27 142 3.52 1.6l 1.88 1.29 148 1.59 1.73 1.89 2.50 1.83 2.00
V8 1.03 1.70 1.34 3.62 1.51 2.03 1.43 1.69 1.70 191 1.89 2.83 1.20 211
va 1.41 1.84 2.25 342 1.74 2.28 167 1.97 222 251 2.35 241 2.25 2.3

Average 118 1.72 1.75 349 157 189 1.38 161 183 2.00 207 232 1.85 191

input signal into segments according to time continuity and cross-channel correlation
and then groups them depending on their periodicity. However, in the second category
the segmentation is done through the amplitude modulation (AM) and time continuity
of and the grouping is made according to the AM rates. The separation is based on
a pitch contour which is estimated according to the dominant pitch, and refined
according to psychoacoustic constraints. The Li and Guan approach benefits from
the CASA advantages and combines them with the objective quality assessment of
speech (OQAS). The main improvement of this model compared to the basic CASA
model, is the use of the OQAS in the grouping process as a guide system. The
algorithm which has been chosen for the OQAS is divided into three principal stages:
the preprocessing stage, the distortion estimation stage, and the perceptual mapping
stage. Preprocessing stage consists on normalizing the input signal and detecting voice
activity. The distortion estimation is done by tracking the pitch synchronous vocal
model and linear predictive (LP) analysis, speech reconstruction and full- reference
perceptual model and finally the distortion-specific parameters extraction. The third

stage consists on classifying the dominant distortion and perceptual weighting. This
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method is largely based on the determination of pitch. In the table 5, we compare
our approach with Wang and Brown [1], Hu and Wang approach [2] and Li and Guan
approach [3], in terms of SNR. We tested on all the mixed voices Vi for {i = 0 : 9}
with the intrusions Nj for {j = 1,2,3,4,7,8,9} of the Cooke database. Our approach

TABLE 5. SNR comparison

Intrusions N1 N2 N3 N4 N7 N8 N9 Average
Mixture 2.50 10.19 4.34 3.99 6.62 10.37 0.73 6.46
Proposed 4.55 16.43 6.73 7.08 9.68 13.84 4.79 9.01
Li & Guan 3.50 14.41 5.21 6.66 9.39 11.50 3.96 7.80
Wang & Brown 493 11.19 5.65 8.72 9.22 10.84 2.66 7.60
Hu & Wang 3.35 14.25 5.09 1.10 9.04 12.56 5.10 7.21

overcomes these methods in most of the cases. Since it does not depend on pitch,
our approach can effectively separate speakers characterized margins of frequencies
which comes together, even overlapping in some segments, as the male-male and the
female-female mixing which are the most difficult and delicate cases of separation.

Obviously, our approach is effective in the case of noise-speaker case. The stationary
character of noise, which is not the case in speech, makes the decomposition into
subspaces (one containing the desired speech and the other contains the noise) an
easier task Figures 5 and 6 illustrate two spectrogram samples of our approach it is

given respectively in the case of a noisy speech as well as the case of the two speaker’s

case.
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FIGURE 5. Spectrogram of enhanced speech signals in the noisy case:

a) Clean b) Composite c¢) Proposed d) Hu-Wang e) Wang and Brown

5. Conclusion

In this work, we propose a speech separation approach that uses a modified PCA
algorithm applied in spectral domain coupled with masking technique. This separa-

tion process results three different separated signals to be broadcast each in a channel.
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FIGURE 6. Spectrogram of enhanced speech signals in monaural speech
separation case: a) Clean b) Composite ¢) Proposed d) Hu-Wang e)
Wang and Brown

Selecting the best channel is done by means of the fuzzy logic. The contribution of our

approach is that it works in a monaural environment, independently of the pitch and

without any prior knowledge about the desired speaker or about the mixing process:

it requires only the composite signal as input. Our approach was assessed objectively

and subjectively, measures show its excellent efficiency compared to in the state-of-

art approaches. Further work may address the extension of the proposed approach

to optimize the decomposition of subspaces and evaluate on more than two speakers.
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