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DYNAMICAL BEHAVIORS ANALYSIS

AND NUMERICAL SIMULATION OF THE

LORENZ-TYPE SYSTEM FOR COUETTE-TAYLOR FLOW

HEYUAN WANG

College of Sciences, Liaoning University of Technology, Jinzhou 121001, China

ABSTRACT. In this paper, we investigate the problem of dynamical behaviors and numerical

simulation of the Lorenz-type systems for the incompressible flow between two concentric rotating

cylinders. The estimation of Hausdorff dimension of its attractor is discussed, and the globally

exponentially attractive set and positive invariant set of the chaotic system are studied via Lyapunov

function. We present a detailed numerical result of the whole process from bifurcation to chaos, and

analyze the evolutionary mechanism of the dynamical behavior of the system. Moreover, by using

numerical simulation results of attractors, bifurcation diagram, Lyapunov exponent spectrum and

Poincare map, return map of the system we show abundant and complex dynamical behaviors of the

system, and explain successive transitions of Couette-Taylor flow from Laminar flow to turbulence

in the experiment.
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1. Introduction

There have been a lot of investigations which concern with rotating flow be-

tween two concentric cylinders (abbreviate frequently as Couette-Taylor Flow), and

Couette-Taylor flow is the typical rotation flow problems, it provides a paradigm from

laminar to turbulent transition, and we refer the readers to [1–12]. The outer cylinder

is fixed while the inner cylinder rotates at a constant angular velocity ω, when ω is

small, the basic flow is the Couette flow consisting of current lines which are coaxial

circles. When ω exceeded a critical value ω1c, this basic flow becomes unstable and

a new complicated flow is observed, and it is axisymmetric and stationary, called

the Taylor vortices (the Taylor vortex flow). In fact, this is a bifurcation phenome-

non, mathematically, the instability represents a supercritical steady bifurcation from

Couette flow to Taylor vortex flow. This regime is still stationary, and the rotational

invariance of the flow is not broken. The second transition breaks both the time

and rotational symmetry, the regime is now periodic and the cells assume a wavy
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form. These waves move uniformly about the Z-axis, so that in a suitable rotating

frame, the flow appears stationary. Such periodic motions are called rotating waves.

The third transition leads to a quasi-periodic flow, which are called modulated wavy

Taylor vortices. Subsequent bifurcations follow several possible routes but generally

lead to turbulence after a few steps. When both cylinders are rotated in opposite

directions, even richer “routes” to turbulence are observed. Previous research work

mostly focused on the stability and bifurcation theory of the flow, It is mainly used

to explain and analyze the various kinds of vortex and the evolution process of the

various vortices in the experiment, as well as the way of the transition from laminar

flow to turbulent flow, and the existence and simulation of chaotic attractors of the

turbulent state are rarely involved in the literature. As the global attractor of the

Couette-Taylor flow between two concentric cylinders is very complex and difficult

of simulation, and the occurrence of turbulence is usually derived from instability of

a small number of modes, we use the simplified mode analysis method for numeri-

cal simulation. Low-dimensional analysis of fluid systems are of interest in order to

capture the essential of their behavior, the theoretical basis is theory of the inertial

manifold and approximate inertial manifold (they are considered to be a low dimen-

sional smooth manifold containing the global attractor and the exponential attractor

of all orbits), namely, the complicated dynamical behavior of the infinite dimensional

dynamical systems can arise from a few simple coupled ordinary, and be distinguished

by the simple equations. This simplified mode analysis method not only can over-

come the troublesome difficulty of the Couette-Taylor flow problem, but also involve

some essential features of the flow, which is very meaningful to discuss nonlinear

phenomena of Navier-Stokes equation, for example, the bifurcation, turbulence etc.

Although the dynamic behavior of the Lorenz-type equation is not exactly the same

as the actual flow of the Couette-Taylor flow, it can not only achieve the minimum

degree of freedom of simulation but also reflect some essential features of the flow,

this is a valuable attempt to use the simple model to reflect some of the features of

complex problems. Of course, the fascinating and confusion vortex wave observed

in the experiment before the occurrence of turbulence may be beyond the expressed

scope of finite model Lorenz-type equations, so we can’t expect to obtain all the de-

tails of this complex problem, the focus of our study is interpretation of three typical

flow of the Couette-Taylor flow before evolution into turbulence and some features of

the turbulence behavior after flow transition to chaos and its simulation. Chen and

Hsien [1987] investigated a model system of evolutionary equations for axisymmetric

Couette-Taylor flow, but the model of truncation seemed too simple, there were no

Hopf bifurcation and chaos behaviors in their system. Heyuan Wang [2012] derive

a three-model system by using spectral Galerkin method, and discover chaos phe-

nomena. The existence of its attractor was given, some numerical simulation results



DIFFERENTIAL INCLUSIONS 67

were presented [Heyuan Wang 2012]. In this paper, we further study dynamical be-

haviors of the three-model Lorenz-type system, discuss the estimation of Hausdorff

dimension of its attractor, and present numerical simulation results of attractors, bi-

furcation diagram, Lyapunov exponent spectrum, Poincare map and return map of

dynamical behaviors. The outline of the paper is as follows. In section 2 we discuss

the estimation of Hausdorff dimension of its attractor. In section 3 we study the

globally exponentially attractive set and positive invariant set of the three-mode sys-

tem. In section 4 we present numerical simulation results of attractors, bifurcation

diagram, Lyapunov exponent spectrum, Poincare map and return map of the system,

and analyze the evolutionary mechanism of the dynamical behavior of the system.

2. The three-mode Lorenz-type equation and the estimation of Hausdorff

dimension of its attractor

Heyuan Wang introduce eigenfunctions of Stokes operator in the cylindrical gap

regions as basis function of Fourier expansions, and derive the following three-model

Lorenz-type system by a suitable model truncation of the Navier-Stokes equations for

the incompressible flow between two concentric rotating cylinders in periodic bound-

ary conditions in the Z-axis [Heyuan Wang 2012]

(2.1)



















Ẋ = −C1X + C2ReZ − C3Y Z,

Ẏ = −C4Y + C5XZ,

Ż = C6RX − C7Z − C8XY.

where Re is Reynolds number, X, Y, Z is Fourier coefficients, they are function of t,

and C1, . . . , C8 are positive parameter. The model equations (2.1) are the same as

the model system of Chen and Hsien [1987], which is a Lorenz-type system. Because

the coefficients satisfy C1 + C4 > C7 in the model system of Chen and Hsien [1987],

there is no Hopf bifurcation even for large Reynolds number Re. On the contrary,

due to disappearance of the restricted condition C1 + C4 > C7 in the model system

(2.1), there exists Hopf bifurcation and chaos [Heyuan Wang 2012].

For the system (2.1) there exists trivial stationary solution O = (0, 0, 0) and two

nontrivial stationary solutions P+, P− [Heyuan Wang 2012]. In order to discuss the

stability of the nontrivial stationary solutions P± Heyuan Wang [2012] introduces the

following transformation:

(2.2)























t = sτ,

X = s2y,

Y = s3z,

Z = s1x.
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Due to C3C5 > 0, C6 6= 0, we set s = 1
C1

, s1 = C1√
C3C5

, s2 = C1C7

C6

√
C3C5Re

, s3 = C1C7

C3C6Re
,

then (2.1) can be rewritten as a Lorenz-type system:

(2.3)











ẋ = −σ(x − y) + cyz,

ẏ = −xz + rx − y,

ż = xy − bz,

where r = C2C6

C1C7
Re2, c =

C2

7
C8

C2

6
C3Re2 , b = C4

C1
, σ = C7

C1
. In contrast to Lorenz system, the

system (2.3) has an additional nonlinear term cyz.

In the following we discuss the estimation of Hausdorff dimension of its attractor.

Fixing x, y, replacing z with z + σ + r, and setting p0 =
[

σ + c(r + σ)
]

, we rewrite

system (2.3) as

(2.4)



















ẋ = −σx + p0y + cyz (1)

ẏ = −xz − σx − y (2)

ż = xy − bz − b(r + σ) (3).

Let E be Hilbert space, and Y ⊂ E be a subset of E, I be index set. Given d ∈ R+,

ǫ > 0, we denote by µH(Y, d, ǫ) the quantity inf
∑

i∈I rd
i , ri be radius of a family ball

covering Y of E, and ri ≤ ǫ (for all i ∈ I). Set

µH(Y, d)
∆
= lim

ǫ→0
µH(Y, d, ǫ) = sup

ǫ>0
µH(Y, d, ǫ)

µH(Y, d) is called d-dimensional Hausdorff measure of Y .

There exists d0 ∈ [0,∞) such that µH(Y, d) = 0 for d > d0, µH(Y, d) = +∞ for

d < d0, the number d0 is called the Hausdorff dimension of Y , and is denoted dH(Y )

(R. Temam [12]), and the following conclusion is quoted from R. Temam [12].

Theorem 2.1. Let H be a Hilbert space, and X ⊂ H be a compact set ,and S be

a continuous mapping from X into H such that SX ⊂ X. We assume that L is

“uniformly differentiable on X”, i.e., For every u ∈ X, there exists a linear operator

L(u) ∈ L(H) and

sup
∀u,v∈X,0<|u−v|X<ǫ

‖Su − Sv − L(u)(v − u)‖

‖u − v‖
→ 0, as ǫ → 0

where ‖ · ‖, | · |X are norm of H and X respectively, and we assume the following:

sup
∀u∈X

‖L(u)‖L(H) < +∞,

sup
∀u∈X

ωd(L(u)) < 1 for some d > 0,

then the Hausdorff dimensional of X is less than or equal to d.
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We present estimation of Hausdorff dimension of attractor in the following conclu-

sion, in the proof of the following theorem 1 we refer to the method shown in literature

[12], but we have discovered a few mistakes in the process of proof in literature [12],

we have revised these errors. Since our system contains the cyz, the following dis-

cussion become more complicated. Definition of ωd, ωm(L), αm(L),
∧m

H, (·, ·)V

m H is

quoted from R. Temam [12],

Theorem 2.2. For three-mode equations (2.3) Hausdorff dimension of its attractor

satisfies dH ≤ 2 + s, and s ∈ (0, 1).

Proof. System (2.4) can be written in the form

du

dt
= F (u) = F (x, y, z) = −







σx − p0y − cyz

σx + y + xz

bz − xy + b(r + σ)






.

Let U = ξ(t) ∈ H = R3, and we consider the following initial-value problem

(2.5)

{

dU
dt

= F ′(u) · U

U(0) = ξ,

−F ′(u) · U = A1U + A2U + B(u)U,

where

A1 =







σ 0 0

0 1 0

0 0 b






, A2 =







0 −σ 0

σ 0 0

0 0 0






,

B(u) =







0 −c(r + σ) − cz −cy

z 0 x

−y −x 0






, ∀u = (x, y, z) ∈ R3.

For initial-value ξ1, ξ2, ξ3 ∈ R3, solution U = (U1, U2, U3) of the initial-value problem

(2.5) satisfies Ui(t) = L(t, u0)ξi, ∀t > 0. u0 is stationary solution of the system (2.4).

L(t, u0) is linear operator from R3 into R3

L(t, u0) : U(0) = ξ(∈ R3) → U(t)(∈ R3).

In
∧m

H(m = 2, 3) we consider

d

dt
|U1 ∧ U2 ∧ U3| = |U1 ∧ U2 ∧ U3|TrF ′(u)

d

dt
|U1 ∧ U2| = |U1 ∧ U2|Tr(F ′(u) · Q),

where Q = Q2(t, u0; ξ1, ξ2) is orthogonal projection from R3 into span{U1, U2}, nota-

tion Tr is quoted from R. Temam [12].

|U1 ∧ U2 ∧ U3(t)| = |ξ1 ∧ ξ2 ∧ ξ3| exp[−(σ + b + 1)t]
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ω3(L(t, u0)) = sup
ξi∈H,|ξ|=1,i=1,2,3

|U1 ∧ U2 ∧ U3(t)|

therefore, ω3(L(t, u0)) ≤ exp[−(σ + b + 1)t].

Let Λi, µi(i = 1, 2, 3) be uniform Lyapunov numbers and uniform Lyapunov ex-

ponents (R. Temam [12]), then

Λ1Λ2Λ3 = lim
t→∞

ω3(t)
1/t

= exp[−(σ + b + 1)],

µ1 + µ2 + µ3 = −(σ + b + 1).

By similar manner we have

|U1 ∧ U2| = |ξ1 ∧ ξ2| exp

∫ t

0

Tr(F ′(u(c)) · Q(c))dc.

Assume that |ξ1 ∧ ξ2| 6= 0, thus |U1 ∧ U2| 6= 0, ∀t > 0.

Tr(A1 + A2) · Q = Tr(A1) · Q ≥ 1 + b + σ − m

where m = max(1, b, σ).

Set ϕi = (xi, yi, zi), i = 1, 2, 3 be an orthogonal basis of R3, thereafter x1y1 +

x2y2 = −x3y3. We find

Tr(B(u) · Q) =

2
∑

i=1

(B(u)ϕi)ϕi

=

2
∑

i=1

[(−czxiyi − cyxizi + zxiyi + xyizi − yxizi − xyizi) − c(r + σ)xiyi]

=

2
∑

i=1

[(1 − c)zxiyi + (−1 − c)yxizi − c(r + σ)xiyi]

= −(1 − c)zx3y3 + (1 + c)yx3z3 + c(r + σ)x3y3.

When c ≤ 0, we have 1 − c ≥ |1 + c|, then

Tr(B(u) · Q) = −(1 − c)zx3y3 + (1 + c)yx3z3 + c(r + σ)x3y3

≤ |x3||1 − c|
√

z2 + y2

√

y2
3 + z2

3 + |c(r + σ)|

≤
1

2
|1 − c|

√

y2 + z2 + |c(r + σ)|

≤
1

2
|1 − c||u(t)| + |c(r + σ)|,

where |u(t)| =
√

x2 + y2 + z2, |ϕi| =
√

x2
i + y2

i + z2
i .

Therefore Tr(B(u) · Q) ≥ −1
2
(1 − c)ρ0 − δ, where ρ0 is absorbing radius of the

system when c < 0 (0 < δ ≪ 1).
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Thereafter |U1 ∧ U2| ≤ |ξ1 ∧ ξ2| exp((k2 + δ)t), where k2 = −(σ + b + 1) + m +
1
2
ρ0(1 − c) + |c(r + σ)|, therefore

ω2(L(t, u0)) ≤ exp((k2 + δ)t) t ≥ t1(δ),

ω2(t) ≤ exp((k2 + δ)t),

Λ1Λ2 ≤ exp(k2),

µ1 + µ2 < k2.

Assume that dH = 2 + s, 0 < s < 1, t ≥ t1(δ), we get

dH = 2 + s ≤ 2 +
k2 + δ

σ + b + 1 + k2 + δ
.

When c ≥ 0, estimate is different slightly, namely,

|Tr(B(u) · Q)| ≤ | − (1 − c)x3y3 + (1 + c)yx3z3| + |c(r + σ)|

≤
1

2
(1 + c)|u(t)| + |c(r + σ)|.

Accordingly, Tr(B(u)·Q) ≥ −1
2
(1+c)ρ0−δ, therefore, k′

2 = −(σ+b+1)+m+ 1
2
ρ0(1+c),

then dH = 2 + s ≤ 2 +
k′

2
+δ

k′

2
+δ+σ+b+1

.

We complete estimation of Hausdorff dimension of attractor.

3. The globally exponentially attractive set and positive invariant set

In order to study the globally exponentially attractive set and positive invariant

set of the three-mode Lorenz-type system we rewrite system (2.3) as

(3.1)



















ẋ = −σ(x − y) + c
r
yz,

ẏ = −xz + arx − y,

ż = xy − bz,

where a = C2C6

C1C7

, c =
C2

7
C8

C2

6
C3

, b = C4

C1

, σ = C7

C1

, r = Re2. First, we present a basic

definition here, let X = (x, y, z) and suppose X(t) = X(t, t0, X0) is a solution of

system (3.1), and we denote the solution of system (3.1) satisfying the initial value

X(t0, t0, X0) = X0.

Definition 3.1. If there exists a constant number L > 0 such that for V (X0) > L,

V (X(t)) > L, imply limt→+∞ V (X) ≤ L, then Ω = {X | V (X(t)) ≤ L} is said to be

a globally attractive set of system (3.1).

Definition 3.2. If for any X0 ∈ Ω and any t > t0, imply X(t, t0, X0) ∈ Ω, then

Ω = {X | V (X(t)) ≤ L} is said to be positive invariant set.
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Definition 3.3. If there exists constant numbers L > 0, M > 0 and any X0 ∈ R3

such that for V (X0) > L, V (X(t)) > L, imply the following exponentially estimate

inequality: V (X(t)) − L ≤ (V (X0) − L)e−M(t−t0), then Ω = {X | V (X(t)) ≤ L} is

said to be a globally exponentially attractive set of system (3.1).

Theorem 3.4. Let

(3.2) V = x2 +
(

1 +
c

r

)

y2 +
[

z − σ −
(

1 +
c

r

)

ar
]2

(3.3) L =
b2[σ + (1 + c

r
)ar]2

2b − 1

when V (X0) ≥ L, and V (X(t)) ≥ L, then system (3.1) has the following esti-

mate inequality for globally exponentially V (X(t)) − L ≤ (V (X0) − L)e−(t−t0), and

limt→+∞V (X(t)) ≤ L. i.e. Ω = {X | V (X(t)) ≤ L} is the globally exponentially

attractive set and positive invariant set of the system (3.1).

Proof. We construct a family of generalized radically infinite and positive definite

Lyapunov functions as

V = x2 +
(

1 +
c

r

)

y2 +
(

z − σ −
(

1 +
c

r

)

ar
)2

Computing the time derivative along the positive half-trajectory of system (3.1), we

have

(3.4) V̇ = 2xẋ + 2
(

1 +
c

r

)

yẏ + 2
[

z − σ −
(

1 +
c

r

)

ar
]

ż = −V + F (X)

where

F (X) = F (x, y, z) = (1 − 2σ)x2 −
(

1 +
c

r

)

y2 − (1 − 2b)z2

− 2
[

σ +
(

1 +
c

r

)

ar
]

(1 − b)z +
[

σ +
(

1 +
c

r

)

ar
]2

.

Because F (x, y, z) is quadratic function, its local maximum is the global maximum.

Let
∂F

∂x
= 2(1 − 2σ)x = 0,

∂F

∂y
= −2

(

1 +
c

r

)

y = 0,

∂F

∂z
= 2(1 − 2b)z − 2

[

σ +
(

1 +
c

r

)

ar
]

(1 − b) = 0,

we have x = 0, y = 0, z =
[σ+(1+ c

r
)ar](1−b)

1−2b
, then we obtain the following two-order

derivative of F (X) at the point
(

0, 0,
[σ+(1+ c

r
)ar](1−b)

1−2b

)

,

∂2F

∂x2
= 2(1 − 2σ) < 0, when σ >

1

2
,

∂2F

∂y2
= −2

(

1 +
c

r

)

< 0, when
(

1 +
c

r

)

> 0,
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∂2F

∂z2
= 2(1 − 2b) < 0, when b >

1

2
,

∂2F

∂x∂y
=

∂2F

∂y∂z
=

∂2F

∂z∂x
= 0.

So

sup
X∈R3

F (X) = F (X)
∣

∣(x = 0, y = 0, z =

[

σ +
(

1 + c
r

)

ar
]

(1 − b)

1 − 2b
)

=
b2

[

σ +
(

1 + c
r

)

ar
]2

2b − 1
= L

From (3.4), we have dV
dt

≤ −V + L, and we get the following globally exponentially

estimate V (X(t)) − L ≤ (V (X0) − L)e−(t−t0), when V (X0) ≥ L, V (X(t)) ≥ L, and

we take the upper limit of the both sides for V (X(t)) − L ≤ (V (X0) − L)e−(t−t0),

then limt→+∞V (X(t)) ≤ L. Therefore, Ω = {X | V (X(t)) ≤ L} is the globally

exponentially attractive set and positive invariant set of the system (3.1).

4. The Numerical Simulation and Analysis of Dynamical Behaviors

Heyuan Wang obtains the following concrete three-mode equations [Heyuan Wang

2012]

(4.1)



















ẋ = −4.52(x − y) + 1.843
r

yz,

ẏ = −xz + 1.723rx − y,

ż = xy − 1.436z.

The numerical computation results indicate that system (4.1) has complicated dy-

namical behaviors with increasing the parameter r = Re2. In this section we present

the numerical experiment results.

1) For 0 < r < r1 = 1.263 . . . , the stationary solutions O of system (4.1) is stable, in

this case O is the only attractor of the system. As r passes through r1, equilibrium

solutions O becomes unstable, simultaneous with the loss of stability of O, the two

fixed points P± are born, for r1 ≤ r < 4.515 . . . , the stationary solutions P± of system

(4.1) is stable, Numerical evidences indicate that any randomly chosen initial data is

attracted by one of them, so they are global attractors (see Fig. 1, 2).

2) At r = 4.515 . . . the two stable stationary solutions P± become unstable because

a pair of complex conjugate eigenvalues of Jacobian matrix at stationary point P±

crosses the imaginary axis, each of the two stable stationary solutions P± loses sta-

bility undergoing a Hopf bifurcation, and each generates a unstable periodic orbit

(Fig. 3).

3) At r = 4.615 . . . , the unstable periodic orbits gives rise to a new orbit, the new

orbits wind up around two of the stationary solutions P±, instead of only one like the

previous ones (Fig. 4), the motions become more and more complicate as r grows,
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eventually generating a chaotic attracting set, namely, the strange attractor appears

(Fig. 5–10).

4) For 24.714 < r < 30.713 . . . , the strange attractor shrinks into a limit cycles

gradually (Fig. 11–15), if followed backwards with decreasing r, this bifurcation is an

“inverse” bifurcation.

5) For 30.721 < r < 36.981 . . . , increasing r we found further bifurcation points, since

the orbits become increasingly intricate requiring higher precision, we did not look for

further bifurcations. So we cannot definitely state whether we have just a finite num-

ber of bifurcations and the only obstacle to observe more seems to be the numerical

precision needed, then the strange attractor appears again, Fig. 16–18 presents three

kinds of quasi-periodic state, Fig. 19,20 describes two kinds of attractor in different

r. With the increasing of the parameter r, a strong hysteresis phenomenon(i.e., coex-

istence of stable attractors) appears, in some intervals hysteresis takes place between

closed orbits and tori (Fig. 21–35).

6) Fig. 36 shows bifurcation diagrams of the system (4.1), Fig. 37 are the correspond-

ing largest Lyapunov exponents, we can see that region of the positive maximum

Lyapunov exponents in Fig. 37 and chaotic region of the bifurcation Fig. 36 is con-

sistent.

7) Fig. 38 shows Poincare section of the system (4.1) (r = 34.894); Fig. 39 shows

return map of the system (4.1) (r = 14.894); Fig. 40 present the power spectrum of

the system (4.1), they indicate that chaos feature of the system (4.1).

8) From bifurcation diagrams Fig. 36 we find that the chaotic region contains periodic-

orbit windows of varying width, the strange attractors and limit cycles appear alter-

nately at some parameter r. Through more delicate and difficult calculation we ob-

tain the following details: at r = 30.713 . . . and r = 42.855 . . . the strange attractor

shrinks into a limit cycles(Fig. 14, 15, 24), at r = 30.721 . . . and r = 44.785 . . . the

limit cycles become unstable and the periodic orbits generated by the period doubling

bifurcation continue to double in ever faster succession eventually generating a chaotic

attracting set (Fig. 16–20) at r = 224.895 . . . the limit cycles gradually evolved into

a torus (Fig. 29–35), if followed backwards with decreasing r, this bifurcation is an

“inverse” bifurcation (Fig. 36).
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Fig. 1 (r = 3.342) Fig. 2 (r = 3.837)
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The numerical results 1)–3) can be used to explain successive transitions phenomena

of Couette-Taylor flow from Laminar flow to turbulence in the experiment, for exam-

ple, in the regime 0 < r < r1 the only attractor is O, this represents a situation in

which the fluid is at rest, this stable equilibrium regime correspond to Couette flow.

The steady states P± both represent time-independent convective flow patterns, this

correspond to the Taylor vortices and the rotating waves. The quasi-periodic orbits

in the Figs. 5–9 are with respect to modulated wavy Taylor vortices, strange attractor

in the Fig. 10 correspond to turbulence (chaos), and so on. These simulation results

indicate that the transition from stable equilibrium point → unstable equilibrium

point → periodic → quasi-periodic → transient chaos → chaos, similar to one of the

experimental results of Gollub and Benson [1980]. Although our numerical result is

not completely compatible with the experimental result, it is similar to the experi-

mental result qualitatively. In order to check the behaviors of this low-dimensional



80 H. WANG

model, we have obtained a five-dimensional system for the same problem, the ob-

tained results are very similar. The five-dimensional system also exhibits a period

doubling scenario. The bifurcations occur at different Reynolds numbers. In both

cases, the qualitative phenomena are essentially the same.

According to the numerical computation results and analysis, we present stability

of the three-mode and corresponds to the actual flow of Couette-Taylor flow by the

following table 4.1.

Table 4.1 Equilibrium points property of three-mode system

and corresponds to the actual flow of Couette-Taylor flow

r-value 0 < r < r1 As r > r1 increases further

equilibrium Stable node Saddle node

O One direction is unstable,

the other two directions are stability

P+, No Stable Stable Saddle

P− equilibrium node focus point

Unstable

Phase Tends to Tends to spiral line limit cycles

trajectory of stable stable Tends to subcritical

system (2.1) equilibrium equilibrium P+ or P− Hopf

O P+ or P− bifurcation

the actual Couette flow the Taylor vortices irregular

flow of and rotating traveling turbulent

C-T flow waves chaotic

5. Conclusions

This paper has studied a three-mode Lorenz-type system of the incompressible

flow between two concentric rotating cylinders. Dynamical behaviors of the chaotic

system, including the strange attractor, bifurcations, and some universal features of

chaos behaviors have been investigated both theoretically and numerically by chang-

ing parameter r. Compared with the classical Lorenz system, our three-mode system

differs only by the right-hand side for the x-derivative where is, as an addition, a term

cyz, our three-mode system does not reproduce the qualitative features of Lorenz sys-

tem from which it has been obtained as an extension, no stable attracting periodic

orbit being present at high values of the parameter r, in some intervals hysteresis

takes place between closed orbits and tori. Even if the three-mode model studied

dose not reproduce the interesting phenomena of the Lorenz system, we think it is
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also interesting by itself. In fact its phenomenology, studied quite in detail, appears

so rich and varied to amply justify the present work.
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