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Abstract. This paper presents an investigation of the application of the technique of fracture 

mechanics to geometry of threaded fasteners.  The flaw chosen is in the form of a surface crack and 

values of the J-integral along the crack front were evaluated using the computational technique.   

Variation in angular orientation of the crack, so as to simulate loading conditions similar to mixed 

mode I,  II and III, was found to have an appreciable influence on overall value of the J-integral 

and stress state at the crack front.    In this paper, the influence of variation in crack, or flaw, size 

on response kinetics of a threaded fastener was systematically investigated only to reveal an 

observable influence of flaw size on performance of the threaded faster made from high strength 

steel. 
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Introduction 

 Threaded fasteners have traditionally been one of the most commonly used 

components across all disciplines of engineering with specific reference to both structural 

and mechanical applications.  A simple google search on failure of mechanical fasteners 

brings up several interesting case studies [1-6] wherein the structures failed as a direct 

consequence of fracture of the key fastener components. Despite sustained research and 

development efforts to both design and manufacture a flawless component, flaws (referred 

to henceforth through this manuscript as cracks) will inevitably make their way into 

mechanical components through the conjoint and mutually interactive influences of 

structure-material-environment interactions, such as corrosion [to specifically include: (i) 

embrittlement by hydrogen, and (ii) stress corrosion cracking]. This has provided the much 

needed interest to examine fracture properties of geometry of a fastener with an emphasis 

on using the technique of non-linear fracture mechanics.  

 The usefulness of stress intensity factor (K)-dominated methods [7] outside of 

linear elastic conditions, is highly limited [8].  With an increased  emphasis on  nonlinear 

dominance  of  the stress  state,  a method  implementing  the use of  path-independent  J- 

integral [9] did eventually become essential.  This will help in defining the deformation 

state of the crack.   
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1. The J-Integral 

 A two-dimensional analysis of the path independent J-integral initiates by 

examining a non-linear elastic homogeneous body that is essentially: (i) free of all body 

forces, and (ii) acted on by a two-dimensional deformation field. The body is comprised of 

an elastic material that experiences a Hookean response within the yield surface with 

nonlinear hardening occurring immediately outside of the yield surface.  Rice [9] defined 

the path independent J-integral to be:  

𝐽 = ∫ (𝑊𝑑𝑦 − 𝐓 ∙
𝜕𝐮

𝜕𝑥
𝑑𝑠)

𝛤∗

 (1) 

where W is the strain energy density, T is the traction vector and u is the displacement 

vector. Describing the contour path in a fashion that results in the integral of 𝑊𝑑𝑦 − 𝐓 ∙
𝜕𝒖

𝜕𝑥
𝑑𝑠 vanishing, can be shown that the sum value of the integral along the counter-

clockwise path is zero. This path independence is inferred to a path that gives the same 

value of J, given the area between the paths is free of singularities.  With focus on an area 

immediately around the crack tip the J-integral becomes representative of the local field.  

 When developing a finite element model to determine the J-integral values for the 

Boundary-Layer model, it is important to have a method that helps in verifying the overall 

validity of the model and the calculations involved.  This is performed by using the 

equations of small-scale yielding (SSY) developed and put forth by Rice [10].  In his 

analysis, Rice examined the case of a narrow crack in a body that was loaded to induce a 

yield zone both at and near the crack tip that, relative to its dimensions, is conceived as 

being noticeably small.  

 The formulation begins by means of defining polar coordinates (r, θ) for the 

boundary-layer problem with the origin located at the tip of the crack.  This is shown in 

Figure 1.  Assuming the plastic zone to form near the crack tip, in an elastic-perfectly 

plastic material for which the load level is sufficiently small, it can be assumed that 

singularity controls the stresses at a significant distance away from the crack tip.  From this 

method, we get an equation for the stress state in the immediate vicinity of the crack tip as 

the radius (‘r’) approaches infinity 

 

The  

 

J-int gral is formulated using the boundary layer solution parameters, taking the contour 

(Γ) to be a large circle having a radius r.  Allowing the radius (r) to approach infinity and 

noting the strain energy density to be quadratic in the strain region it was found that only 

the asymptotically approached inverse square-root elastic-stress field contributes to the J-

integral analysis. Using the associated plane-strain deformation field we get: 

 

 

𝜎𝑖𝑗 →  
𝐾𝐼

(2𝜋𝑟)
1
2

𝑓𝑖𝑗(𝜃)   𝑎𝑠 𝑟 →  ∞ (2) 
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𝐽 =
1 − 𝑣2

𝐸
𝐾𝐼

2 (3) 

where E is young’s modulus for the material, v is Poisson’s ratio and KI is the Mode I 

stress intensity factor. 

 

Figure 1. (a) Small-scale yielding example for a crack in an elastic plastic 

material with geometrically exact boundary conditions.    

  (b) Configuration of crack in a semi-infinite body in which the 

actual boundary conditions are replaced with an asymptotic method 

 Equation 3 provides a mathematical method for purpose of checking accuracy of 

the finite element boundary layer model by enabling calculation of the K value that can be 

associated with the output J-value. An agreement with the K value used to determine the 

displacement field values on the boundary layer does clearly indicate the finite element 

model to have sufficient contours for the purpose of achieving a path-independent state. 

 The Hutchinson-Rice-Rosengren (HRR) solution provides a viable method for 

showing the J-integral to characterize the crack-tip conditions for a non-linear elastic 

material [11, 12]. Uniaxial deformation, taking into account material that follows the 

power-law hardening and with the inclusion of elastic strains, can be defined using the 

Ramberg-Osgood equation: 

𝜀

𝜀0
=

𝜎

𝜎0
+ 𝛼 (

𝜎

𝜎0
)

𝑛

 (4) 

 

In this expression, σ0 is the reference stress, ε0=σ0/E, α is a dimensionless material constant 

and ‘n’ is the strain-hardening exponent.  It was shown that path independence can be 

maintained when stress-strain is varied using 1/r near the tip of a flaw or crack.  Stress-

strain relationships can be reduced to a power-law function at distances very close to the 

tip of a flaw or crack.  At this location the elastic strains are noticeably small when 

compared to the total strain [13].  Application of boundary conditions provides an ability to 

obtain the stress-strain distribution using the following relationships: 
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𝜎𝑖𝑗 = 𝜎0 (
𝐸𝐽

𝛼𝜎0
2𝐼𝑛𝑟

)

1
𝑛+1

�̃�𝑖𝑗(𝑛, 𝜃) (5) 

𝜀𝑖𝑗 =
𝛼𝜎0

𝐸
(

𝐸𝐽

𝛼𝜎0
2𝐼𝑛𝑟

)

𝑛
𝑛+1

𝜀�̃�𝑗(𝑛, 𝜃) (6) 

In these two equations: (i)  In is an integration constant depending on n, (ii) σij and εij are 

dimensionless functions of n and θ. Equation 6 and Equation 7 are also known as the HRR 

singularity.   

2. The Numerical Model and Approach 

2.1. Material Definition 

 ABS Grade DH36 steel, a material for which the stress and strain information was 

readily available from Gao et al. [14, 15], is used in this research study.  The chosen 

material, i.e., DH36 is a structural steel with high strength that offers a combination of 

enhanced corrosion resistance, good fracture toughness coupled with strong processing and 

adequate welding characteristics [16]. The Young’s modulus of this material is 200GPa 

and the Poisson’s ratio is 0.3. The stress-strain curve subsequent to plastic yielding was fit 

to a power-law hardening relationship in conformance with Equation 7 using σ0 = 345MPa 

and n = 0.143: 

𝜀 =
𝜎0

𝐸
(

𝜎

𝜎0
)

1/𝑛

 (7) 

In this equation E is the modulus of elasticity, σ0 is the yield stress and ‘n’ is taken to be 

the strain hardening exponent. Although this investigation focuses solely on high strength 

structural steel DH36, additional tests can be conducted using the same fastener geometry 

for different high strength metals by simply changing the inputs to the stress-strain curve in 

the finite element program to conform to the chosen material.  

2.2. Finite Element Model 

 Non-linear finite element analysis [FEA] was conducted using Simulia Abaqus / 

Standard [17] as the FEA pre-processing and post-processing tool.  For the case of three-

dimensional models all meshing was conducted using Hyperworks Hypermesh [18] and 

imported into Abaqus to facilitate for more intricate controlled modeling of events that 

exist immediately ahead of the chosen crack.  Three-dimensional computer-aided design 

(CAD) modeling was performed using Autodesk Inventor [19]. 

2.3. The Plane Strain, Small-Scale Yielding model 

 For this investigation a Modified Boundary Layer (MBL) analysis was performed 

to develop a wide array of solutions for the zone at the crack tip.  Solution to the modified 

boundary layer [MBL] helps simplify the analysis at the crack tip by using a set of 

equations for purpose of enforcing a far-field stress on the boundary layer so as to simulate 

response at the crack tip [10].  The plastic region is limited to a small portion of the far-

field radius (R) and for a value of Rp < R/20 to ensure validity of the K-dominated zone as  
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definition of the boundary condition.  Numerical solutions were obtained by imposing 

displacements on the far-field nodes for purely an elastic response under Mode I loading in 

the region (r = R) 

𝑢(𝑅, 𝜃) = 𝐾
1 + 𝑣

𝐸
√

𝑅

2𝜃
cos (

𝜃

2
)(3 − 4𝑣 − cos(𝜃)) + 𝑇

1 − 𝑣2

𝐸
𝑅𝑐𝑜𝑠(𝜃) (8) 

𝑣(𝑅, 𝜃) = 𝐾
1 + 𝑣

𝐸
√

𝑅

2𝜃
sin (

𝜃

2
)(3 − 4𝑣 − cos(𝜃)) + 𝑇

−𝑣(1 + 𝑣)

𝐸
𝑅𝑠𝑖𝑛(𝜃) (9) 

 To enhance convergence of the nonlinear iterations a small initial root radius at the 

tip of a crack was adopted. It was shown in earlier studies that the initial notch radius will 

have no effect on the numerical results once the crack-tip opening displacement (CTOD) 

becomes greater than four times the value of the initial radius [20,21].  In this study, the 

initial radius of the notch was taken to be 1.25μm.  This is shown in Figure 2b.  The 

modified boundary layer (MBL) model was constructed using 2,771 two-dimensional 

quadratic eight-node iso-parametric plane-strain elements and having reduced integration 

elements so as to accurately capture the stress state in the J-Q annulus. 

 

 

Figure 2. (a) For small-scale yielding (SSY) model with K1 displacement field 

and R-θ coordinate system.  

  (b) Near-tip mesh with initial root radius of 1.25μm 

 

2.4. The Finite Element Elliptical Flaw Fastener Model 

 To be studied is a 12.7mm-0.512 x 50.8mm (1/2in-13 x 2in) fully-threaded socket 

head cap screw.  The three-dimensional [3D] CAD model shown in Figure 3 provides an 

overview of    geometry of the threaded fastener.  A slice at the region of flaw, or crack, is 

shown in Figure 4.  The model was adapted by cutting away material to account for the 

clip gage that is normally used in laboratory-scale tests.  This was done by removing a 

section of thread having a length of 20.32mm to account for length of the gage and by 

cutting a notch having a size of 0.762mm for purpose of attaching the clip gage.  
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Figure 3. 12.7mm-13 x 50.8mm (1/2in-13 x 2in) fully threaded socket head cap 

screw with necessary modifications for clip gauge placement 

 

 

Figure 4. Configuration of the crack front for J-integral computations 

 

 Geometry of the crack was modeled as an elliptical crack having varying values of 

width [2a] and depth [b].  Elliptical shaped flaws were chosen for this study due to their 

occurrence  as  flaws  present on the  surface of  most service components.    A  schematic 

showing key control variables of an elliptical crack is shown in Figure 6.  The two-

dimensional (2-D) crack mesh was extruded along an elliptical arc to create 30 layers of 

elements having equal spacing along length of the arc.  This modeling method provided 31 

regions for purpose of calculating the J-integral along with 40 contours in each region, 

which proved sufficient for purpose of ensuring path independence.  

 The crack tip is modeled as a small notch due to primary interest in results in the 

plastic range. A blunt crack tip helps in controlling distortion of the element resulting from 

incompressibility of the elastic-plastic material in the non-linear range.  The crack-tip mesh 

along with views of the contour and global crack region are shown in Figure 5.  A unit 

cell, containing the crack geometry, was used in conjunction with a pre-meshed model of 

the threaded fastener by enforcing a tie constraint on the contacting surfaces. 
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Figure 5. Mesh of three-dimensional model examined  

a) zoomed out view of crack front area  

b) contour mesh with external radius of 0.12mm, and  

c) near-field crack tip mesh with crack tip radius of 1.25μm 

 

 

Figure 6. Definition of Control Variables for an Elliptical Crack. 

 

 The J-integral values were calculated using a domain integral method at each node 

set P along the crack front as defined by documentation manual of the ABAQUS version 

6.13 [20].  

𝐽𝑃 = 𝐽�̅�/ ∫ 𝑁𝑃𝑑𝑠
𝐿

 (10) 

In this expression, JP is the J-integral at node set P and NP is a node set that is located at a 

value s along the crack front. 
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3. Numerical Results 

3.1. Variation of the J integral value along a crack front 

 By examining the effects of a crack on values of the J integral, the models were 

evaluated at each contour region to obtain a plot of the J-integral value versus the ratio of 

crack length progressing from 0 to 1. The values of “s” were calculated numerically using 

an elliptical integral that was evaluated at the node points along the crack front. These 

values were subsequently divided by length of the largest arc so as verify that final value of 

the ratio was 1.  The load level was selected by looking at the values of J that were 

expected at a node point that existed in the mesh. With a node located at a radial distance 

from the center point of a crack of length 3.07x10-3 mm, the equation J = 2 ‘r’ σ0 was used 

to obtain a J value of 0.53 mJ/mm2.  Due to an interest in investigating the crack at a value 

of s=0.5, Figure 7 was plotted using a load step that provided a J value of 0.53 at the node 

associated with s=0.5.  

 Results obtained for the specimen having crack dimensions of a=1.651mm and 

b=1.651mm, are shown in Figure 8.  This figure reveals a strong correlation to exist 

between position along the crack front and expected value of the J integral.  There does 

occur a peak in value of the J integral for values of s=0.065 and s=0.935, with an 

observable drop in the J integral value occurring on either side of this point.  This is due to 

a loss in constraint that occurs near s=0 and s=1 coupled with an observable reduction in 

contribution of the bending stress as depth of the crack gradually increases towards the 

center line of loading.  Values for this configuration peak to a J integral value of 0.84 

mJ/mm2 and bottom out at a J integral value of 0.530 mJ/mm2. 

 

 

 

 

Figure 8. Variation of J along the crack front plotted against the ratio of arc 

length for a specimen with crack dimensions of a=1.651mm and 

b=1.651mm at a load of 5.5 kN. 
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3.2. Influence of Crack Aspect Ratio on J  

 The next step was to examine the effect changes in dimensions of an elliptical crack 

had on the value of the J integral across the crack front.  For purpose of analysis, models 

having crack dimensions of (i) a = 1.651mm b = 1.651mm, (ii) a = 1.651mm; b = 2.54mm,  

(iii) a = 2.54mm,  b = 1.651mm, and (iv) a = 2.54mm, b = 2.54mm were chosen so as to 

provide cases of variation in crack geometry for each configuration of the ellipse.  All 

positional data was normalized along the crack front to give values of s from 0 to 1, and for 

all models the data was collected for a value of  s = 0.5 and J=0.53.  The results shown in 

Figure 7 reveal the following: (a) increasing the depth of the crack tip does increase the 

value of the J-integral, and (b) increasing the width of the crack causes an observable 

decrease in the value of J.  

 From the results for a = b = 2.54mm it is seen that the effect of increasing the depth 

of a crack had a greater influence on deformation state of the crack than increasing width 

of the crack.  This is evident because a proportional increase in size causes an 

unproportioned shift in the curve.  It is worth noting that values of the J integral for a flaw 

having dimensions of  a = 1.651mm and b = 2.54mm were taken at both a lower value and 

higher value of the load due to a gap in the analysis intervals. The observed difference in 

values of the J integral along the crack front was found to be minimal and only the results 

for a value of the J integral that is lower than 0.53, at a location s = 0.5, is shown. 

 

 

 

Figure 7. Values of J integral plotted against arc length ratio for multiple 

elliptical crack geometries 

 

 Seeing an obvious dominance on the state of J with changes in crack position it is 

of interest to show changes in value of the J integral at the root of a crack with changing 

crack aspect ratio.  In Figure 9 is shown the results for J integral at the root of a crack with  
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the value ‘a’ being held constant at 1.651mm and b being allowed to vary from 0.762mm 

to 3.429 mm for a selected crack-mouth opening displacement (CMOD) of 0.003mm.  

From these results a noticeable decrease in value of the J integral for ratios below 1/1 and a 

slight decrease in value of the J integral for ratios above 1/1 were observed.  Value of  the J 

integral at the crack root for same ratios of a/b was plotted for varying load steps and as 

shown in Figure 9 for the following values of the CMOD: (i) 0.0015mm, (ii) 0.003mm, 

and (iii) 0.0045mm.  From this figure it can be seen that the magnitude of loading had an 

appreciable influence on how the crack ratio manipulates value of the J integral at the root 

of a crack.  For a high level of loading, a negative slope or decrease in value of the J 

integral beyond an aspect ratio of 1/1 gains magnitude resulting in a sharp decrease in 

value of the J integral.  At low levels of loading, the slope of the J curve actually switches 

to a positive value, causing an increase in value of the J integral beyond a crack ratio of 

1/1.  Holding b constant and at 1.651mm while allowing a to vary from 0.762mm to 

3.429mm a difference in behavior can be seen as shown in Figure 10, with an observable 

increase in the J integral value for a variance of a  both below and above a ratio of 1/1.   

Slope of the J integral curve on either side of a 1/1 ratio does see the influence of loading 

with a noticeable increase in magnitude as the load increases. The value of J at the crack 

tip for the case of low loading does reach a near linear state. 

 

 

 

 

Figure 9. J integral value at s=0.5 plotted against crack aspect ratio (a/b) for 

multiple CMOD values of 0.0015mm, 0.0030mm and 0.0045mm. 
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Figure 10. J integral value at s=0.5 plotted against crack aspect ratio (b/a) for 

multiple CMOD values of 0.0015mm, 0.0030mm and 0.0045mm 

 

 

Table 1.  Crack root J-integral data for models of varying crack size holding one 

geometric dimension as a constant and varying the secondary variable 

 

4.3 Changes to Angular Orientation of the Flaw or Crack 

With an understanding of how changes in crack size can exert an influence on value 

of the J-integral at the crack front for a flaw, or crack, that is normal or perpendicular to 

direction of loading, an investigation was initiated into understanding the influence of  

Constant (mm) CMOD (mm) b(mm) a/b b/a J (mJ/mm2)

0.762 2.167 0.462 0.095

1.651 1.000 1.000 0.067

2.540 0.650 1.538 0.042

3.429 0.481 2.077 0.028

0.762 2.167 0.462 0.284

1.651 1.000 1.000 0.277

2.540 0.650 1.538 0.163

3.429 0.481 2.077 0.112

0.762 2.167 0.462 0.502

1.651 1.000 1.000 0.605

2.540 0.650 1.538 0.364

3.429 0.481 2.077 0.252

Constant(mm) CMOD (mm) a (mm) a/b b/a J (mJ/mm
2
)

0.762 0.462 2.167 0.092

1.651 1.000 1.000 0.071

2.540 1.538 0.650 0.077

3.429 2.077 0.481 0.079

0.762 0.462 2.167 0.425

1.651 1.000 1.000 0.277

2.540 1.538 0.650 0.299

3.429 2.077 0.481 0.295

0.762 0.462 2.167 0.934

1.651 1.000 1.000 0.605

2.540 1.538 0.650 0.633

3.429 2.077 0.481 0.630

0.003

0.0045

a=1.651

b=1.651

0.0015

0.0030

0.0045

0.0015
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changes in orientation of the crack on value of the J integral as it deviates from a purely 

Mode I loading mode.  For this investigation, a single model with a crack having the 

dimension of a = b = 1.651mm and rotated by -10 degrees from the original crack plane 

was considered.   This is shown in Figure 11.   All other parameters for modeling were 

held constant to include the following: (i) elements along the crack front, and (ii) number 

of contours in the J-integral region of the model. 

 

 

Figure 11. Visualization of crack tip rotated -10 degrees from the original crack 

plane. 

 

Values of J integral along the crack contour (s) were plotted for a displacement 

value of 0.037mm for situations of both a and b having a value of 1.651 and the angle () 

being equal to the following (i) 0 degrees, (ii) -10 degrees, and (iii) -30 degrees, as shown 

in Figure 12.  The observed negative trend in value of the J integral is seen for all regions 

with noticeable increase in the magnitude of difference in the following regions: (1) 

s=0.04, (2) s=0.22, and (3) s=0.5 for the case of θ being equal to -10 degrees.  However, 

for θ= -30 degree the model reveals a large reduction in value of the J integral being equal 

across all regions with the decrease in magnitude being equal across the crack front.  The 

numerical results reveal orientation of the crack to have a scaling effect on value of the J 

integral at the crack tip.  Further, little difference was observed in those regions where 

loading was essentially perpendicular to the crack plane. Examining the curve for an 

orientation of the crack at -30 degrees, the effect and/or influence is observably significant.  

At this point, it is safe to conclude that loading on the crack front has shifted away from 

primarily Mode I to one in which contributions from Mode II and Mode III loading modes 

cannot be ignored.   

The contributions from Mode II and Mode III loading play a much larger role on 

values of the J-integral at the crack tip.  This is shown in Figure 13.  In this figure, the 

values are taken at the same value of the J integral.   A similar value of the J-integral at the 

root of a crack results in an actual decrease in value of the J integral along the crack front.  

For crack orientation angles of θ = -10 degrees and θ = -30 degrees, the results reveal a 

magnitude decrease in the value of the J integral along the contour (s) between s = 0.07 

and s = 0.15. This change in slope provides a viable explanation for an initial increase in 

the value of the J integral with rotation of the crack with respect to the load axis and 

ultimately resulting in an observable decrease in value of the J-integral as the crack 

orientation angle increases. 
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Table 2.  Tabular data showing the effects of crack orientation on J across the 

crack front of a crack with dimensions a=b=1.651 

 

Examining the influence change in orientation of the crack had on stress state of the 

chosen model, variation of the values of hydrostatic stress with orientation angle (theta) is 

plotted and is shown in Figure 14.  Results reveal a change in orientation of the crack to 

cause a noticeable change in the hydrostatic stress state immediately ahead of the crack tip.  

To begin with, peak of the hydrostatic stress curve is shifted to the left with the magnitude 

remaining effectively the same.  As the angle theta () progresses into the negative zone, 

an observed decrease in the value of hydrostatic stress is seen. This decrease is attributed to 

the conjoint influence of decrease in both bending stress and tension stress in this region.  

For a theta () value of 180 degrees, the hydrostatic stress state of the angled crack reveals 

a significant increase in comparison with the flat crack. This occurs because stresses in this 

region increase as the crack begins to align itself with the plane of loading.  

 

 

 

 

Figure 12. Variation of J plotted against s for a crack of a=b=1.651mm at a 

selected displacement load level of 0.037mm 

 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

θ
0 0.409 0.473 0.384 0.318 0.286 0.277 0.286 0.316 0.380 0.471 0.406

-10 0.410 0.474 0.376 0.314 0.280 0.271 0.279 0.312 0.372 0.470 0.407

-30 0.330 0.407 0.328 0.272 0.245 0.240 0.244 0.270 0.325 0.403 0.327

Normalized position along crack front, s

J (mJ/mm2)
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Figure 13. Variation of J plotted against s for a crack of a=b=1.651mm at values of 

θ=0, -10 and -30 with J=0.53 at s for all models 

 

 

Figure 14. Hydrostatic stress versus theta for cracks of angles θ=0 and θ=-10 

 

4. Conclusions 

Based on a numerical study of the influence of flaw size and flaw orientation on 

response of a threaded fastener made from high strength steel, following are the key 

findings 

1. Modifications to crack geometry were shown to have a significant influence on the 

value of the J-integral along the crack front.  These results were also shown to have 

significant variation based on the load applied to the component. 

2. Values of the J-integral were shown to reach a maximum in the vicinity of the free 

surface with minimal values occurring at the root of the crack. 
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3. A comparison of a crack perpendicular to the loading and a crack angle -10 degrees 

from the crack front show little variation in J. Despite this, a significant shift in the 

hydrostatic stress state seen ahead of the crack front when plotted again angular 

variation.  

4. Increasing the crack angle to -30 degrees the J integral value sees a drastic change 

along the entire crack front. A plateau effect on the maximum J value along s is 

seen as the crack orientation angle is increased to -30 degrees, resulting in an 

overall drop in the magnitude of J.   
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