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ABSTRACT. In this paper, a Delta-shaped basis method is coupled with the method of funda-
mental solutions and Tikhonov regularization for solving ill-posed nonhomogeneous elliptic bound-
ary value problems. Delta-shaped basis functions are used to approximate the source function since
they can effectively handle scattered data and give rapidly convergent approximation. This approach
also results in an easy derivation of a particular solution for a general type elliptic operator. The
associated homogeneous problem is solved by the method of fundamental solutions with Tikhonov
regularization. The approach is mesh free and is effective for domains of irregular shapes. Numerical
results show that this method is accurate and stable against perturbed data.
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1. INTRODUCTION

Inverse problems are concerned with determining causes for observed or desired

effects. Problems of this type appear in many application fields in science and engi-

neering. For example, data can be missing on parts of the boundary due to the issues

of accessibility and cost of measurement [7]. In this paper, we study the inverse non-

homogeneous problem of an elliptic operator whose boundary data are given only on

the part of the accessible boundary,

Lu = h(x, y) in Ω,(1.1)

u = f(x, y) on Γ,(1.2)

∂u

∂n
= g(x, y) on Γ,(1.3)

where L is an elliptic differential operator, Ω is a bounded and simply connected

domain in R2, Γ is a part of the boundary ∂Ω, h(x, y) is the source function, f(x, y)

and g(x, y) are respectively the Dirichlet and Neumann data specified on Γ, and n is

the unit outward normal with respect to ∂Γ.
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Inverse problems are usually ill-posed. That is, they most often do not fulfill

Hadamard’s postulates of well-posedness: they might not have a solution in the strict

sense, solutions might not be unique and/or might not depend continuously on the

data. It has only been since the mid-1960s that inverse problems have been identified

as a proper subfield of mathematics [8]. Problem (1.1)–(1.3) is the Cauchy problem

for an elliptic equation which arises in many real applications [1, 2, 11]. It is ill-posed

and its solution does not depend continuously on the data. Solution methods for ill-

posed PDE problems have been actively investigated by researchers in the past couple

of decades. Reinhardt et. al. [30] solved the Cauchy problem for Laplace’s equation

using standard five-point difference approximation. Hao and Lesnic [15] solved the

problem using the conjugate gradient method. Hon and Wei [16, 38] transformed

the Cauchy problem of Laplace equation into a classical moment problem to achieve

the numerical approximation of the solution. Hon and Wei later solved the inverse

heat conduction problems using the method of fundamental solutions (MFS) and

Tikhonov regularization [17, 18]. Applications of the MFS with regularization in

solving inverse problems of elliptic operators can be found in [26, 27, 39, 40]. The

radial basis meshless collocation methods [7, 23, 24] were also used for solving inverse

boundary value problems.

Following the framework of boundary methods, we first find a particular solution

up that satisfies the equation (1.1), i.e., Lup = h. Once up is known, it gives rise to

the following homogeneous equation subject to a new boundary condition,

Luh = 0 in Ω,(1.4)

uh = f(x, y)− up(x, y) on Γ,(1.5)

∂uh
∂n

= g(x, y)− ∂up(x, y)

∂n
on Γ.(1.6)

The solution of the original problem (1.1)–(1.3) is then obtained as u = up + uh.

The dual reciprocity method (the DRM) [28, 29] has been a popular method

to overcome the difficulties of evaluating up. In the framework of the DRM, the

source function can be approximated by a variety of bases [4, 12, 32]. It is most

commonly approximated by the radial basis functions (the RBFs) [4, 6, 25]. Despite

the important interpolating properties of the RBFs, one of the drawbacks of their use

is that it is difficult to obtain rapidly convergent interpolants. With the RBFs, the

closed form approximate particular solution can be difficult to derive for a general

differential operator L. A good candidate for overcoming these difficulties is the

Delta-shaped basis [31, 33, 35] which is effective for scattered data and hence for

problems on irregular-shaped domains. The characteristics of the Delta-shaped basis

allows for not only an accurate approximation of the source function, but also an easy

derivation of a closed form approximate particular solution.
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Once a particular solution is found, the associated homogeneous problem is then

solved by the method of fundamental solutions. The MFS was first proposed by

Kupradze and Aleksidze [22]. As an efficient boundary method it has been applied

to solve many well-posed and ill-posed partial differential equations. There are two

well-known review papers [10, 20] of the MFS for well-posed and ill-posed problems.

In real applications, the data are usually obtained through measurement, which

means that the data have measuring errors. In our numerical experiments, we assume

that the source function, Dirichlet and Neumann data have certain level of noises.

That is, intending to solve (1.1)–(1.3) we face the problem

Lu = ĥ(x, y) in Ω,(1.7)

u = f̂(x, y) on Γ,(1.8)

∂u

∂n
= ĝ(x, y) on Γ,(1.9)

where

ĥ(x, y) = (1 + εh(x, y))h(x, y),(1.10)

f̂(x, y) = (1 + εf (x, y))f(x, y),(1.11)

ĝ(x, y) = (1 + εg(x, y))g(x, y),(1.12)

with εh(x, y), εf (x, y), εg(x, y) being the levels of random noises relative to the source

function, Dirichlet data and Neumann data, respectively. Since the discretized lin-

ear system is highly ill-conditioned, regularization technique [13, 14, 17, 38, 39, 40]

is applied for stabilizing its solution. In this paper we use the Delta-shaped basis

together with the MFS and regularization to solve the problem (1.1)–(1.3) so that

we can handle well not only the derivation of an accurate approximate particular

solution but also a stable numerical solution against the disturbed data. That is,

we achieve the numerical objectives through an effective basis in approximation, an

efficient method of particular solutions for a general elliptic operator, and an efficient

boundary method.

The outline of the paper is as follows: In Section 2, two sets of Delta-shaped basis

functions are used for the approximation of the source function and the derivation

of an approximate particular solution. In Section 3, the MFS and the Tikhonov

regularization technique are described. In Section 4, numerical examples are given to

demonstrate the effectiveness and stability of the method for inverse nonhomogeneous

problems of elliptic operators. Conclusions are made in Section 5.

2. DERIVATION OF A PARTICULAR SOLUTION

To obtain a particular solution of a given nonhomogeneous partial differential

equation, we use a new type of basis called the Delta-shaped basis [31, 32, 33, 35].
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Due to their special characteristics, (i) they can handle effectively the approximation

of h(x, y) when h(x, y) is given as scattered data in arbitrary domains; (ii) they allow

easy derivation of a particular solution for a general elliptic differential operator.

The two dimensional Delta-shaped basis function with center (ξ, η) is represented

as

IM,χ (x, y; ξ, η) =
M∑

n,m=1

cn,m (ξ, η)ϕn (x)ϕm (y)

where

(2.1) cn,m (ξ, η) = rn (M,χ) rm (M,χ)ϕn (ξ)ϕm (η) ,

and

ϕn (x) = sin

(
nπ (x+ 1)

2

)
and µn =

(nπ
2

)2

, n = 1, 2, 3, . . . .

are the solutions of the Sturm-Liouville problem −ϕ′′ = µϕ, ϕ (−1) = ϕ (1) = 0, on

the interval [−1, 1]. The coefficients rn (M,χ) in (2.1) are the regularizing coefficients.

When using the Riesz regularization technique,

rn (M,χ) =

(
1− λ2

n

λ2
M+1

)χ
=

[
1−

(
n

M + 1

)2
]χ
,

where M and χ are positive integers with M playing the role of scaling and χ playing

the role of regularizing. The parameters M and χ are taken in coupling. In this paper,

we use χ = 4, 6, 9, 14, 22 for M = 10, 20, 30, 50, 100. Since the eigenfunctions ϕn (x)

satisfy the homogeneous boundary condition, the 2-D Delta-shaped basis functions

vanish on the boundary of the square [−1, 1]× [−1, 1]. Therefore, when dealing with a

2-D problem, the data to be approximated should stay away from the boundary of the

square [−1, 1]× [−1, 1]. In order for the Delta-shaped basis to approximate a function

with any boundary condition, we apply appropriate translation and scaling to the

function such that the domain of the function is contained in [−0.5, 0.5]× [−0.5, 0.5].

We first approximate the source function h(x, y) by the linear combination of the

translates of two types of Delta-shaped basis functions [31, 35],

h̃ =

K1∑
j=1

pjIM1,χ1 (x, y; ξj, ηj) +

K1+K2∑
j=K1+1

pjIM2,χ2 (x, y; ξj, ηj) ,

where K1 is the number of type one basis functions and K2 is the number of type

two basis functions. To determine the unknow coefficients pj, we do collocation at

the sampled data points {(xi, yi) , hi}Ni=1 of the source function. The center points

of the basis functions and the collocation points are randomly distributed inside the

domain Ω. Without loss of generality, we assume M2 > M1. Then the role of IM1,χ1 is

to capture the general shape and that of IM2,χ2 is to capture the oscillating details of
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the function h(x, y). Compared with one-level approach, the two-level approach can

significantly improve the fitting while reducing the number of basis functions needed.

Next we obtain a particular solution under the frame work of the DRM [28, 29]

and the techniques of [33]. A particular solution Ψ (x, y; ξ, η) associated with a Delta-

shaped basis function IM,χ (x, y; ξ, η) is LΨ (x, y; ξ, η) = IM,χ (x, y; ξ, η). By looking

for Ψ (x, y; ξ, η) in the form of Ψ (x, y; ξ, η) =
∑M

n,m=1 dn,m (ξ, η)ϕn (x)ϕm (y), the

coefficients dn,m (ξ, η) can be determined for a general elliptic differential operator.

For example, when L = ∆,

dn,m (ξ, η) = −cn,m (ξ, η)

λ2
n + λ2

m

,

and when L = ∆− k2,

dn,m (ξ, η) = − cn,m (ξ, η)

λ2
n + λ2

m + k2
.

Since the approximation to the source function is expressed as a linear combina-

tion of Delta-shaped basis functions, a particular solution can be obtained using the

superposition principle.

3. REGULARIZATION OF THE DISCRETIZED ILL-POSED

PROBLEM

The method of fundamental solutions [10, 22] has been widely used for solving

homogeneous partial differential equations. A fundamental solution G (X,Q) to a

differential operator L is a function satisfying

L (G (X,Q)) = δ (X −Q) ,

where δ is the Dirac delta function. The idea of the MFS is to approximate the

solution uh (X) of a homogeneous equation by the fundamental solutions G (X,Qj),

j = 1, . . . ,M , with the singularities Qj placed outside the given domain. That is,

letting ũh denote this approximation,

uh (X) ≈ ũh (X) =
M∑
j=1

cjG (X,Qj) .

To determine the coefficients cj, we let ũh (X) satisfy the boundary condition (1.5)–

(1.6) at a set of boundary points Xi, i = 1, 2, . . . ,M . The first M1 collocation

points {Xi}M1

i=1 are chosen to fit the Dirichlet boundary condition and the other M2

collocation points {Xi}M1+M2

i=M1+1 are chosen to fit the Neumann boundary condition with

M1 +M2 = M . This results in the following linear system,

M∑
j=1

cjG (Xi, Qj) = f (Xi)− up (Xi) , i = 1, . . . ,M1,(3.1)
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M∑
j=1

cj
∂G

∂n
(Xi, Qj) = g (Xi)−

∂up
∂n

(Xi) , i = M1 + 1, . . . ,M1 +M2.(3.2)

The numerical examples of the paper involve the Laplace operator L = ∆ and the

modified Helmholtz operator L = ∆ − k2. It is known that in 2-D the fundamental

solutions for these two operators are respectively

G (X,Q) =
1

2π
ln (|X −Q|) ,

and

G (X,Q) = − 1

2π
K0 (k |X −Q|) ,

where |·| denotes the Euclidean distance in R2 and K0 (x) the modified Bessel function

of the second kind of order zero.

The discretized problem (3.1)–(3.2) is ill-posed due to the ill-posed nature of the

continuous model (1.1)–(1.3). Here we intend to solve the problem with perturbed

data (1.7)–(1.9). Since the computed solution can sometimes be very sensitive to the

perturbations in the input data, we need to be concerned about the accuracy of the

output data. A measure of the instability of the system is the condition number κ.

The matrices which have to be handled in this paper most often have huge condition

numbers. With noises in the data, it is most likely that our computed solution is

useless. To cure the ill-posedness, appropriate regularization is necessary.

Let

(3.3) Ax = b

represents the matrix form of the system (3.1)–(3.2). In the following, we apply

Tikhonov regularization and appropriate techniques of choosing a regularization pa-

rameter to find its regularized solution. More detailed discussion on the topic can be

found in [3, 13, 14, 26, 27, 36, 37, 38, 39].

A method that is frequently used for ill-conditioned or rank-deficient systems

is the singular value decomposition (the SVD) [3, 36, 37]. In the SVD, an m by n

matrix A (m ≥ n) is factored into A = UΣV T where U = [u1, u2, . . . , um] ∈ Rm×m

and V = [v1, v2, . . . vn] ∈ Rn×n are orthogonal matrices, and Σ ∈ Rm×n is a diagonal

matrix with nonnegative diagonal elements σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 called singular

values. It can be shown that every matrix has a singular value decomposition and

the following properties hold for a matrix A ∈ Rm×n of rank r,

Avi =

{
σiui, i = 1, . . . , r,

0, i = r + 1, . . . , n,

ATui =

{
σivi, i = 1, . . . , r,

0, i = r + 1, . . . ,m.
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Another explanation for the SVD is that the matrix A of rank r can be represented

as a sum of rank-one matrices

A =
r∑
j=1

σjujv
T
j ,

and the solution to the system Ax = b can be expressed as

(3.4) x =
r∑
j=1

uTj bvj

σj
.

Although a generalized inverse solution can be obtained given the SVD of (3.3),

the solution can become extremely unstable when one or more of the singular values

σi are small. The norm of the numerical solution by (3.4) can be very large if the

singular values of A tend to zero rapidly. Tikhonov regularization [3, 9, 19] controls

simultaneously the norm of the residual Ax − b and the norm of the approximate

solution x. Considering the data containing noise as in (1.7)–(1.9), there is no point

in fitting such data exactly. There can be many solutions that adequately fit the data

in the sense that ‖Ax− b‖ is small enough.

Let λ > 0 be a given constant. The Tikhonov regularized solution xλ is the

minimizer of

(3.5) Fλ (x) = ‖Ax− b‖2 + λ ‖x‖2 .

Here ‖·‖ denotes the 2-norm. The parameter λ > 0 is called the regularization

parameter. That is, the Tikhonov regularization minimizes the residual with a side

constrain which is the norm of the solution. The minimization in (3.5) has a unique

solution for every b and λ [21]. Clearly, the choice of λ plays an important role in

this technique. While a small λ favors a solution with a small residual at the cost of

a large norm of the solution, a large λ does the opposite. The value λ also controls

the sensitivity of the solution to perturbations in A or b, and the perturbation bound

is proportional to λ−1 [14]. Tikhonov regularization with the parameter λ gives a

regularized solution

x̃λ =
r∑
j=1

fj
uTj b̃vj

σj
,

where b̃ is the perturbed data and the filter factors fj are

fj =
σ2
j

σ2
j + λ2

.

Since the filter factors control the contribution of singular values and their corre-

sponding singular vectors to the solution, choosing an appropriate parameter value λ

is an important part of the algorithm.



8 H. TIAN AND A. GRUNEWALD

The L-curve [13] is a commen method for finding an appropriate parameter λ for

the Tikhonov regularization. The L-curve is defined to be

L =
{(∥∥∥Ax̃λ − b̃∥∥∥ , ‖x̃λ‖) , λ ≥ 0

}
.

It is called L-curve since it ususlly resembles an L. The vertical axis measures the

norm of the solution while the horizontal axis measures the norm of the residual. From

the curve, one can easily get an idea of the compromise between the minimization of

these two quantities. The value λ that is associated with the point at the “edge” of

the L is chosen for the Tikhonov regularization.

There are alternative approaches for finding a suitable value of the parameter

such as the generalized cross validation (the GCV) [14]. Clearly, the parameters by

different approaches do not necessarily equal each other. Based on the numerical

results conducted by Wei et. al. [39] using different regularization techniques, the

results by L-curve are consistently well behaved. Here we adopt Tikhonov and L-

curve combination for our numerical experiments.

4. NUMERICAL EXAMPLES

In this section, we evaluate the sensitivity of the method towards noises in the

source function and boundary data. The noisy data for the source function and

boundary data in (1.10)–(1.12) are generated as follows:

εh = βh(x, y)ε,

εf = βf (x, y)ε,

εg = βg(x, y)ε,

where βh(x, y), βf (x, y), and βg(x, y) are random numbers ranging between −1 and

1, and ε is a fixed noise level which lies between 10−5 and 1. The Nt test points

{ti}Nt

i=1, randomly distributed inside Ω, are chosen for the calculation of the relative

mean square root error,

E =

√
1
Nt

∑Nt

i=1 (ũ (ti)− u (ti))
2√

1
Nt

∑Nt

i=1 (u (ti))
2

,

where ũ and u are respectively the approximate and the exact solutions.

In the following examples, the number of type one and type two Delta-shaped

basis functions are denoted by K1 and K2. Recall that they are used in the approx-

imation of the source function. Type one basis is to get the general shape and the

type two basis that has smaller support is to get the oscillating details of the source

function. In general, we can distribute randomly in the domain the centers of the type

one and type two basis functions. Since we know the feature of the source function,

more of the type two centers can be added to the part of the domain where the source
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function is more oscillating. The purpose is to improve our approximation. Colloca-

tion points can be handled similarly. Examples and discussions on the approximation

by Delta-shaped basis can be found in [31, 35]. For the MFS, we use 101 collocation

points to fit the Dirichlet data and 100 points to fit the Neumann data. In the do-

main, the number of test points Nt = 100. Here we adopt a simple static approach

that uses a fixed location for the source points. We place the source points on a circle

of radius r = 4. The value of r we use here is satisfactory but not necessarily optimal

with respect to the solution of the corresponding well-posed problem. It is known

that the source location of the MFS is challenging. Although this is an important

issue, it is not the emphasis of this paper. The readers can refer to the recent paper

by Chen et al. [5] for a review of the choices of the location of source points. The

difficulty of choosing the source location can be lessened substantially by using the

method of approximate fundamental solutions [33]. For each example, we give error

plots of the numerical solution against the noise in the source function, the noise in

the boundary data, and the noise in both the source function and the boundary data.

So there are three plots for each of the following examples.

Example 4.1. We consider the problem (1.1)–(1.3), where L = ∆ − 9, the domain

Ω is bounded by a circle centered at origin with radius r = 0.5, Γ is the upper half of

the circle, and the source and boundary data are given as,

h (x, y) = 6x4y + 12x2y3 − 9x4y3 − 9 (x+ y)2 − 9xy2 − 2x− 4,

f (x, y) = x4y3 + (x+ y)2 − xy2,

g (x, y) = 4x4y4 + 2x (x+ y)− xy2 + 3x4y3 + 2y (x+ y)− 2xy2.

The exact solution of the problem is u (x, y) = x4y3 + (x+ y)2 − xy2. The basis

functions used are I10,4 and I20,6 with K1 = 100 and K2 = 225. We place N =

325 collocation points inside the circular domain with higher density in [−0.1, 0.1]×
[−0.1, 0.1]. The generation of the center points of the basis functions follows the same

pattern. The error plots of the numerical solution relative to the noise level are shown

in Figures 1–3. The error plots show how the solution error varies with different levels

of noise imposed on the data. The solution error increases reasonably with the noise

level in the data, but never grows wild in spite of the ill-posedness of the problem.

Example 4.2. We consider a more oscillating source function h(x, y) and a more

complicated domain Ω. In the problem (1.1)–(1.3), L = ∆, Ω is bounded by the oval

of Cassini whose parametric equations are given by,

x (t) = R (t) cos (t) , y (t) = R (t) sin (t) ,

R (t) = c2 cos (2t) +
√
b4 − c4 sin2 (2t), 0 ≤ t ≤ 2π,
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Figure 1. Example 1: solution error v.s. noise level ε in the source function

Figure 2. Example 1: solution error E v.s. noise level ε in the bound-

ary data

with c = 0.353 and b =
√

0.25− c2. Here Γ denotes the upper curve of the oval of

Cassini, and the data are given as

h (x, y) = 40
(
x2 + y2

)
ex

2−y2 − 10 sin (5 (x+ y)) ,

f (x, y) = 10ex
2−y2 +

1

5
cos (5 (x+ y)) ,

g (x, y) =
(

20xex
2−y2 + cos (5 (x+ y))

)
R′
(
t(x,y)

)
sin
(
t(x,y)

)
+R

(
t(x,y)

)
cos
(
t(x,y)

)
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Figure 3. Example 1: solution error E v.s. noise level ε in both the

source function and the boundary data

+
(
−20yex

2−y2 + cos (5 (x+ y))
)
R
(
t(x,y)

)
sin
(
t(x,y)

)
−R′

(
t(x,y)

)
cos
(
t(x,y)

)
.

In the above expressions, t(x,y) denotes the parameter value corresponding to the point

(x, y). The exact solution to the problem is u (x, y) = 10ex
2−y2 + 1

5
cos (5 (x+ y)). Ba-

sis functions of I10,4 and I20,6 with K1 = 150, K2 = 100, and N = 250 collocation

points are used in the two-level interpolation. The center points and the collocation

points are chosen randomly in the oval of Cassini with a higher density of points

near the part of Γ where the curvature is greater. We use more center and collo-

cation points where the boundary quickly changes directions to effectively improve

the approximation. The error plots of the numerical solution relative to the noise

level are shown in Figures 4–6. Although the source function is highly oscillating, the

numerical solution is stable against perturbations.

Example 4.3. In this example, a source function that has a pole close to the Cassini

domain Ω is used. The operator L = ∆ − 1. The partial boundary Γ is the upper

curve of the oval of Cassini, and the data are given as follows:

h (x, y) = − cosh (y)

cosh (y)− cos (x+ 0.5)
+

sinh2 (y)

(cosh (y)− cos (x+ 0.5))2

− cos (x+ 0.5)

cosh (y)− cos (x+ 0.5)
+

sin2 (x+ 0.5)

(cosh (y)− cos (x+ 0.5))2

+ ln (cosh (y)− cos (x+ 0.5)) ,

f (x, y) = − ln (cosh (y)− cos (x+ 0.5)) ,

g (x, y) =

(
− sin (x+ 0.5)

cosh (y)− cos (x+ 0.5)

)
R′
(
t(x,y)

)
sin
(
t(x,y)

)
+R

(
t(x,y)

)
cos
(
t(x,y)

)
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Figure 4. Example 2: solution error v.s. noise level ε in the source function

Figure 5. Example 2: solution error E v.s. noise level ε in the bound-

ary data

+

(
− sinh (y)

cosh (y)− cos (x+ 0.5)

)
R
(
t(x,y)

)
sin
(
t(x,y)

)
−R′

(
t(x,y)

)
cos
(
t(x,y)

)
.

The exact solution to the problem is u (x, y) = − ln (cosh (y)− cos (x+ 0.5)). The

error plots of the numerical solution relative to the noise level are shown in Figures 7–

9. Despite the fact that the source function has a pole at (−0.5, 0), a very accurate

solution is obtained. Because of the dramatic changes in the values of the source

function, we interpolate it with I10,4 (x, y) and I50,15 (x, y). We only need K1 = 50,

K2 = 100, and N = 150 to get a good interpolation of h(x, y). Again the numerical
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Figure 6. Example 2: solution error E v.s. noise level ε in both the

source function and the boundary data

solution is reliable and stable against noises, and it shows similar behavior as in

previous examples.

Figure 7. Example 3: solution error v.s. noise level ε in the source function

We remark that this paper indicates an approach for non-homogeneous ill-posed

problems. The method used in this paper are equally applicable to homogeneous

equations. The error behavior of the solutions are totally comparable to the results

of the paper [39] where the homogeneous cases are solved. Here, the noise in the source

term is transfered to the boundary through the approximate particular solution. The
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Figure 8. Example 3: solution error E v.s. noise level ε in the bound-

ary data

Figure 9. Example 3: solution error E v.s. noise level ε in both the

source function and the boundary data

effective method of particular solutions by the Delta-shaped basis approximation helps

keep the influence of the noise in the source function under control. In order for

the Delta-shaped basis to be employed, the domain of the problem is embeded in a

standard domain [−0.5, 0.5]× [−0.5, 0.5]. If this is not the case originally, appropriate

translation and scaling operations can be done to the domain. Interested readers can

find the Delta-shaped basis applications on non-standard domains for time-dependent

problems [33] and quenching problems [34].
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5. CONCLUSIONS

An inverse nonhomogeneous elliptic boundary value problem is solved by a Delta-

shaped basis method coupled with the MFS and regularization. The Delta-shaped

basis is used for approximating the source function since it can handle effectively

scattered data and give rapidly convergent approximation. The method is meshfree

and it works well for domains of arbitrary shapes. Two-level approximation is used for

the source function. An excellent fit can be achieved with reasonable number of center

and collocation points. In addition to its nice properties in approximation, the use

of the Delta-shaped basis results in an easy derivation of a particular solution. The

corresponding homogeneous problem is solved by MFS and Tikhonov regularization.

The L-curve technique is used to obtain the regularization parameter. The meshless

method directly solves the given inverse problem, contrary to the traditional meshed

and iterative methods. Numerical experiments show that the method is efficient and

it is stable with respect to the increased noise level imposed to the source function

and the boundary data. This approach can be extended to solving ill-posed multi-

dimensional nonhomogeneous problems.
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