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ABSTRACT. Let Ω be a disc in R2 with the center (0, 0) and radius a, ∂Ω and Ω̄ be its boundary

and closure, respectively. Suppose that u is a function of τ , χ, and ζ. Further, assume that β is a

positive number. In this paper, we investigate the multi-dimensional parabolic quenching problems

with the second initial-boundary condition:

∂u

∂τ
=

∂2u

∂χ2
+

∂2u

∂ζ2
+

1

1 − u
for (χ, ζ, τ) ∈ Ω × (0,∞) ,

u (χ, ζ, 0) = u0 (χ, ζ) for (χ, ζ) ∈ Ω̄,
∂u (χ, ζ, τ)

∂n
= −β

a
for τ > 0 and (χ, ζ) ∈ ∂Ω,

where u0 ∈ C2
(

Ω̄
)

and u0 (χ, ζ) < 1 for (χ, ζ) ∈ Ω̄, and ∂u/∂n is the outward normal derivative of

u. We shall determine an approximated critical domain of some u0 (χ, ζ) of the above problem by

using a numerical method.

AMS (MOS) Subject Classification. 35K20, 35K55, 35J47, 35J60.

1. INTRODUCTION

Let β and a be positive numbers, and Ω be a disc in R2 with the center (0, 0) and

radius a. We also let ∂Ω and Ω̄ be its boundary and closure, respectively. Suppose

that u is a function of τ , χ, and ζ , where τ , χ, and ζ are independent variables.

In this paper, we determine an approximated critical domain of the following multi-

dimensional parabolic quenching problems with Neumann boundary condition:

(1.1)
∂u

∂τ
=

∂2u

∂χ2
+

∂2u

∂ζ2
+

1

1 − u
for (χ, ζ, τ) ∈ Ω × (0,∞) ,

(1.2)

u (χ, ζ, 0) = u0 (χ, ζ) for (χ, ζ) ∈ Ω̄,
∂u (χ, ζ, τ)

∂n
= −β

a
for τ > 0 and (χ, ζ) ∈ ∂Ω,

where u0 (χ, ζ) ∈ C2
(

Ω̄
)

and ∂u/∂n is the outward normal derivative of u. Further,

we assume that u0 (χ, ζ) < 1 for (χ, ζ) ∈ Ω̄ and satisfies ∂u0 (χ, ζ) /∂n = −β/a for

(χ, ζ) ∈ ∂Ω.
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If the Problem (1.1)–(1.2) is an one-dimensional problem with Ω = (0, l) and is

subject to the first boundary condition with u0 ≡ 0 on Ω̄, then Kawarda [6] used

this problem to describe a polarization phenomenon in ionic conductors. He proved

that the solution u quenches if l > 2
√

2. When the forcing term is a constant λ

instead of 1/ (1 − u), Barles and Lio [1] called this problem as the boundary ergodic

control problem. The forcing term λ is the ergodic cost and the solution u is the value

function of the control problem. From the paper of Lio [7], the problem can be used as

a homogenization of elliptic and parabolic partial differential equations. He studied

the large time behavior of the Problem (1.1)–(1.2) when t → ∞. If the forcing term is

σeνu instead of 1/ (1 − u), this mathematical problem describes a polarization model

on the boundary surface of a diffusion medium [9, pp. 286–287]. The investigation

of Problem (1.1)–(1.2) helps us understand the existence of the solution and blow-up

property of u.

The critical domain Ω∗ of the Problem (1.1)–(1.2) is a domain such that u exists

for all time when Ω  Ω∗ and also there is a finite time Γ such that

max
{

u (χ, ζ, τ) : (χ, ζ) ∈ Ω̄
}

→ 1− as τ → Γ−

when Ω∗  Ω. The aim of this paper is to determine an approximated critical domain

of the quenching Problem (1.1)–(1.2) through studying the steady state problem.

This steady state solution will be represented in a form of an integral equation. This

solution will be a limiting solution of a sequence of linear integral equation.

Chan [3] studied the critical domain of the Equation (1.1) with a two-dimensional

elliptic plate subject to the zero first initial-boundary condition. This two-dimensional

domain is given by
{

(x, y) :
x2

b2
1

+
y2

b2
2

< 1

}

,

where b1 and b2 are positive constants with b1 6= b2. He developed a computational

method to determine an approximated critical domain through solving the integral

equation of the steady state equation. Recently, Chan [4] calculated approximated

critical domains of a coupled parabolic quenching problem with square-shaped do-

mains. His approach is to use a power series to approximate the Green’s function in

solving the integral equation.

This paper is organized as follows. In Section 2, we shall prove that if u exists

globally, then u (χ, ζ, τ) will approach the steady state solution U (χ, ζ) when τ → ∞.

In Section 3, we shall prove that the solution to the Problem (1.1)–(1.2) will quench

in a finite time and the quenching set will be a compact subset of Ω̄. In Section 4,

we shall report an approximated critical domain of the Problem (1.1)–(1.2) for some

β and u0.
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2. CONVERGENCE OF THE TIME-DEPENDENT SOLUTION

In this section, we shall prove that the time-dependent solution converges to the

steady state solution. We transform the Problem (1.1)–(1.2) from the domain Ω to

a unit disc. Let D be a unit disc with the center (0, 0), ∂D and D̄ be its boundary

and closure, respectively. Our substitution for the independent variable is τ = a2t,

χ = ax, and ζ = ay. Then, the Problem (1.1)–(1.2) becomes

(2.1)
∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
+

a2

1 − u
for (x, y, t) ∈ D × (0,∞) ,

(2.2)

u (x, y, 0) = u0 (x, y) for (x, y) ∈ D̄ and
∂u (x, y, t)

∂n
= −β for t > 0 and (x, y) ∈ ∂D.

In this section, we also assume that u0 (x, y) satisfies

∂2u0

∂x2
+

∂2u0

∂y2
+

a2

1 − u0
≥ 0 on D̄.

Finding the critical domain of the Problem (2.1)–(2.2) is equivalent to determine the

critical value a∗ such that U (x, y) exists when a < a∗ where U (x, y) is the steady

state solution to the following boundary-valued Laplace problem:

(2.3)
∂2U

∂x2
+

∂2U

∂y2
= − a2

1 − U
for (x, y) ∈ D,

(2.4)
∂U (x, y)

∂n
= −β for (x, y) ∈ ∂D.

In order to show u (x, y, t) converging U (x, y) when t → ∞, we prove the following

two lemmas.

Lemma 1. ut (x, y, t) ≥ 0 on D̄ × [0,∞).

Proof. Since u (x, y, 0) = u0 (x, y) for (x, y) ∈ D̄ and u0 (x, y) satisfies

∂2u0

∂x2
+

∂2u0

∂y2
+

a2

1 − u0
≥ 0 on D̄,

and ∂u0 (x, y) /∂n = −β for (x, y) ∈ ∂D, by the comparison theorem u0 (x, y) ≤
u (x, y, t) for t ≥ 0 on D̄. Let h be a positive real number and v (x, y, t) = u (x, y, t + h).

v (x, y, t) is the solution to the following problem:

∂v

∂t
=

∂2v

∂x2
+

∂2v

∂y2
+

a2

1 − v
for (x, y, t) ∈ D × (0,∞) ,

v (x, y, 0) = u (x, y, h) for (x, y) ∈ D̄ and
∂v (x, y, t)

∂n
= −β for t > 0 and (x, y) ∈ ∂D.

Then, v (x, y, t) − u (x, y, t) satisfies the equation below:

∂ (v − u)

∂t
=

∂2 (v − u)

∂x2
+

∂2 (v − u)

∂y2
+

a2

1 − v
− a2

1 − u
for (x, y, t) ∈ D × (0,∞) .
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By the mean value theorem, we obtain

∂ (v − u)

∂t
=

∂2 (v − u)

∂x2
+

∂2 (v − u)

∂y2
+

a2

(1 − p)2 (v − u) for (x, y, t) ∈ D × (0,∞) ,

where p is between u and v. Further, v (x, y, 0)−u (x, y, 0) = u (x, y, h)−u0 (x, y) ≥ 0

for (x, y) ∈ D̄, and ∂ (v (x, y, t) − u (x, y, t)) /∂n = −β − (−β) = 0 for t > 0 and

(x, y) ∈ ∂D. Then, by the comparison theorem v (x, y, t) ≥ u (x, y, t) on D̄ × [0,∞).

Therefore, ut (x, y, t) ≥ 0 on D̄ × [0,∞).

Let ρ be a positive real number less than 1. In below, we prove that u (x, y, t)

exists globally by constructing an upper solution if a is sufficiently small.

Lemma 2. If a2 < 2β (1 − ρ), there is a global solution to the Problem (2.1)–(2.2).

Proof. Let g (x, y) = ρ−bx2−by2 and b be a positive real number such that u0 (x, y) ≤
g (x, y) < 1 for (x, y) ∈ D̄. For a2 < 2β (1 − ρ), we have a2/ [4 (1 − ρ)] < β/2. Choose

b such that a2/ [4 (1 − ρ)] < b < β/2, then −2b > −β and a2 < 4b (1 − ρ). This gives

∂g/∂n = −2b > −β on ∂D. By substituting this g (x, y) into (2.1), it yields

gt − gxx − gyy −
a2

1 − g
= 4b − a2

1 − g
.

Since a2 < 4b (1 − ρ) < 4b (1 − g), we get

gt − gxx − gyy −
a2

1 − g
≥ 0.

By the comparison theorem, g (x, y) ≥ u (x, y, t) on D̄ × [0,∞]. Therefore, u (x, y, t)

exists globally.

Since u (x, y, t) is bounded by u0 (x, y) and g (x, y) and ut (x, y, t) ≥ 0 on D̄ ×
[0,∞), limt→∞ u (x, y, t) = U (x, y) exists on D̄. Further, g (x, y) ≥ U (x, y) ≥
u0 (x, y) on D̄. We follow Theorem 5.4.2 of Pao [9, p. 200] to obtain the following

result.

Theorem 3. If u (x, y, t) < 1 for D̄×[0,∞], then u converges to the classical solution

U to the Problem (2.3)–(2.4).

3. QUENCHING OF THE SOLUTION

In this section, we prove that u quenches in a finite time. Let φ1 be the first

eigenfunction and λ1 be its eigenvalue of the following boundary-valued problem:

(3.1) φxx + φyy + λφ = 0 in D, ∂φ/∂n = 0 on ∂D,

∫ ∫

D
φ1dxdy = 1. By Theorem 3.1.2 of Pao [9, p. 97], λ1 is real and nonnegative, and

φ1 is positive in D.



MULTI-DIMENSIONAL QUENCHING PROBLEMS 23

Lemma 4. If a2 > λ1 and
(

a2 − β
∫

∂D
φ1ds

)

/ (a2 − λ1)+
∫ ∫

D
u0φ1dxdy > 0, then u

quenches in a finite time.

Proof. Multiply φ1 on both sides of Equation (2.1) and integrate the expression over

the domain D, we obtain
∫ ∫

D

utφ1dxdy −
∫ ∫

D

(uxx + uyy) φ1dxdy = a2

∫ ∫

D

φ1

1 − u
dxdy.

Using the Green’s second identity,
(

∫ ∫

D

uφ1dxdy

)

t

−
[
∫ ∫

D

(

(φ1)xx + (φ1)yy

)

udxdy +

∫

∂D

(

φ1
∂u

∂n
− u

∂φ1

∂n

)

ds

]

= a2

∫ ∫

D

φ1

1 − u
dxdy.

By (3.1) and the boundary condition of Equation (2.2),
(

∫ ∫

D

uφ1dxdy

)

t

−
(

∫ ∫

D

−λ1φ1udxdy +

∫

∂D

−βφ1ds

)

= a2

∫ ∫

D

φ1

1 − u
dxdy.

Equivalently,

(3.2)

(
∫ ∫

D

uφ1dxdy

)

t

= −
∫ ∫

D

λ1φ1udxdy −
∫

∂D

βφ1ds + a2

∫ ∫

D

φ1

1 − u
dxdy.

According to the Maclaurin series, for |q| < 1,

1

1 − q
= 1 + q + q2 + · · · ≥ 1 + q.

Then, (3.2) leads to the following inequality
(

∫ ∫

D

uφ1dxdy

)

t

≥ −λ1

∫ ∫

D

uφ1dxdy + a2

∫ ∫

D

uφ1dxdy

+ a2

∫ ∫

D

φ1dxdy − β

∫

∂D

φ1ds.

Let R (t) =
∫ ∫

D
u (x, y, t)φ1dxdy and A = a2 −β

∫

∂D
φ1ds. Then, the above inequal-

ity becomes
d

dt
R ≥

(

a2 − λ1

)

R + A.

Integrate the above inequality over [0, t], we get

R (t) − R (0)

e−(a2
−λ1)t

≥ A

e−(a2
−λ1)t (a2 − λ1)

[

1 − e−(a2
−λ1)t

]

.

Equivalently,

R (t) ≥
[

A

(a2 − λ1)
+ R (0)

]

e(a2
−λ1)t − A

(a2 − λ1)
.

By assumption a2 > λ1 and A/ (a2 − λ1) + R (0) > 0, if R(t) exists for all t > 0, then

R(t) → ∞ as t → ∞. However, R(t) is bounded above by 1 for t > 0. It shows that

R(t) reaches 1 in a finite time T . Thus, u quenches in a finite time.
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To prove the quenching set of the solution of the Problem (2.1)–(2.2) being a

compact subset of D̄, we rewrite the Problem (2.1)–(2.2) in the polar coordinates

with x = r cos θ and y = r sin θ. The Problem (2.1)–(2.2) becomes

(3.3)
∂u

∂t
=

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
+

a2

1 − u
in D × (0,∞) ,

u (r, θ, 0) = u0 (r cos θ, r sin θ) for r ∈ [0, 1] and θ ∈ [0, 2π) ,

∂u (r, θ, t)

∂r

∣

∣

∣

∣

r=1

= −β for θ ∈ [0, 2π) and t > 0.

If we differentiate Equation (3.3) with respect to r, it yields

∂ur

∂t
=

∂2ur

∂r2
+

1

r

∂ur

∂r
+

1

r2

∂2ur

∂θ2
− r−2ur − 2r−3∂2u

∂θ2
+

a2

(1 − u)2ur in D × (0,∞) .

Then, ur satisfies the following initial-boundary value problem

(3.4)
∂ur

∂t
=

∂2ur

∂r2
+

1

r

∂ur

∂r
+

1

r2

∂2ur

∂θ2
− 2

r3

∂2u

∂θ2
+

[

a2

(1 − u)2 − 1

r2

]

ur in D × (0,∞) ,

ur (r, θ, 0) =
∂u0

∂r
for r ∈ [0, 1] and θ ∈ [0, 2π) ,

∂u (r, θ, t)

∂r

∣

∣

∣

∣

r=1

= −β for θ ∈ [0, 2π) and t > 0.

We remark that ∂u0 (r, θ) /∂r = −β for r = 1 and θ ∈ [0, 2π). We modify Theorem 2.2

of Deng and Levine [5] to obtain the following result.

Theorem 5. The quenching set of u is a compact subset of D̄.

Proof. Let w (r, θ, t) = rur (r, θ, t). As D is a radial symmetric domain, we set the

angle θ to be a fixed value. Then, ∂2ur/∂θ2 = 0. From (3.4), we have

∂w

∂t
+

1

r
wr − wrr =

a2

(1 − u)2w.

From the boundary condition ∂u/∂r|r=1 = −β, w < 0 when r = 1 for t ≥ 0. By the

continuity of ur in D × (0,∞), there exists a neighborhood (S) of r = 1 such that

∂u (r, θ, t) /∂r < 0 for r ∈ S and t > 0. This tells us that there exists a t1 > 0 such

that w (r, θ, t1) < −σ for some positive number σ and r ∈ S. Let r1 be a positive

constant less than 1, r1 ∈ S, and Q (r, θ, t) = w + c (1 − r) for r ∈ [r1, 1] where c is

a positive constant. At t = t1, choose c such that Q < 0 when r ∈ [r1, 1). Clearly,

Q < 0 when r = 1 for t > 0. Furthermore, Qr = wr − c, Qrr = wrr, and Qt = wt.

Substitute them in the above differential equation

Qt +
1

r
Qr − Qrr =

a2

(1 − u)2w − c

r
< 0 in S × (t1,∞) .
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Then, by the maximum principle, Q ≤ 0 for S × [t1,∞). That is, rur + c (1 − r) ≤ 0,

which yields

ur ≤ −c

r
(1 − r) = −c

(

1

r
− 1

)

.

Integrate both sides from r2 to r3 where r1 < r2 < r3 < 1,
∫ u(r3,t)

u(r2,t)

du ≤ −c

∫ r3

r2

(

1

r
− 1

)

dr

u (r3, t) − u (r2, t) ≤ −c [(ln r3 − r3) − (ln r2 − r2)] .

As ln r − r is increasing for r ∈ (0, 1), we have (ln r3 − r3) − (ln r2 − r2) > 0 when

r2 < r3. This tells us that

u (r3, t) ≤ u (r2, t) − c [(ln r3 − r3) − (ln r2 − r2)]

< 1 − c [(ln r3 − r3) − (ln r2 − r2)] for t > 0.

Thus, r3 is not a quenching point. Hence, the quenching set is a compact subset of

D̄.

4. NUMERICAL RESULTS

Refer to Section 2, finding the critical domain of the Problem (1.1)–(1.2) is equiv-

alent to calculate the critical value a∗ of the boundary-valued Laplace equation (2.3)–

(2.4):

∂2U

∂x2
+

∂2U

∂y2
= − a2

1 − U
for (x, y) ∈ D,

∂U (x, y)

∂n
= −β for (x, y) ∈ ∂D.

From the results of Begehr [2] and Nehari [8], the Neumann function N (z, γ) for the

two-dimensional Laplace operator for the unit disc D is given by

N (z, γ) =
−1

2
log |(γ − z) (1 − zγ̄)|2 ,

where z 6= γ. z = x + iy and γ = ξ + iη are some points locating inside D and are

represented in a complex number form. This Neumann function N (x, y; ξ, η) satisfies

−∂2N

∂x2
− ∂2N

∂y2
= δ (x − ξ) δ (y − η) for (x, y) and (ξ, η) ∈ D,

∂N

∂n
= −1 for (x, y) ∈ ∂D,

where (x, y) 6= (ξ, η) and δ is the Dirac δ-function. By the Green’s second identity,

U (x, y) is given by

U (x, y) =

∫

∂D

(

N
∂U

∂n
− U

∂N

∂n

)

ds −
∫ ∫

D

N∆Udξdη.
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From ∂N/∂n = −1 and ∂U/∂n = −β on ∂D,

U (x, y) =

∫

∂D

(−βN + U) ds +

∫ ∫

D

N
a2

1 − U
dξdη.

The approximated solution of U (x, y) is obtained by solving the following itera-

tive equation

Uj+1 (x, y) =

∫

∂D

(−βN + Uj) ds +

∫ ∫

D

N
a2

1 − Uj

dξdη,

with j = 0, 1, 2, . . . and U0 (x, y) = u0 (x, y). The point γ in the polar form is

represented as γ = r cos θ + ir sin θ. For (x, y) ∈ D, the above iterative scheme

becomes

(4.1)


















































Uj+1 (x, y)

=
∫ 2π

0

{

β

2
log |[(cos θ + i sin θ) − (x + iy)] [1 − (x + iy) (cos θ − i sin θ)]|2

+Uj (cos θ, sin θ)} dθ

+
∫ 2π

0

∫ 1

0

{−1

2
log |[(r cos θ + ir sin θ) − (x + iy)] [1 − (x + iy) (r cos θ − ir sin θ)]|2

× a2

1 − Uj (r cos θ, r sin θ)

}

rdrdθ.

To obtain an estimate of Uj+1 (x, y) when (x, y) = (cos µ, sinµ) ∈ ∂D, we use

∂U/∂n = ∂U/∂r = −β which is approximated by the finite difference

Uj+1 (cos µ, sin µ) − Uj+1 ((1 − ε) cos µ, (1 − ε) sin µ)

ε
= −β,

where ε is a small positive number less than 1. Therefore,

(4.2) Uj+1 (cos µ, sin µ) = Uj+1 ((1 − ε) cos µ, (1 − ε) sin µ) − εβ.

The value of Uj+1 ((1 − ε) cos µ, (1 − ε) sin µ) is given by Equation (4.1).

The region D is divided uniformly with 289 grid points. The procedure for

computing the critical value a∗ is below.

Step 1: Use (4.1) to compute the solution Uj+1 (x, y) for j = 0, 1, 2, . . . with

U0 (r cos θ, r sin θ) ≡ u0 (r cos θ, r sin θ). At the boundary point (x, y) = (cos µ, sinµ),

we set ε = 0.0001. From (4.2), it gives

Uj+1 (cos µ, sin µ) = −0.0001β + Uj+1 (0.9999 cosµ, 0.9999 sinµ) .

Step 2: Choose some a to be a1 and some value for a2. At a = a1, Uj+1 < 1 on

D̄ and satisfies the following condition:

|max Uj+1 (x, y) − max Uj (x, y)| < 1 × 10−4.

At a = a2, Uj+1 does not exist (that is, maxUj+1 ≥ 1). Determine a3 = (a1 + a2) /2.

Then, compute Uj+1 at a = a3.
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Step 3: Set a1 = a3 if Uj+1 < 1 on D̄ and

|max Uj+1 (x, y) − max Uj (x, y)| < 1 × 10−4.

Set a2 = a3 when Uj+1 does not exist. The iterative procedure stops when |a1 − a3| <

1 × 10−6 (or |a2 − a3| < 1 × 10−6). Then, set a∗ = a3. Otherwise, repeat Step 3.

We use Mathematica 8.0 to compute the critical domain. The initial condition

u0 (x, y) = β/2 (1 − x2 − y2). The numerical result for some values of β is below:

β (a∗)2 Critical Domain = π (a∗)2

0.2 0.0592727 0.1862107

0.1 0.0307251 0.0965257
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