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ABSTRACT. This paper explores the concept of time-inhomogeneous Markov modelling and its
application on the surveillance data for HIV-infected patients on anti-retroviral therapy (ART) from
one of the Wellness clinics in Bela Bela, South Africa. Time-homogeneous and time-inhomogeneous
models are fitted to analyse the progression of HIV/AIDS for these individuals. A variety of diag-
nostic methods, formal and informal, are employed to assess the fitted models. The results from the
assessment of the fitted models showed an improvement in the use of the time-inhomogeneous model
compared to the time-homogeneous model for the progression of HIV/AIDS. Transition intensities
from the fitted models were used to analyse the effectiveness of treatment. The estimated transition
rates showed that rates of immune recovery were generally higher than the rates of immune dete-
rioration for both models. The fitted time-inhomogeneous model shows that continuous uptake of
treatment reduces transitions to death from most of the HIV defined states.
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1. INTRODUCTION

Human immuno-virus (HIV), the virus that causes acquired immunodeficiency

syndrome (AIDS) disease, is a continuum of progressive damage to the immune system

from the time of infection to the manifestation of severe immunologic damage by

opportunistic infections, neoplasm, wasting or low CD4+ cell count that define AIDS

[6]. Some clinical markers such as the CD4+ cell count and the RNA viral load help a

lot in providing information on the progress of the disease [13, 2]. The normal CD4+

cell count varies from individual to individual, and it is usually between 800 and 1600

cells per mm3 [5]. CD4+ cell count values below 500 are usually an indication of

immune suppression and vulnerability to opportunistic infections [10].

Stochastic processes are helpful when subjects in a population can spend time

in different states. This is supported by [9] when she says that Multi-state stochas-

tic models are useful tools for studying complex dynamics such as chronic diseases.

HIV/AIDS is also an example of a chronic disease in which patients can be in different

Received February 7, 2017 1061-5369 $15.00 c©Dynamic Publishers, Inc.



182 C. SHOKO, D. CHIKOBVU, AND W. GARIRA

states and the changes among states that occur together with the time spent in these

states are of interest. For HIV patients these states are normally defined according

to their CD4 cell count levels.

The Markov model is an appropriate stochastic approach when the present state

of the disease summarises all the previous information because of its memoryless

property. Homogeneous models have been widely used in the modelling of different

disease progressions such as; cancer [14, 3] , stroke [17] and diabetic retinopathy [8].

However the hypothesis of homogeneity is unrealistic in the sense that as times goes

on the disease evolve. Time homogeneity models put severe limitations on disease

history behaviour. In particular when dealing with HIV, it is more realistic to assume

that science and medicine evolve, hence the rate at which people change their opinions

is likely to change as people are likely to believe that newer medications will improve

the quality of their life [7]. This justifies the need for time inhomogeneous models

in analysing disease progressions. This can simply be addressed by using piecewise

Markov models that preserve the tractability of constant intensities [11].

The next section in this study explores literature of time inhomogeneous Markov

models and explains its importance when investigating treatment effects. It also looks

at the diagnostic techniques for Markov models. Section 3 explains the methods used

to formulate the model. In Section 4, the time inhomogeneous model is fitted and

is compared to the homogeneity assumption using likelihood ratio test and survival

functions from fitted models. Finally, section 5 concludes the findings from the anal-

ysis.

2. LITERATURE

There are various approaches that can be employed for fitting the inhomogeneous

models. These approaches include;

• Allowing transition intensities to be piece-wise constant (PWC). This is the most

commonly used method;

• Allowing transitions to have smooth parameters forms, for example the Weibull

hazard functions. For Markov models this requires solving the Kolmogorov

forward equations which are set to be non-linear ordinary differential equations

for time homogeneous model; and

• Non-parametric or semi-parametric techniques

This research is going to focus on the PWC model. Define Q(t) as a non-homogeneous

vector of transition intensities, Q = Q(t) : 0 < t < T to be estimated, where T is the

maximum observed time. By using the HIV states defined for this research,

Q(t) = [q12(t), q16(t), q17(t), q21(t), q23(t), q26(t), q27(t), . . . , q54(t), q56(t), q57(t)],



TIME-INHOMOGENEOUS MARKOV MODELLING 183

with each entry a function of time were quv(t) is the transition rate from state u to

state v, see section 3.

2.1. Piece-wise constant model (PWC). The PWC model partitions the entire

time interval into r continuous, disjoint intervals, τ1, . . . , τr where τr is the interval

from time ar−1 to ar. This approach to non-homogeneity in a Markov process is a step-

wise method that assumes constant transition intensities in different time intervals.

This method leads to a non-homogeneous Markov model in which the transition

intensities are step-functions of time defined as follows:

(2.1) quv(t) =


quv,0 τ1 = a0 ≤ t < a1,

quv,1 = quv,0 exp{β∗uv,1} τ2 = a1 ≤ t < a2,
...

quv,r−1 = quv,0 exp{β∗uv,1 + β∗uv,}+ . . . β∗uv,r τr = ar−1 ≤ t < ar.

The parameters qij0, qij1, . . . , qijr−1 are the transition intensities for intervals [a0, a1),

[a1, a2) up to the interval [a(r−1), ar) respectively and β∗uv,r is the vector of regression

coefficients associated with the artificial time-dependent covariates. The baseline in-

tensities are represented by the parameter qij,0. Computing P (0, ti) for a ti in segment

τr entails multiplying all the transition matrices across the various intervals as shown

below;

P (0, ti) = [Πr−1
b=1P

(b)(πb)]P
(r)(t(r−1), tj)

where P (b) is the transition probability matrix obtained using quvb for the bth segment

denoted by τb. If subjects are observed on an equal spaced grid and segments are

divided up along these time points, then Puv(0, ti) would simply be the (uv)th element

of the matrix in the above equation. When data is not equally spaced, then observa-

tions would be considered missing at the breakpoints. To resolve this, a model that

accounts for all possible pathways between the last observed state in the segment bi−1

and the first observation in segment bi was suggested. For example, if a breakpoint

t′ is created between two points tj and tk, then via Chapman-Kolmogorov equations

the likelihood contribution from interval (tj, tk) for individual i can be found as;

Li =
k∑

l=1

P
(1)
ul (tj, t

′)P
(2)
lv (t′, tk)

for states u, v. A likelihood ratio test can then be used to determine whether a PWC

model is a better fit than the constant model.

2.2. Diagnostic methods for Markov Models. Titman suggested a number of

methods that can be used as diagnostic tools for the fitted Markov models [1]. He

classified the methods into two groups; the formal methods and the informal methods.

The formal methods included the use of the log-likelihood ratio tests (LRT) and the
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Pearson’s chi-squared test. The LRT is used to compare nested models, a class

of models were one has got more covariates than the other. The Pearson’s chi-

squared test is used to compare prevalence counts by the use of observed and expected

frequencies. The informal methods use graphs to compare the fitted model with the

observed data and do not involve calculation of likelihood ratios.

2.2.1. The Likelihood ratio test (LRT) for homogeneity. The homogeneous assump-

tion assumes that transition intensities are constant throughout time, that is, quv(t) =

quv. This assumption is tested using a formal likelihood ratio test for independence

of the piecewise model and the time-homogeneous model. Under H0 (homogeneity

assumption) the test statistic has approximately a χ2
k−q where q is the number of pa-

rameters under H0 and k is the number of parameters under H1 (the inhomogeneity

assumption) as follows.

Suppose

LRT = −2 loge

(
L0(θ̂)

L1(θ̂)

)
is the ratio of two likelihood functions, for a simpler (homogeneous) model with

fewer parameters and the alternative (inhomogeneous) model. The test statistic is

asymptotically distributed as a chi-square random variable, with degrees of freedom

equal to the difference between the number of parameters for the two models. The

likelihood ratio test can be performed provided the simpler model is a special case of

the complex model.

The LRT can also be presented in terms of deviance, that is;

LRT = −2[loge(L0(θ̂))− loge(L1(θ̂))]

= −2 loge(L0(θ̂)) + 2 loge(L1(θ̂))

= deviance0 − deviance1.

Thus, the LRT can be computed as a difference between the deviances for the two

fitted models.

2.2.2. Kaplan-Meier survival curves. Kaplan-Meier product limit estimates of the

survival function can be compared to survival estimates from the fitted Markov mod-

els. This can be done in cases where a model has an absorbing state for which time of

entry is precisely known. Kaplan-Meier estimates are only valid for the assumption

of homogeneous subjects.

2.2.3. Contingency table based methods. This method provides an assessment of the

overall fit of the assumed model. Kalbfleisch and Lawless dealt with balanced obser-

vation with categorical covariates [1]. They fitted the model by considering observed
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and expected transition frequencies either through likelihood ratio test or asymptot-

ically equivalent Pearson chi-squared statistic. However Titman argues that Pearson

chi-square has low power particularly when the degrees of freedom are very large and

that the asymptotic null distribution cannot be applied when counts in table are small

[1].

In the next section, time inhomogeneous models are fitted using the methods

discussed above. The observed and expected prevalence are used to diagnose the fit-

ness of the model for both the time-homogeneous model and the time-inhomogeneous

model.

3. METHODS

The model was applied on 318 HIV patients under ART from a Wellness clinic

in Bela Bela, South Africa. Some of the patients were enrolled at the clinic with TB

being the initial marker of HIV. All of the patients in the study were monitored after

every 6 months from 2005 to 2009. For every visit the CD4 count, BMI, viral load,

any adverse reaction to treatment and development of TB were noted. The time

homogeneous models and the time inhomogeneous models were built. These models

were used to assess effectiveness of the treatment by comparing the forward transition

and the reverse transitions for different time intervals. This then leads to building of

models that allow transitions in both directions.

In this section, a piece-wise constant model is fitted for the HIV data to examine

the possibility of intensities to change over time. The 2.5 and 4 year cut points are

used implying the use of 3 segments. The use of three segments necessitates the

computation of all possible pathways from the last observation time in segment 1 to

the first observed time in segment 2 and from the last observed time in segment 2 to

the first observed time in segment 3. The estimates of Q(t), the transition intensity

matrix, are broken into three segments as shown below;

(3.1) Q(t) =


Q1; 0 ≤ t < 2.5,

Q2; 2.5 ≤ t < 4,

Q3; 4 ≤ t <∞

At any time, t+∆t, where ∆t = 0.5 years the state of an HIV-infected individual

is defined basing on the CD4 cell count level or based on whether the individual is

dead or has withdrawn as follows:

(3.2)

1− CD4 ≥ 750; 2− 500 ≤ CD4 < 750;

3− 350 ≤ CD4 < 500; 4− 200 ≤ CD4 < 350;

5− CD4 < 200; 6− Dead;

7− Withdrawn.
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where sates 1 to 5 are transient and state 6 and 7 are absorbing that is, once entered

they cannot be exited. State 5 is normally defined as the AIDS defining stage. The

good state which is normally defined as CD4 ≥ 500 was further split into two states

in order to observe if there are any possible backward transition once an individual

is in that state.

The decision for taking CD4+ cell count levels to define the transient states was

based on the fact that when HIV enters the human body its main target is the white

blood cell called the CD4+ cells. When the virus enters the CD4+ cell it destroys the

cell as it replicates after which more CD4+ cells are targeted. Continued destruction

of these cells result in immune deterioration since the CD4+ cells are the markers of

the immune system.

Due to this HIV progression trend of individuals on treatment, we decided to use

a bi-directional Markov model to analyse the data. The bidirectional model allows

for backward and forward movements between the five transient states, that is, if an

individual is in state i at time t, at time t + ∆t that same individual can either be

in state i − 1 or i + 1, or can remain in the same state i, for i = 1; 2; . . . ; 5 or can

transition to the absorbing state 6 or state 7. According to our model, transition to

state i − 1 is an indication of immune recovery and transition to state i + 1 is an

indication of immune deterioration.

Based on this structure, two-way transition intensity matrices are computed for

the constant model as well as for the piece wise constant model and comparisons are

made. The Multi-State Model (MSM) package for R developed by Jackson is used

for all the analysis in this study [4].

4. RESULTS AND ANALYSIS

The matrix below shows the estimated transition rates for the interval 0 ≤ t < 2.5

which represents the baseline intensity matrix Q1;

Q1 =



To 1 2 3 4 5 6 7

From 1 −0.696 0.667 0 0 0 0.020 0.009

2 0.494 −1.261 0.358 0 0 0.076 0.334

3 0 0.379 −0.772 0.277 0 0.059 0.056

4 0 0 0.535 −1.023 0.224 0.008 0.256

5 0 0 0 0.640 −2.016 1.086 0.290

6 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0


The results from the baseline intensity matrix (Q1) show higher rates of immune

recovery compared to immune deterioration. That is, for all the transition intensities

qi,i−1 > qi,i+1 for i = 2, 3, 4, 5.
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Denoting the transition intensities by q
(1)
ij , q

(2)
ij and q

(3)
ij for the periods r = 1; 2; 3,

representing the intervals 0 ≤ t < 2.5, 2.5 ≤ t < 4 and 4 ≤ t < ∞ respectively. A

model allowing different effects for each of the transition intensity for the time period

2.5 and 4 years is fitted. Table 1 below shows the effects of the two time periods,

2.5 ≤ t < 4 and 4 ≤ t <∞, on the baseline transition intensities represented by Q1.

Table 1. Linear Effects of different time periods on the baseline tran-

sition intensities

Parameter Q2 : 2.5 ≤ t < 4 Q3 : 4 ≤ t <∞
β12 -0.006 0.316

β16 -13.56 1.197

β17 12.46 -6.419

β21 0.258 0.618

β23 0.491 0.364

β26 -0.864 -13.969

β27 -0.163 -0.251

β32 0.149 -0.197

β34 -0.204 0.258

β36 5.24 6.674

β37 2.112 -7.854

β43 0.0134 0.159

β45 0.141 0.568

β46 -17.06 -19.978

β47 -0.041 -0.733

β54 0.240 0.877

β56 -0.186 -0.169

β57 2.0218 2.930

The results from Table 1 show an estimated reduction on transitions rates to

death, from most of the states except state 3 for time periods 2.5 and 4 years post

commencement of treatment, the values of β36 are 5.24 and 6.74 respectively. This

is shows that most deaths for individuals who start treatment with CD4 cell count

between 350 and 500 increase with time. This calls for further investigations by future

researchers to find out what could be cause of this anomaly. The rates of reduction of

transitions to death from state 4 are tremendously high compared to the other states,

β46 = 17.06. The rate of progression from state 3 to state 2 is expected to increase

after 2.5 years (5 half-years), Q2, β32 = 0.149, but after 4 years (8 half-years), Q3, it

is expected to decline, β32 = −0.197 and from state 3 to state 4 it is the opposite. For

these two intervals, transition rates from state 4 to the AIDS defining state, state 5,

are higher than transitions to a better state. The same period contributed positively
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to transition to withdrawal from most of the states. For the time interval represented

by Q3, there is generally an estimated reduction on the rate of withdrawal from most

of the states. The interval also has lower transitions to death compared to the time

interval 2.5 ≤ t < 4.

Table 2 shows the hazard rates for the two time periods, 2.5 ≤ t < 4 and

4 ≤ t < ∞, relative to the time interval 0 ≤ t < 2.5. Hazard rates for the constant

model are also shown for comparison with the piecewise model.

Table 2. Hazard ratios for the time periods 0 ≤ t < 2.5 (Q1), 2.5 ≤
t < 4 (Q2) and 4 ≤ t <∞ (Q3) years

Parameters Qhomo Q1 Q2 Q3

q12 0.887 0.667 3.656 1.372

q16 0.102 0.020 0.003 3.311

q17 0.142 0.009 2.577 0.081

q21 0.518 0.494 1.294 1.856

q23 0.496 0.358 1.634 1.439

q26 0.081 0.076 1.549 0.008

q27 0.038 0.334 3.124 2.863

q32 0.423 0.379 1.160 3.021

q34 0.332 0.277 3.000 1.295

q36 0.015 0.059 13.94 58.56

q37 0.031 0.056 8.266 0.071

q43 0.518 0.535 1.013 1.172

q45 0.252 0.224 1.151 1.764

q46 0.003 0.008 0.001 0.000

q47 0.054 0.256 3.531 1.766

q54 0.516 0.640 1.271 2.404

q56 0.091 1.086 8.301 3.106

q57 0.029 0.290 7.552 5.094

The results from Table 2 show that there is much variation between transition

intensities in the time homogeneous model (Qhomo) and transition intensities in the

piece wise constant model represented by Q1, Q2 and Q3. Regardless of the originat-

ing state, transitions to a better HIV state represented by (q21; q32; q43 and q54) are

increasing with time. The highest transitions to a better state (recovery) are recorded

from the period of 4 years onwards. The individuals who originated from state 1 and

state 3 had the highest transition intensities to worst states for the period 2.5 to 4

years. From 4 years onwards these transition intensities dropped significantly and
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transitions to better states increased significantly which is an indication of effective-

ness of treatment with time. Unlike the individuals who started in state 1 and 3, those

who started in sate 2 and 4 showed a decreasing trend on the rates of transition to

worst states and an increasing trend on the rates of transition to better states. Tran-

sitions to death (state 6) from state 1 were relatively low for the periods 0 to 2.5 years

and 2.5 to 4 years and then increased significantly after 4 years. Deaths from state 2

and state 5 were very high during the period 2.5 to 4 years and then drop significantly

thereafter. Transitions to death for individuals who originated in state 3 increased

tremendously with time as shown by the values (q
(1)
36 ; q

(2)
36 ; q

(3)
36 ) = (0.059; 13.94; 58.56).

However, for those who started in state 4, transitions to the death state decreased

with time and these transitions were relatively low.

The probability matrix (P ) for the fitted piece-wise constant model is as follows;

P =



To

From 1 2 3 4 5 6 7

1 0.593 0.339 0.049 0.0045 0.00022 0.0097 0.00571

2 0.220 0.569 0.156 0.0212 0.00140 0.0122 0.0204

3 0.041 0.2003 0.584 0.150 0.0148 0.00394 0.00662

4 0.0068 0.0496 0.273 0.533 0.1036 0.0173 0.0167

5 0.000897 0.0087 0.0711 0.274 0.567 0.0689 0.00921

6 0 0 0 0 0 1 0

7 0 0 0 0 0 0 1


Matrix P shows that the probabilities of moving from a lower CD4 count level to a

higher CD4 count level are higher than the probability of immune deterioration. This

confirms the result obtained from the transition intensities which is an indication

of effectiveness of treatment. The probabilities of maintaining the same state are

almost the same, all between 0.5 and 0.6. These individuals tend to take more time

in the same state before they transition to another state. However there is a highest

probability of maintaining state 1 followed by state 3. This indicates that patients on

antiretroviral therapy spend more time in state 1 or state 3 than all the other states.

The probabilities of transitions to death increase as HIV/AIDS progresses to a worst

state. Patients who are in the AIDS defining state, 5, have the highest probability

of dying, P56 = 0.0689, followed by patients in state 4 compared to death from all

the other states. Although transitions to death for individuals who originated from

state 3 increases with time as indicated by the piecewise transition intensities, these

individuals tend to have relatively low transitions to death compared to all the other

states.

4.1. Comparison of Time Homogeneous and Inhomogeneous models. This

subsection applies the diagnostic techniques discussed in part of section 2 to justify
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the importance of time inhomogeneity in describing the HIV/AIDS progression of

patients on treatment.

4.2. Likelihood ratio test for time homogeneity. To determine whether the

piece-wise constant model is a better fit to the HIV data than the straight forward

constant approach, the likelihood ratio test was performed in R using the MSM

package. The null hypothesis, qij,r = qij for all intervals τr, r = 1; 2; 3 is used. The

alternative hypothesis is that at least two of the qij,r are not equal. Under the null hy-

pothesis we have 18 parameters to estimate and the alternative we have 54 parameters

to estimate, implying that we have 36 degrees of freedom. From the fitted homoge-

neous and inhomogeneous models we have; −2L0 = 3941.971 and −2L1 = 3804.12,

respectively. This leads to:

χ2 = −2(L0 − L1) = 137.850

which has a chi-square distribution on 36 degrees of freedom. This can also be shown

by using the MSM command, lrtest.msm(proj.msm,proj.pci.msm) where proj.msm is

the fitted homogeneous model and proj.pci.msm is the fitted inhomogeneous model.

The outcome is shown below;

−2LogLR df p

Proj.pci.msm 137.850 36 0.00024

Therefore we reject H0, (p = 0.00024) at 5% level of significance and conclude

that there is an improvement in using the piece-wise constant model.

4.2.1. Survival probability. By defining survival as “not dying from HIV/AIDS”, the

estimated survival functions were plotted for each of the 5 transient stages of infection.

For each of the states the probability of survival was initially set to be 1. Survival

probabilities were computed as follows;

STi
(t) = 1− p̂i6(t), i = 1; 2; . . . ; 5

where p̂i6(t) is the estimate of the probability of dying from each of the transient

states i. Survival functions were fitted for the time homogeneous model with no

covariates and time inhomogeneous (piecewise constant) model. The results are shown

in Figure 1 below.

The graphs in Figure 1 show that probabilities of survival decrease with time as

expected but not at an alarming rate. By the end of the period of study survival

probabilities from each of the five transient states were all above 0.8 except for both

the time-homogeneous model and time-inhomogeneous model. The results show that

the chances of survival are highest for patients whose previous CD4 count was below

200 (state 5) since they have the highest prevalence, and the chances of survival are

lowest for individuals with initial CD4 count between 500 and 750 (state 2). The fitted
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Figure 1. Comparison of survival functions from each of the fitted models

time-inhomogeneous model chances of survival from all states differ by a very small

margin particularly from 8 half-years (4 years) onwards. For the time-homogeneous

model chances of survival are very high from state 5 and differ with a very high from

the other states.

4.2.2. Diagnostic plots. One simple diagnostic compares model predictions of the

entry time into a particular state with nonparametric estimates, for example Kaplan-

Meier curves. If the entry time is not observed exactly, then the nonparametric esti-

mate is an approximation [4]. The fitted time-homogeneous and time-inhomogeneous

models are assessed in Figure 2. The results from the diagnostic plots in Figure 2 show

Figure 2. Comparison of observed and fitted survival for four multi-

state models

that both the fitted time-homogeneous model and the time-inhomogeneous model un-

derestimate survival of the observed individuals up to 8 half-years (4 years). From

8 half-years onwards, although the fitted homogeneous model still underestimates

survival of the observed individuals the inhomogeneous model displays a perfect fit.
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Although none of the models fit the data adequately, the time-inhomogeneous model

fits better than the time-homogeneous model.

4.3. Prevalence for the time-inhomogeneous model. Examination of the ex-

pected frequencies versus the predicted frequencies for each state was done in order

to identify areas of poor fit of the model. Figure 3 shows that the expected counts

are relatively close to the observed counts in most of the states. However, for the

death state which is the absorbing state, the expected model underestimates the fit-

ted model from 8 half-years (4 years) to 11 half-years (5.5 years) by a large margin.

The expected model underestimates the fitted model for the patients with CD4 cell

counts between 0 and 200 (state 5). There is a sharp decrease on the prevalence for

this state.

Figure 3. Comparison of observed and expected prevalence from the

time-inhomogeneous model 5 and 8 half-year change points

5. CONCLUSION

This paper explains the theory of non-homogeneous Markov models with particu-

lar reference to the piece-wise constant model. It also discusses the methods that can

be used in model diagnostics. The methods include the formal likelihood ratio test
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and the informal diagnostic plots for model comparison. The 3-segment piece-wise

constant model to the HIV data was compared with the time homogeneous model

using the likelihood ratio test. The test showed that the piecewise constant model

fits the data best. Diagnostic plots were also used to compare the models and the

results still confirm that the inhomogeneous model is the best model for the data.

The fitted piece-wise constant model confirms that rates of immune recovery are gen-

erally higher than the rates of immune deterioration confirming the effectiveness of

treatment. These rates of immune recovery increase as individuals continue to take

their medication. The rates of immune deterioration showed a generally decreasing

trend with time although for individuals who originated from state 1 and 3 it showed

an increase followed by a decrease.

Deaths from all the other states decreased significantly with time except for those

individuals who originated in state 3 which is defined by a CD4 cell count between

350 and 500 cells per micro litre. For these individuals the transitions to death rose

from 13.94 between 2.5 and 4 years to 58.56 there after. This calls for a need by

further researchers to investigate the causes of these deaths.
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