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ABSTRACT. For an approximation, the inverse inequality can guarantee the smoothness of an
approximant based on its rate approximation. The purpose of this paper is to present new inverse
inequalities for scattered data interpolation on R? and bounded domain €2. Finally, some numerical

experiments are given as well.
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1. Introduction

It is well known that the inverse inequality plays an important role in finite ele-
ment method (FEM) analysis by estimating the condition number of stiffness matrix.
However, for radial basis functions interpolation method, only a few papers discuss it.
Narcowich et al. [1, 2] proposed a Bernstein-type inequality for RBFs on the whole
domain R? by introducing a band-limited approximation. In [3], the author obtained
the same result on a bounded domain 2. In this paper, we present some new inverse

inequalities for scattered data interpolation on R? and €.

At first, we are concerned with the RBF approximation to a function f in WJ (R%),
T > d/2. The approximation will be a sum of finite linear combinations of translates of
an RBF ® and the translates are from the set of data points X = {zy,..., 25} C R%
Therefore, given an RBF ® and a set X, the RBF approximation is defined by

(1.1) flz) = ij@(g;—xj).

When the Fourier transform ® of ® satisfies
(1.2) (14 [lwl3)™ < B(w) < (L +[[wll3) 7,

where positive constants ¢; < o, the Native space Ny (R?) corresponding to ® coin-

cides with the Sobolev space W (R?) and norms are equivalent. Then, we study the
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relationship between || f|ly; ey and || f HWQB(Rd)’ T > [ > 0. We consider
(1.3) 11l (RY) = /Rd [F)PA+ [lwl]|3)dw

N
= S0k [ B @)L+ o)
: R4
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where U is a new RBF and satisfies
(1.4) (14 [[w]3) 7> < U(w) < o1+ [lw]3) 7>
and the Native space Ny(R?) corresponding to W coincides with the Sobolev space
WP (RY).

The organization of this paper is given in the following. In Section 2, the relevant
mathematical background of RBF approximations are given. A new inverse inequality

on R? is given in Section 3 while the inverse inequality on €2 is derived in Section 4.

Some numerical examples for both 1D and 2D are then given in the final Section 5.

2. Mathematical Preliminaries

2.1. Notation. We start by introducing some notation. For a bounded domain
Q) C R? (d is dimension) and the data centers X = {z1,...,zy} C €, the mesh

norm h and separation distance g are defined as follows

(2.1) h = sup min ||z — z;||2;
zeQ T;EX
(2:2) i [l — a
) = —min||lz; — x;.
4 2 i 2

Moreover, for a non-negative integer k and 1 < p < oo let W;f(Q) denote the Sobolev
space with differentiability order k and integrability power p. Define for u € WF(Q)

and finite p the Sobolev (semi-)norms
1/p 1/p

(23) fulwre = | D 1Dl and [|ullwso) = | D D% ull}

la|=k la|<k
In the case p = 2, we have a Hilbert space and can introduce a norm via the Fourier
transforms which has the advantage that it can be generalized to non-integer values

0 < 7 < 0o and yields an equivalent norm to the one defined above if we choose 7 to
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be an integer. We can describe the functions in the fractional Sobolev space W] (RY)

as precisely square-integrable functions that are finite in the form

(2.4) lullwg ey = 1L+ wlI3)™@(w)] (e

Here, u(+) is the Fourier transform

(2.5) U(w) = / u(x)e ™y,
R4
In this paper, we also use the inverse Fourier transform in the form
(2.6) u(x) = / w(w)e™ “dzx.
R4
2.2. Radial Basis Functions and Native Space. Let r = || - || be Euclidean norm
on R%. A kernel function ®(x,z;) : R? — R is called radial if
2.7) O, 2;) = Bz — 1) = Pl — 5,])) = (r), = € RY

©(r) is used as a basis function in the RBF method and the univariate function ¢
is independent from the number of dimensions d. Therefore, the RBF method can
be easily adapted to solve higher dimensional problems. In recent applications, the

RBFs given in Tables 1 and 2 are most commonly used.

Gaussian (GA) e >0
Multiquadric (MQ) Vr2+e2, e>0
Inverse MQ 1/vr2+¢c e>0

Thin-plate spline (TPS) (—1)*+#2r8logr, 8 € 2N
TABLE 1. Global RBF's

(I>170 (1 — r)l_k
®p, (1 =)+ Dr+1
o (1 —7)2[(1% + 41+ 3)r? + (31 + 6)r + 3]
TABLE 2. Compactly supported functions. | = [2+k+1],k=0,1,...

General convergence results for RBF approximations on a domain Q € R? have
been derived for functions on Native spaces Ng(Q2). The Native space is a reproducing
kernel Hilbert space with RBF's, i.e., RBF's satisfy reproducing property in the Native

space.

Difinition 1 (Reproducing property [6]). A Hilbert space Ng(f2) of functions f :
2 — R is called a reproducing-kernel Hilbert space(RKHS) with a reproducing kernel
®:0OxQ—R,if

° (I)(, y) S N@(Q),
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i f(y) = (®(>y)> .f)CI’(Q)>

for all f € Np(Q2) and all y € Q.

For strictly positive definited basis functions (SPD), such as Gaussian and IMQ),

these spaces can be defined as the completion of the pre-Hilbert space
(2.8) Fs(Q2) := span{®(-,y) : y € Q}

and equip this space with the inner product

i=1 j=1 ij=1

(2.9) (Z AP (%), Y A@( xj)> =) ANNB(xi — x;).

The Native space for conditionally positive definite basis functions can be defined in
a similar form [6]. It is worth pointing out that, the native space Ng(R?Y) can be

characterized using Fourier transforms,

(2.10) Nap(RY) = { feL@®)NCRY: f/VD e L2(Rd)} .

3. Inverse Inequality on R?

Throughout the paper we assume the set of data points X is quasi-uniform and

a generic constant C' represents all constants independent of gq.

Theorem 3.1. Assuming an RBF ® satisfies (1.2), then for any f = Z?{:l AO(-—x;)

and two real numbers B and T, the following inequality holds.

(3.1) 1wz e < Ca™ 2 I fllypgey, 0<B <.

where C' is a positive constant independent of q.

Proof. Since ® satisfies (1.2), the Native space norm and the Sobolev space norm are

equivalent. According to the reproducing property, we have
(3.2)

N N N
£ 13wy ey = 1 v gy = <Z N — ;). A0( —afk)) = > AND(z—y).
j=1 ®

k=1 G, k=1
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Furthermore

B3 Wy = [, RO+l

N
= [l 32 e ol el
J,k=
N
/ Z —27rz (xj—zp)T (1 + ||w“§)_2T+5dw
j,.k=

Z '—[L'k),
J,k=

where U(w) ~ (1 + ||lw||2)~27 2.

According to [6, Theorem 12.3], we have:

N
(3.4) CL@(Ca/q)q I3 < D M (s — 2i) < Cog A3
k=1
C5U(Cu/q)q M3 < Z AU (25 — 1) < Cag N3
7,k=1

where [[Al2 = AT+ X + -+ A%
Since ®(w) ~ (1 + w3) 7" and W(w) ~ (1 + Jw]3) 7>+, s0

(3.5) Csa®™ A < vy may < Coa A3
Crg" ™A < HfIIWB(Rd Cea I3

we have:

(3.6) [ Flwsme) < O s 0< B <7

4. Inverse Inequality on Bounded Domain

At first, we obtain the relationships between reproducing-kernel Hilbert spaces
and the Sobolev Space on a close bounded domain, which is playing an important

role in estimating the inverse inequality.

Theorem 4.1. Assuming an RBF ® satisfies (1.2), then for any f = Z;VZI N ®(-—z;)

and a real number T, the following inequality holds.

(4.1) 1wz < O fllne@):-
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Proof. Since the set of centers X = {z1,xs,...,xy} is quasi-uniform, then N ~

Csq™?, C is constant, ¢ is the separation distance.
N
||f||12/V27(Q) = | Z Aj®(z — Ij)”%vg(ﬂ)
j=1

N 2
(4.2) < max |8z — ;) iz (@ (Z W\)

=1
< Nm]aX 1 (2 — ) iy @ I3

< Csq*|IAl3-

According to [6, Theorem 12.3], we can obtain

N
(4.3) C12(Ca/a)a I3 < D AA®(a; — i) < Cag|IA]1.

jk=1

Since ¢ satisfies (1.2), we have

(4.4) £ Ry = Coa® lIAII3-
Thus
(4.5) 1fllwz @) < Croq™ || flinw(e)-

Thus, we obtain the relationship between Sobolev space and Native space on bounded
domain €. 0

. : N
Theorem 4.2. Assuming an RBF & satisfies (1.2), then for any f = ijl O —
x;), there exists a function g = Z;VZI NV(- — ;) and the translation invariant kernel
U satisfies

(4.6) ¢ (1+ ||u1||§)_7+5/2 < \Tf(w) < (14 ||w||§)_7+6/2, T—06/2>d/2,T > 3>0.
such that

(4.7) 1 lws o) = Cuud® P llgllaw @)
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Proof. Since RBF's are translation invariant kernels, we can obtain the result

(4.8)

N
> D' f(x Z|Z)\ D'O(x — 2P > Cu| > N Y Doz — )P

lt|<s tl<g j=1 g=1  |i<p
>011\ZA/ 3 fiwl (1 ) e
lt|<s

Using Zm§6(|uj|2)t/2 > (1 + |w[?)?2, we have

>CH\ZA / (14 [[w]|2)—+0/2e2mile=a)" gy 2

> Oy Z A /R B w)ermie e g
j=1

N
> Oy Z)\j‘l’(i’f —z;)]? > Cnlg()]?

j=1
where (4 = % Integrating both sides of (4.8) with respect to the x variable on €2,
we obtain

(4.9) 1 1lwe @) = Cuillglla@
Furthermore,

(4.10)

N N N
ol = [ 13020 =2 de—NZ DA — )l
=1 =1 j=1
1 N N

i=1 jk=1
Since X = {z1,...,xy} is quasi-uniform, then N ~ Cgq™?

= Cyq* Z Aj )\k/ mk(w)ez’m;“’dw

i,5,k=1

= Cyq® Z A / U % Uy (w) 2™ du

i,5,k=1

' S A | Tt = o=t
R

i,5,k=1

= Csq* Z Aj Ak U (w — )W (n)e2mi@i—m) " w 2miti—a)™n g, qp.
Rd J R4

i,5,k=1
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Since the RBF is smooth, its Fourier transform is decreasing and tends to zero at
infinity. At first, we define a characteristic function xp,an, M > 0, where B(0, M)
is the ball, M is radius, i.e.,

_J1, x€eB(0,M)
(1) xe0m(7) = 0, ¢ B(0,M).

According to the property of the convolution, we have:

XB(0,M) * XBO,M)(T) = /d XB(0,m) (T — Y)XB(0,a) (¥)dy
R

= / XBo,m) (T — y)dy
lyll<m

(4.12)
= / XB(0,2m) () dx
le—yl|<M,||yl|<M
< XB(0,2m)(x)vol (B(0,2M)).
Then
XB(0,M) * XB(0,M)(T)
4.13 >
(4.13) Xz (¥) 2 vol(B(0, 2M))
Let
(4.14) v(z) = /d(XB(O,M) % XBo.an)(€))e ¥ de
R
= |XB.an * X50,Mm)(7)]
= |XBo.m) ()],
then

Z MW () Uy ()

i,j,k=1

Z Aj )\k/ / \/I}(f - 17)\/I\/(77)6_27ri(xi_xj)T776—27fi(xz‘—l‘k)dendg
R4

i,5,k=1

> Z A )\k/d /]Rd XB(0,2M) 5)XB(02M( )@(5—77)@(77)

i,5,k=1

e—27rz(:ci—xj)Tn6—27ri(xi—xk)T£dnd§

> it (e =B ol(BO,2M)) D A (i — (i — ;)

li§II<2M,||nl[<2M

-~

Al ~ ~~

(4.15)
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At first, we discuss A,.

(4.16) Z My (@i =z y(w = 25) 2 PO IAIZ =y O)IAZ D Iv(a — )]
1,7,k=1 j#k
OIAIE D Is — )l = I3 D (s = 2)I D Iy — )
i#j i#j i#j
— A (e —a)| Y (s — )
i#] 1#k

For >, [v(2; —x;)|, we can use the same technique in [6, Theorem 12.3] to evaluate
its upper bound.

. r2(d/2+ Hr 12\
(4.17 > htes -z <100 (30) -
Thus
@18 Y M- arle; - ) 2 OB
IXd/2+ )r 12 4, . T2d2+Dr 12 40
{1_2 s g T ) }

d+1
Let 7F2(d/é+1)” . (1\14_2[1) =1 then M = 93,

We obtain the following inequality

(4.19) Z Ny (@i = @)y (2 — 23) > Crag™ A5,

i,5,k=1

Since

V(E—n)T(n) = G+ € —nl) (1L + )

1
_ 2
(4.20) A+ TE— P+ )7
9 1
Z € 2)2
(A4 1E=nll?)? + @+ [nl*)*)/2)
and the last expression can and will be equal if and only if || — n|| = ||n]|. Thus, for
A1, we have
4.21 inf  W(E—n)T(n) = [T(E2M)>.
(4.21) ejeonrt oy YE—M¥(n) = [W2M))]
Cis 2 —2d 2 AT —23—d 2
(4.22) 9113 ) = Crag|®(—2 . IS = Cug Az, C1s = 2Chs.
Since
N
(4.23) 19113 = D> NiAe®(; — ) < Crag [ A3,

jk=1
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so, we obtain

(4.24) Igllaw@) < Crrg® N9l Lo
Then using (4.9), (4.24) becomes:
(4.25) 1 fllws @y = Cisa® llgllvae

O

Lemma 4.3. Assuming an RBF ® satisfies (1.2), then for any f = Zjvzl A®(-—zy)

and two real numbers T and (3, the following inequality holds.

(4.26) [ Fllws@ < C¥* 7 fllwpq

where T > 3> 0,and 7 — (/2 > d/2.

Proof. According to the following two inequalities

N
(4.27) 1F v = D AA@(a; — 2x) < Cag || A3
G k=1
N A~
lgllnvw@ = D MW (a; — ) > Cr¥(Ca/q)g™,
G k=1
we have
(4.28) 1 lInw@) < Crod” 7 [lglla ()
Combining (4.5), (4.7) with (4.28), we can obtain
(4.20) 1 llwser < Cood®> 1l

5. Numerical Experiments

In these experiments, we use the global functions and compactly supported func-
tions. We present six experiments. The first two experiments aim to test (3.1) in 1D

and 2D. The other four experiments focus on verifying (4.5).

Example 5.1. This example aims to test the convergence rate O(q"¢) in (3.1). It

is computed using the formula

hl(ek_l/ﬁ’k)

(5.1) rate, = In(ge1/8)

ke Nt > 1,

1/ lwg @)

where ¢, = and ¢ is the separation distance of the k-th computation

”f ||W25(Rd)
mesh, ratey, is the order of gy.
1D case: The first experiment is set up as follows: the basis function is a

compactly supported RBF ®(r) = (1—r)3 (3r+1) and the compactly supported RBF
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W(r) = (1 —r)3 (8% + 5r + 1) will be chosen as another RBF. Since ®(w) ~ |jw| ™,
then 7 = 2. For W, its Fourier transform satisfies W(w) ~ |jw||™¢. According to (3.1),

there exists the inequality

(5.2) | fllwz@aey < Cq_3Hf||W21(Rd)-

The numerical results are given in Table 3.

P(r)=1—r)2Br+1)and U(r) = (1 —r)%(87* + 5r + 1)

N e rate, || k | N ek ratey,
20 39.4224 9 1300 | 1.5519e+-005 | -3.1053
25 76.9539 -2.8631 || 10 | 350 | 2.5010e+005 | -3.0862
50 649.0227 | -2.9873 || 11 | 400 | 3.7591e+005 | -3.0435
100 | 5.2269e+003 | -2.9663 || 12 | 450 | 5.3430e+4-005 | -2.9782
150 | 1.7962e+004 | -3.0195 || 13 | 500 | 7.2559e+4-005 | -2.8984
200 | 4.3848e+-004 | -3.0843 || 14 | 550 | 9.4949e+005 | -2.8164
250 | 8.7919e+4-004 | -3.1037 || 15 | 600 | 1.2061e+006 | -2.7445

—~

o O U k=W N =R

TABLE 3. || fllwzme) < Cq || fllw;wa), the exact rate=-3

The second experiment is set up as follows: the basis function is a compactly
supported RBF ®(r) = (1 — r)% (3512 + 18r + 3) and the compactly supported RBF
U(r) = (1—7)%(32r* + 25r% 4+ 8r + 1) will be chosen as another RBF. Since D (w) ~
|w||~¢, then 7 = 3. For W, its Fourier transform satisfies W(w) ~ |lw||~8. According

to (3.1), there exists the inequality

(5.3) [ fllws@aey < Cq_4Hf||W22(Rd)-

The numerical results are given in Table 4.

®(r) = (1—r)8(35r% + 187+ 3) and ¥(r) = (1 — )% (32r® + 25r% + 8 + 1)

k| N e rate, || k | N e ratey,

1] 20 37.8880 8 1300 | 2.2839e+006 -3.9989
21 25 96.5191 -4.0028 || 9 | 350 | 4.2385e+006 -3.9988
31 50 | 1.6558e+4-003 | -3.9821 || 10 | 400 | 7.2404e+006 -3.9993
41100 | 2.7502e+004 | -3.9954 || 11 | 450 | 1.1607e+4-007 -3.9973
5| 150 | 1.4099e+005 | -3.9979 || 12 | 500 | 1.7703e+007 -3.9980
6 | 200 | 4.4838e+005 | -3.9983 || 13 | 550 | 9.4949e+4-005 -2.8164
71250 | 1.0987e+006 | -3.9984 || 14 | 600 | 1.2061e+4-006 -2.7445

TABLE 4. | fllwarsy < Cq || flwza), the exact rate=-4.

2D case: The third experiment is set up as follows: the basis function is a global
RBF &(r) = r® and the global RBF ¥(r) = 75 will be chosen as another RBF. Since



56 W. ZHAO AND M. STOLL

®(w) ~ |lw||™®, then 7 = 5/2. For W, its Fourier transform satisfies W(w) ~ ||w| 7.

According to (3.1), there exists the inequality

(5.4) 1 sy < CT7 1 s

The numerical results are given in Table 5.

O(r) =73 and U(r) =r®

N ek rate, || k | N ek ratey,

62 152.2112 11 | 16? | 6.2468e+003 | -3.3904
72 281.9554 | -3.3813 | 12| 172 | 7.7765e+003 | -3.3939
82 476.7675 | -3.4076 || 13 | 182 | 9.5554e+003 | -3.3980
92 T47.1584 | -3.3644 | 14| 192 | 1.1606e+004 | -3.4013
102 | 1.1120e+003 | -3.3760 || 15 | 202 | 1.3952e+004 | -3.4050
112 | 1.5857e+003 | -3.3681 || 16 | 212 | 1.6617e+004 | -3.4079
122 | 2.1874e+003 | -3.3752 || 17 | 222 | 1.9627e+004 | -3.4122
132 | 2.9345e+003 | -3.3768 || 18 | 232 | 2.3005e+004 | -3.4137
142 | 3.8469e+003 | -3.3823 || 19 | 242 | 2.6778e+004 | -3.4165
152 | 4.9439e+003 | -3.3854 || 20 | 252 | 3.0973e+004 | -3.4196

© 00 N O U = W N =R

—_
e}

TABLE 5. Hf||W§/2(Rd) < C’q_7/2]|f||w23/z(Rd), the exact rate=-7/2

Example 5.2. This example aims to test the convergence rate O(¢"*¢) in (4.26). It

is computed using the formula

ln(ek_l/ek)

(55) ratek = kf € N+ > 17
2In(gr-1/qx)’
1715 Il
_ 11, _ Mg @ — min — 2@
where ¢, = 75* and T'1 = max Nz min —ps

1D case: We chose global RBF ®(r) = r®, ®(r) = r® and compactly supported
RBF ®(r) = (1 —0.5r)4(4%0.5r + 1) as test basis functions. According to (4.26), the
convergence rates will be —3, —2 and —2, respectively. The numerical results can be

seen in Tables 6, 7 and 8, respectively.
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O(r)=r°

T1/T2

ratey,

k

N

T1/T2

ratey,

© 00 J O U = W N =R

—_
(@)

31
32
33
34
35
36
37
38
39
40

2.7876e+010
3.3823e+010
4.0779e+010
4.8896e+-010
5.8302e+010
6.9182e+-010
8.1686e+010
9.6029¢+-010
1.1240e+011
1.3103e+011

-2.9487
-2.9454
-2.9496
-2.9468
-2.9514
-2.9488
-2.9520
-2.9514
-2.9520

11
12
13
14
15
16
17
18
19
20

41
42
43
44
45
46
47
48
49
50

1.5216e+-011
1.7607e+011
2.0300e+-011
2.3330e+011
2.6725e+4-011
3.0524e+011
3.4761e+4-011
3.9477e+011
4.4713e+011
5.0517e+4-011

-2.9526
-2.9553
-2.9531
-2.9562
-2.9548
-2.9572
-2.9570
-2.9578
-2.9579
-2.9595

TABLE 6. the exact rate = —3.

O(r) =13

T1/T2

ratey

k

N

T1/T2

ratey

© 00 ~J O U = W N "

—
(@]

31
32
33
34
35
36
37
38
39
40

1.2203e+007
1.3878e+007
1.5718e+007
1.7736e+007
1.9941e+4-007
2.2345e4-007
2.4960e+-007
2.7798e+-007
3.0870e4-007
3.4192e+-007

-1.9613
-1.9608
-1.9627
-1.9627
-1.9633
-1.9643
-1.9652
-1.9652
-1.9673

11
12
13
14
15
16
17
18
19
20

41
42
43
44
45
46
47
48
49
50

3.7772e4-007
4.1628e+007
4.5771e+007
5.0213e+-007
5.4971e+007
6.0062e+007
6.5498e+-007
7.1294e+4-007
7.7465e4-007
8.4028e+-007

-1.9666
-1.9683
-1.9686
-1.9682
-1.9690
-1.9707
-1.9711
-1.9713
-1.9715
-1.9721

TABLE 7. the exact rate = —2.

57
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O(r) =(1—0.5r)%(4%0.5r + 1)

N T1/T2 rate, | k | N T1/T2 ratey,

31 | 5.0927e+005 11 |41 ] 1.6123e4-006 | -2.0219
32| 5.8148e+005 | -2.0219 || 12 | 42 | 1.7792e+006 | -1.9946
33 1 6.5957e+005 | -1.9845 || 13 | 43 | 1.9579e+006 | -1.9858
34| 7.4681e+005 | -2.0185 || 14 | 44 | 2.1532e+006 | -2.0204
35 | 8.4046e+005 | -1.9787 || 15 | 45 | 2.3590e+006 | -1.9853
36 | 9.4515e+005 | -2.0249 || 16 | 46 | 2.5827e+006 | -2.0157
37| 1.0580e+006 | -2.0019 || 17 | 47 | 2.8182e+006 | -1.9852
38 [ 1.1793e+006 | -1.9808 || 18 | 48 | 3.0712e+006 | -1.9988
39 | 1.3124e+006 | -2.0050 || 19 | 49 | 3.3427e+006 | -2.0118
40 | 1.4554e4-006 | -1.9908 || 20 | 50 | 3.6266e+006 | -1.9767

© 00 J O U = W N =R
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TABLE &. the exact rate = —2.

2D case: We still chose global RBFs ®(r) = r®, ®(r) = 73 and compactly
supported RBF ®(r) = (1 —0.5r)2 (4% 0.5r + 1) as test basis functions. According to
(4.26), the convergence rates will be —3.5, —2.5 and —2.5, respectively. The numerical

results can be seen in Tables 9, 10 and 11, respectively.

T1/T2 rate, || k | N T1/T2 ratey,
38.2379 7 | 64 | 4.3731e+007 | -3.3439
8
9

e~ |2

9 | 1.0261e+4-004 | -4.0340 81 | 1.0469e+008 | -3.2687
16 | 1.3460e+005 | -3.1741 100 | 2.3015e+008 | -3.3440
25| 9.5440e4-005 | -3.4044 || 10 | 121 | 4.6348e4-008 | -3.3221
36 | 4.6578e+4-006 | -3.5520 || 11 | 144 | 8.7497e+4-008 | -3.3335
49| 1.5598e+-007 | -3.3144 || 12 | 169 | 1.5639e+009 | -3.3372

SO s W NN R

TABLE 9. the exact rate = —3.5.

T1/T2 rate, | k | N T1/T2 rate,
52.2650 7 | 64 | 5.4827e+005 | -2.3081
8
9

e~ |2

9 | 1.3989e+-003 | -2.3712 81 | 1.0082e+006 | -2.2809
16 | 1.1714e+004 | -2.6206 100 | 1.7670e+006 | -2.3820
25 | 4.2304e+4-004 | -2.2318 || 10 | 121 | 2.8989e4-006 | -2.3493
36 | 1.1707e4-005 | -2.2808 || 11 | 144 | 4.5218e4-006 | -2.3323
49 | 2.6912e+-005 | -2.2828 || 12 | 169 6895600 -2.4248

S O s W NN R

TABLE 10. the exact rate = —2.5.
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O(r) =(1—0.5r)4(4%0.5r + 1)

N | T1/T2 | rate, | k| N T1/T2 ratey,

1.2163 7 | 64 | 1.3804e+4-003 | -2.5088
9 | 42965 |[-0.9103 | 8 | 81 |2.6670e+003 | -2.4660
16 | 17.2410 | -1.7134 || 9 | 100 | 4.9895e+-003 | -2.6591
25| 83.1422 | -2.7344 |/ 10 | 121 | 8.0933e+003 | -2.2955
36 | 242.9310 | -2.4026 || 11 | 144 | 1.3791e+4-004 | -2.7961
491 636.9264 | -2.6433 || 12 | 169 | 2.0444e+004 | -2.2622

W

[ L T N

TABLE 11. the exact rate = —2.5.

6. Conclusion

In this paper, new inverse inequalities on interpolation of scattered data via RBF's
are presented. New inequalities are based on translation invariant and smoothness of
RBFs. Comparing with existing inverse inequalities on R? and €, the results in this

paper can be easily verified by numerical experiments.
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