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LSTA, Université Pierre et Marie Curie - Paris 6, France

LMA, Avignon University, France

ABSTRACT. In this paper, we consider i.i.d. Poisson processes with some change-point at t0 ∈
]0, 1[. We study existence and intensity of jump at t0 and we want to detect this point. We

consider the case of either continuous or discretely observed data. For continuous data, our obtained

exponential bounds imply that t0 is detectable (almost surely). In the case of sampled data, a

consistent estimator of t0 is given in two cases: fixed sampling rate or high frequency data. Also,

estimation of intensities of the Poisson processes and of the jump at t0 are discussed and exponential

bounds are derived. Finally, the case of a random change-point T0 is also examined. Estimators of

each Poisson’s intensity are proposed and studied with almost sure rate of convergence.
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1. INTRODUCTION

In this paper, our purpose is to detect the presence of a change-point t0, fixed or

random, in the context of i.i.d. Poisson processes on [0, 1] and to study the intensity of

jump at this point. The functional autoregressive linear process appear in the context

of Poisson processes that model their innovation. We refer for example to [4, 5], [8]

for general D[0, 1]-valued linear processes as well to [9] for jumps in derivatives.

Works dedicated to jumps in stochastic processes are numerous, we may only

give recent and limited references. First, fixed jumps may be considered per day

with, for example, financial data, cf [25, p. 208], for intra-day cumulative returns, or

electricity consumption, see e.g. [21] where jumps are present early in the morning

and in the evening. Random jumps can be also envisaged in the context of Poisson

or, more generally, Levy processes. Applications appear in various domains such

as epidemic models [31], financial modeling [12, 13, 20, 24], pollution damage [16],

chemical reaction network [1]. Also, a deterministic model appears in the context of

dengue disease, cf [22], or actuarial risk with rare events [23].
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In this paper, we consider Poisson processes on [0, 1] with an inner change-point

at t0. More precisely, let (Nt, t ∈ [0, 1[) (resp. (N ′
t , t ∈ [0, 1[)) be a Poisson process

with intensity λt (resp. λ′t) and such that:

Z0(t) = Nt 1{t<t0} + N ′
t 1{t≥t0}, 0 ≤ t < 1, 0 < t0 < 1

We suppose that (Nt) and (N ′
t) are independent and we try to detect t0 from the

copies Zi(t) :

Zi(t) = (Ni+t − Ni)1{t<t0} + (N ′
i+t − N ′

i)1{t≥t0}, 0 ≤ t < 1, 1 ≤ i ≤ n.

Literature about the change point models is extensive and is developed around several

approaches: either parametric or nonparametric with, for example, location of a shift

in the mean or variance of the distribution. The methodologies often assume a single

or known number of change points and then, the likelihood function plays a major

role, see for example the results collected in the book of [14]. In the context of Poisson

processes with detection of abrupt change-points, we may refer to [18] and for more

recent advances to [11], [17], [28] and [29]. As in [15] and [26], our approach is based

of i.i.d processes with change-point in their intensities. However, the latter references

consider the case of non-homogeneous Poisson processes while our model allows, for

example, negative jumps. Also our methodology is different as our Z ′
is correspond to

the functional innovation of an autoregressive processes with values in D[0, 1].

The plan of the paper is the following. In Section 2, first we introduce functional

autoregressive processes, see [7] and [10] for usual properties of functional linear pro-

cesses. We observe that the jumps of the process coincide with those of the innovation

(Zi, i = 1, . . . , n). We study existence and intensity of jumps at change-point t0 and

set

J0(t0) = N ′(t0) − N(t0−).

Note that J0(t0) can have a value which may be zero, positive or negative (cf. Propo-

sition 2.7). Next, we study P (∩n
i=1(Ji(t0) = ki)) where ki is an integer and

Ji(t0) = Zi(t0) − Zi(t0−),

as well as Ji(t0) which belongs to Z, for a jump at D([0, 1]), see [3]. In this context

we derive exponential bounds for probabilities of the occurrence of jumps at t0.

In Section 3, we consider change-points corresponding to no jump or jump equal

to 1. We derive bounds for these probabilities implying conditions under which t0 is

detectable. We study the case of Poisson processes with either different or the same

intensity (see Lemma 3.3).

In Section 4, one obtains consistency results in mean square and almost surely

for estimating the intensities (λ, λ′) of Poisson processes and the jump’s intensity
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E(J0(t0)). For the latter quantity, we also derive a Bernstein’s inequality (cf. Propo-

sition 4.2).

In Section 5, a central limit theorem holds in an Hilbertian context.

Section 6 is devoted to detection of t0 in the case of discretely observed processes.

In the first step, we suppose that the sampling rate of observation, δ > 0, is fixed.

In the second, we consider the high frequency case, with δn → 0, and one obtains

consistency at t0 (cf. Proposition 6.2) Also, a little simulation study is given: some

cases are envisaged with various λ, λ′ and δ.

Finally, in Section 7 we consider the case of a random change-point and we

obtain the estimation of the Poisson processes intensities with an exponential rate

(cf. Propositions 7.3 and 7.4). Technical proofs are postponed to the appendix.

2. STUDY OF JUMPS

2.1. Functional autoregressive processes. In order to study the jumps of a func-

tional continuous time process X = (Xt, 0 ≤ t ≤ 1), the space D = D([0, 1]) of

càdlàg real functions defined over [0, 1] is well adapted, see [3]. Consider for example

the ARD(1) process defined as

Xn = mZ + ρ(Xn−1 − mZ) + (Zn − mZ), n ∈ Z,

where ρ is a bounded linear operator, the sequence (Zn) is i.i.d. and such that

E‖Zn‖2 < ∞, mZ = E(Zn). If there exists ℓ ≥ 1 such that ‖ρℓ‖L < 1, then Xn

is stationary and

Xn − mZ =L2
D

∞
∑

j=0

ρj(Zn−j − mZ) = Zn − mZ +
∞
∑

j=1

ρj(Zn−j − mZ),

see Lemma 2.1 in [5]. Next, the following proposition holds.

Proposition 2.1. If ρ(D) ⊂ C, we get

Xn(t) − Xn(t−) = Zn(t) − Zn(t−), 0 ≤ t ≤ 1, n ∈ Z.

Proof. Clear.

Examples of processes fulfilling conditions of Proposition 2.1, such as the Ornstein-

Uhlenbeck process driven by a Levy process or operator ρ with integral representation,

are developed in [5] and [9]. Note that (Xn) are correlated functional variables but

with jumps similar to (Zn). In the sequel, we model (Zn) as in Section 1 by two

independent Poisson processes with intensities (λ, λ′) and a change-point occurring

at time t0 ∈]0, 1[. Below, we represent an illustration of a simulated sample of Xn(t),

n = 1, . . . , 7, with the choices λ = 1 and λ′ = 3. We may observe that either jumps

may not exist or be positive or negative at points t0 (represented by circles).
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Note that Proposition 2.1 gives that Xn(t) − Xn(t−) = Zn(t) − Zn(t−) 6= 0 if t is a

time of jump. In this case, Xn(t) − Xn(t−) are observed i.i.d random variables and

we may focus to the study of the i.i.d. (Zn(t) − Zn(t−), n ≥ 1).

2.2. Notation and Assumptions. Now we consider a sequence of i.i.d random

processes, defined as

Zn(t) = (Nn+t − Nn)1{t<t0} + (N ′
n+t − N ′

n)1{t≥t0}, 0 ≤ t < 1, 0 < t0 < 1, n ∈ Z.

Remark 2.2. Note that it is also possible to get a jump per day for t0 ∈ Z, see [25,

p. 208]. In fact, since

P (∩n
i=1(N

′
i+1(−) − N ′

i) = 0) = exp(−nλ′), n ≥ 1

a jump appears almost surely for n large enough. Now, by using the empirical mean,

we get

Z̄n(1−) =
1

n

n
∑

i=1

(N ′
i+1(−) − N ′

i)

and one obtains an exponential rate from Bernstein’s inequality (see Lemma 2.4).

We envisage the following assumption:

Assumption A1. (Nn+t − Nn, 0 ≤ t < 1, n ∈ Z) and (N ′
n+t − N ′

n, 0 ≤ t < 1, n ∈ Z)

are globally independent.

Lemma 2.3. We get EZn(t) = λt1{t<t0}+λ′t1{t≥t0} and if A1 holds, the same result

holds for the variance.

Proof. Clear.

This lemma implies that EXn, defined by mZ(·), is also such that mZ(t) =

λt1{t<t0} + λ′t1{t≥t0}.

2.3. Some useful lemmas. We begin with two classical exponential inequalities for

sums of independent variables.

Lemma 2.4. Let ζ1, . . . , ζn be independent zero-mean real-valued random variables

and set Sn =
∑n

i=1 ζi. The following inequalities hold:
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- Hoeffding’s inequality: If ai ≤ ζi ≤ bi, 1 ≤ i ≤ n where a1, b1, . . . , an, bn are

constant, then

P (|Sn| ≥ t) ≤ 2 exp

(

− 2t2
∑n

i=1(bi − ai)2

)

, t > 0.

- Bernstein’s inequality: If there exists c > 0 s.t. E|ζi|k ≤ ck−2k!Eζ2
i < ∞,

1 ≤ i ≤ n, k ≥ 3 (Cramer’s condition), then

P (|Sn| ≥ t) ≤ 2 exp
(

− t2

4
∑n

i=1 Eζ2
i + 2ct

)

.

Proof. See [6, p. 24–26].

In this part, we examine the behaviour of J0(t0) = Z0(t0)−Z0(t0−) for detecting

possible jumps at t0.

Lemma 2.5. Under A1,

P (J0(t0) = k) = exp(−(λ + λ′) t0) (λ′t0)
k

∞
∑

h=0

(λλ′t20)
h

h!(k + h)!
, k ≥ 0

and

P (J0(t0) = −k) = exp(−(λ + λ′) t0) (λt0)
k

∞
∑

h=0

(λλ′t20)
h

h!(k + h)!
, k ≥ 0.

Proof. We have

P (J0(t0) = k) =

∞
∑

h=0

P (N ′
t0

= k + h, Nt0 = h)

next, from A1,

P (J0(t0) = k) =
∞
∑

h=0

exp(−λ′t0)
(λ′t0)

h+k

(h + k)!
exp(−λt0)

(λt0)
h

h!

and the first result follows. The second result is similar since P (J0(t0) = −k) =

P (N(t0−) − N ′(t0) = k) so λ and λ′ are inverted.

Now, we get

P (J0(t0) = k) = pk, 0 < pk < 1, k ∈ N

with
∑

k∈N
pk = 1. For Ji(t0) = Zi(t0) − Zi(t0−), this implies that

P (∩n
i=1 {Ji(t0) = 0 ∪ Ji(t0) = 1}) = (p0 + p1)

n

with p0 + p1 < 1. Next, from the BC lemma, almost surely for n large enough, there

exist at least one sample path Zi with a jump distinct from 1 at t0. By this way,

for n large enough, t0 is observed. But from Lemma 2.5, it appears that the pk’s are

rather intricate. Then, we need a more simple exponential inequality. First, in the

following statement, we examine the case where no jump holds:
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Lemma 2.6. Under A1, we get

P (J0(t0) = 0) = exp(−(λ + λ′) t0)
∞
∑

h=0

(λλ′t20)
h

(h!)2

and, if λ 6= λ′, we obtain the bound:

P (J0(t0) = 0) ≤ exp(−(
√

λ −
√

λ′)2 t0).

Proof. From Lemma 2.5, we obtain

P (J0(t0) = 0) = exp(−(λ + λ′) t0)
∞
∑

h=0

(λλ′t20)
h

(h!)2
.

Now, by using the Gamma function we get for some c > 0:

h! =

∫ ∞

0

th exp(−t) dt ≥
∫ ∞

ct0

th exp(−t) dt ≥ (ct0)
h exp(−ct0).

Reporting in the bound, we obtain

P (J0(t0) = 0) ≤ exp (−(λ + λ′) t0 + ct0)
∞
∑

h=0

(λλ′t0)
h

ch(h!)

thus

P (J0(t0) = 0) ≤ exp

(

−t0

[

λ + λ′ − c − λλ′

c

])

.

The result follows with the choice c =
√

λλ′.

Proposition 2.7. If A1 holds and λ 6= λ′ we have

P (Ji(t0) = 0, 1 ≤ i ≤ n) ≤ exp(−n (
√

λ −
√

λ′)2 t0)

then, the probability that {Ji(t0) = 0, 1 ≤ i ≤ n} occurs infinitely often is zero.

Proof. Under A1 we have

P (Ji(t0) = 0, 1 ≤ i ≤ n) =
n
∏

i=1

P (Ji(t0) = 0)

and Lemma 2.6 entails the result.

Finally
∑

n≥1 exp(−n (
√

λ −
√

λ′)2 t0) < ∞ gives the Borel-Cantelli lemma.

Remark 2.8. The probability of having at least one jump is strong. For example,

if t0 = 1
2

, λ = 1, λ′ = 2, n = 100 the probability of at least one jump is about

1 − 1.88 10−4. If t0 = 1
2
, λ = 1, λ′ = 11, n = 10, the probability of at least one jump

is about 1 − 2.22.10−12.

We may derive a lower bound for the probability of having a jump at t0 in the

following statement.
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Corollary 2.9. We have

P (
n
⋃

i=1

[(Zi(t0) − Zi(t0−) ≥ 1]) ≥ 1 − exp(−n(
√

λ −
√

λ′)2 t0).

Proof. Note that P (∪n
i=1Ai) = 1 −∏n

i=1 P (Āi) hence

P (
n
⋃

i=1

[(Zi(t0) − Zi(t0−) ≥ 1]) = 1 −
n
∏

i=1

P (Zi(t0) − Zi(t0−) = 0)

and Proposition 2.7 gives the result.

Finally, we consider the general case of jumps with value k or −k.

Proposition 2.10. Under A1 and if λ 6= λ′, one obtains

P (J0(t0) = k) ≤
(

√

λ′

λ

)

k exp(−(
√

λ −
√

λ′)2t0), k ≥ 0

and

P (J0(t0) = −k) ≤
(

√

λ

λ′

)k

exp(−(
√

λ −
√

λ′)2 t0), k ≥ 0.

Proof. Similarly as in the proof of Lemma 2.6, we may write

(k + h)! =

∫ ∞

0

tk+h exp(−t) dt ≥
∫ ∞

ct0

tk+h exp(−t) dt ≥ (ct0)
h+k exp(−c t0)

and by using Lemma 2.5, we find

P (J0(t0) = k) ≤ exp(−(λ + λ′) t0) (λ′t0)
k(ct0)

−k exp(ct0)

∞
∑

h=0

(λλ′t20)
h

(ct0)h

1

h!

then

P (J0(t0) = k) ≤
(
√

λ′

λ

)k

exp

(

−t0

(

λ + λ′ − λλ′

c
− c

))

and the choice c =
√

λλ′ gives the result. The second proof is similar.

Corollary 2.11. Under A1 and if k1, . . . , kn ∈ Z,

P (Ji(t0) = ki, 1 ≤ i ≤ n) ≤
(

λ′

λ

)

P

n

i=1 ki(1{ki>0}−1{ki<0})

exp(−n(
√

λ −
√

λ′)2 t0)

Proof. First, from A1 we get

P (Ji(t0) = ki, 1 ≤ i ≤ n) =
n
∏

i=1

P (Ji(t0) = ki)

and the corollary follows from Proposition 2.10.
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Discussion of the Borel-Cantelli (BC) lemma. First remark that the condition

λ′ < λ is sufficient to obtain bounds less than 1 in Proposition 2.10. Concerning

Corollary 2.11, the BC lemma is not valid in some situations: for example, if λ′ > λ

and ki = i, the bound is (λ′

λ
)

n(n+1)
4 exp(−n(

√
λ −

√
λ′)2 t0) and the series diverges.

If λ′ < λ, BC holds provided ki ≥ 0, 1 ≤ i ≤ n.

Finally, if
∑n

i=1 ki = O(nεn) , with ki ≥ 0, 1 ≤ i ≤ n and (εn) → 0, BC is valid

since
∑

n≥1

exp

(

1

2
log

λ′

λ

n
∑

i=1

ki − n(
√

λ −
√

λ′)2 t0

)

< ∞.

Then, under the BC condition, the probability that P (Ji(t0) = ki, 1 ≤ i ≤ n) occurs

infinitely often is zero.

3. DETECTING THE CHANGE-POINT

3.1. The case λ 6= λ′. To detect the possibility of presence of zero or one jump, we

may write:

∆n = P ((Ji(t0) = 0 ∪ Ji(t0) = 1, 1 ≤ i ≤ n) = [P (J1 = 0) + P (J1 = 1)]n.

Lemma 3.1. One obtains

∆n ≤ exp
(

−n(
√

λ −
√

λ′)2 t0
)

(

1 +

√

λ′

λ

)n

≤ exp
(

−n
(

(
√

λ −
√

λ′)2t0 −
√

λ′

λ

)

)

and for λ and λ′such that 1 > t0 >

√
λ′/λ

(
√

λ−
√

λ′)2
, the Borel-Cantelli lemma is valid.

Proof. Using Proposition 2.10 we get:

∆n ≤ exp(−n(
√

λ −
√

λ′)2t0)

(

1 +

√

λ′

λ

)n

then

∆n ≤ exp

(

−n

(

(
√

λ −
√

λ′)2 t0 − log
(

1 +

√

λ′

λ

)

)

)

.

Now, from the bound log
(

1 +
√

λ′

λ

)

<
√

λ′

λ
, it follows that

∆n ≤ exp

(

−n
(

(
√

λ −
√

λ′)2 t0 −
√

λ′

λ

)

)

then, BC lemma holds with the condition given at t0.

Remark 3.2. Note that, for
√

λ −
√

λ′ large enough, the above condition holds. In

particular, the conditions 1 > t0 >
√

λ′

λ
with

√
λ −

√
λ′ > 1 are sufficient to detect

the position of t0.
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3.2. The case of equal intensities. We now envisage the case where λ = λ′ and

Proposition 2.7 does not work. Under a somewhat different assumption, we may

obtain a jump at t0 almost surely for n large enough:

Lemma 3.3. If λ = λ′ and t0 < 2
λ
, we obtain

P (∩n
i=1(Ji(t0) = 0)) ≤ exp(−nλt0(2 − λt0))

with
∑∞

n=1 exp(−nλt0(2 − λt0)) < ∞.

Proof. From Lemma 2.6, we have

P (J0(t0) = 0) = exp(−(λ + λ′) t0)

∞
∑

h=0

(λλ′t20)
h

(h!)2
.

As λ = λ′ and 1
h!
≤ 1 one gets

P (Ji(t0) = 0) ≤ exp(−2λt0)
∞
∑

h=0

(λ2t20)
h

h!

≤ exp(−λt0(2 − λt0))

and since t0 < 2
λ

the exponential is strictly less than 1. Finally we get the desired

result since J1, . . . , Jn are i.i.d.

This Lemma is more elaborated.

Lemma 3.4. If λ = λ′ and t0 < 1
λ
, we get

P (∩n
i=1(Ji(t0) = ki)) ≤ (λt0)

P

n

i=1 ki exp(−nλt0(2 − λt0))

and, if
∑n

i=1 ki ≥ 0,
∑

n≥1

(λt0)
P

n

i=1 ki exp(−nλt0(2 − λt0)) < ∞.

Proof. We consider the proof in Lemma 2.5, then, since λ = λ′ and 1
(k+h)!

≤ 1, one

obtains

P (Ji(t0) = ki) ≤
∞
∑

h=0

exp(−2λt0) (λt0)
2h+ki

1

h!

thus

P (Ji(t0) = ki) ≤ exp(−2λt0) (λt0)
ki

∞
∑

h=0

(λ2t20)
h

h!
.

Finally

P (Ji(t0) = ki) ≤ exp(−2λt0) (λt0)
ki exp(λ2t20), i = 1, . . . , n.

and the result follows.

Now, if t0 < 1
λ

the series converges.
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Remark that for λ > 2 (Lemma 3.3) and λ > 1 (Lemma 3.4), the exponential

inequality still holds in the case λ = λ′ but with t0 < 2
λ

or t0 < 1
λ
. Namely, similarly

to Lemma 3.1, we may derive the following corollary for the previous defined quantity

∆n = P ((Ji(t0) = 0 ∪ Ji(t0) = 1, 1 ≤ i ≤ n).

Corollary 3.5. Under A1, we have ∆n ≤ exp(−nλt0(1 − λt0)) and Borel-Cantelli

lemma holds for 0 < t0 < 1
λ
.

Remark 3.6. The previous lemma implies that t0 is detectable at least for 0 < t0 < 1
λ
.

since, almost surely for n large enough, there exist a sample path having a jump at t0

and with intensity different from 1. Note also that methodology used in Lemma 3.3

and 3.4 allows us to obtain an alternative to Lemma 3.1. Namely, the obtained bound

for ∆n is exp(−nt0λ(1 − λ′t0)). In this case, t0 is detectable as soon as 0 < t0 < 1
λ′

which is true if, in particular, λ′ ≤ 1.

Remark 3.7. Finally, one may express ∆n in terms of modified Bessel functions of the

first kind. Recall that Iν(z) =
(

z
2

)ν ∑

h≥0
(z/2)2h

h!(ν+h)!
. From Proposition 2.10, we get

∆n =

(

e−(λ+λ′)t0I0(2
√

λλ′t0) + e−(λ+λ′)t0

√

λ′

λ
I1(2

√
λλ′t0)

)n

.

Next, the following upper bound for Iν(z) is given in [2, p. 583], for z > 0, ν > −1:

Iv(z) <
zν

2νΓ(ν + 1)
exp

(

z2

4(ν + 1)

)

.

This allows us to derive the new following bound for ∆n:

∆n ≤ (1 + λ′t0e
−λλ

′
t
2
0

2 )n exp
(

−nt0(λ + λ′ − λλ′t0)
)

.

We may show that the bound is less than 1 for again 0 < t0 < 1
λ′

. Under this

condition, the bound appears more accurate than our previous bound in Lemma 3.1.

But it may takes big values for higher values of t0. For example, for n = 1, λ = 2,

λ′ = 10 and t0 = 0.9, one gets the bound 222.011 (...) while Lemma 3.1 gives 0.207.

Remark also that the obtained bounds are respectively 0.519 and 0.702 for t0 = 0.5.

4. CONSISTENCY

From Lemma 3.1, we know that a.s. for n large enough, there exist i = 1, . . . , n,

such that Zi gets a jump at t0 and with value different from 1. By this way, we may

consider that t0 is known. We set

Ĵn(t0) =
1

n

n
∑

i=1

[

(N ′
i+t0 − N ′

i) − (Ni+t0 − Ni)
]

thus, we have EĴn(t0) = (λ′ − λ) t0.

Then
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Proposition 4.1. If A1 holds, we get Ĵn(t0) → (λ′ − λ) t0 almost surely and in L2.

Proof. The strong law of large number and the convergence in mean square is clear.

It is again possible to obtain a exponential inequality:

Proposition 4.2. We have

P ( ˆ|Jn(t0) − (λ′ − λ)t0| ≥ ε) ≤ 4 exp

(

−nε2

4cε

)

where cε = min(4λt0 + dε, 4λ′t0 + d′ε), d > 0, d′ > 0, ε > 0.

Proof. We will use Bernstein’s inequality (given in Lemma 2.4).

First, note that the Poisson process admits an exponential moment:

E(exp aNt) =
∑

k≥0

exp(ak) exp(−λt)
(λt)k

k!
) = exp(−λt)

∑

k≥0

(eaλt)k

k!

= exp((ea − 1)λt)) < ∞.

Now using notation Un = 1
n

∑n
i=1(N

′
i+t0

− N ′
i) and Vn = 1

n

∑n
i=1(Ni+t0 − Ni), one

obtains:

P (|Un + Vn − λ t0 − λ′t0| ≥ ε) ≤ P
(

|Un − λt0| ≥
ε

2

)

+ P
(

|Vn − λt0| ≥
ε

2

)

and Bernstein inequality entails

P ( ˆ|Jn(t0) − (λ′ − λ)t0| ≥ ε) ≤ 2 exp

(

− nε2/4

4σ2 + 2dε/2

)

+ 2 exp

(

− nε2/4

4σ′2 + 2d′ε/2

)

hence the result with σ2 = λt0 and σ′2 = λ′t0.

Now, we note that for 0 < t0 < 1, there exists s and s′ such that 0 < s < t0

and t0 ≤ s′ < 1. Actually, we may choose s′ − s not very far from 1. Then, we can

estimate λ and λ′:

Corollary 4.3. We have for 0 < s < t0:

1

ns

n
∑

i=1

(Ni+s − Ni) → λ, a.co.

and for t0 ≤ s′ < 1

1

ns′

n
∑

i=1

(N ′
i+s′ − N ′

i) → λ′, a.co.

Proof. For 0 < s < t0, we get ENs = λs and Bernstein inequality gives the result

(see Lemma 2.4). The second result is similar.
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Remark 4.4. Note that Ns is observable for s < t0 and that N
′

s is observable for

s′ ≥ t0. Concerning the rate, we have

n E

(

1

ns

n
∑

i=1

(Ni+s − Ni) − λ

)2

=
λ

s

and

n E

(

1

ns′

n
∑

i=1

(N ′
i+s′ − N ′

i) − λ′

)2

=
λ′

s′
.

5. CENTRAL LIMIT THEOREM IN FUNCTION SPACE

In order to exhibit a jump at t0 we consider the Hilbert space H(t0) = L2([0, 1] ,

B[0 ,1 ], l + δ(t0 )) where l is Lebesgue measure over [0, 1] and δ(t0) is Dirac at t0.

Proposition 5.1. If (Zn , n ∈ Z) is a H(t0)-strong white noise, then

1√
n

n
∑

i=1

Zi ⇒ N∼ N (0, CZ1)

where CZ1 is a covariance operator.

Proof. See [7, p. 51].

Corollary 5.2. We also have

1√
n

n
∑

i=1

((Zi(t0) − Zi(t0−) − E(Zi(t0) − Zi(t0−))

⇒ N ∼ N (0, V (Z1(t0) − Z1(t0−)).

Proof. Clear, since the intensity of jumps are i.i.d.

Remark 5.3. It is possible to consider the empirical variance. Thus, a confidence

interval is clear.

6. DETECTING t0 FOR DISCRETELY OBSERVED PROCESSES

In this part, we consider discretely observed processes at a grid of the form

δ, 2δ, . . . , kδ with δ > 0 and kδ = 1 in the fixed case and δn, 2δn, . . . , knδn with

δn → 0 and knδn → 1 in the high frequency one. For discretely observed sample

paths, the assumption “t0 known” is no longer realistic and so inference in this case

is more intricate.
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6.1. The fixed case. We suppose that, for some j0,

0 < δ ≤ (j0 − 1)δ < t0 ≤ j0δ ≤ (k − 1)δ < 1

thus 2 ≤ j0 ≤ k − 1.

Let us set Z̄n(jδ) = 1
njδ

∑n
i=1 Zi(jδ), j = 1, . . . , k − 1. We have

Z̄n(jδ) =
1

njδ

n
∑

i=1

[(Ni+jδ − Ni)1{jδ<t0} + (N
′

i+jδ − N ′
i)1{jδ≥t0}, 1 ≤ j ≤ k − 1.

Note that Z̄n(jδ) is observable but one cannot detect t0 directly. Now, we put

Vn,j =
∣

∣Z̄n(jδ) − Z̄n((j − 1)δ)
∣

∣ 2 ≤ j ≤ k − 1

and, for detecting t0, we may set

̂0,n = arg max
2≤j≤k−1

Vn,j and t̂0,n = ̂0,nδ.

Proposition 6.1. If A1 holds and λ′ 6= λ, then almost surely for n large enough, we

obtain (j0 − 1)δ < t̂0,n ≤ j0δ.

Proof. From Corollary 4.3, we get Z̄n(jδ) → λ a.s. if jδ < t0 while if jδ > t0,

Z̄n(jδ) → λ′ a.s. Then for j ≤ j0 − 1

Vn,j → |λ − λ| = 0 a.s.

and for j ≥ j0 + 1

Vn,j → |λ′ − λ′| = 0 a.s..

Now, for j = j0, we get (j0 − 1)δ < t0 ≤ j0δ, and it follows that

Vn,j0 → |λ′ − λ| 6= 0 a.s.

Consequently, since k and δ are fixed, we have almost surely for n large enough:

max
j=2,...,k−1

Vn,j = Vn,j0

so

̂0,n = arg max
2≤j≤k−1

Vn,j = j0 a.s.

and (j0 − 1)δ < t̂0,n ≤ j0δ almost surely.
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6.2. The high frequency case. Finally, we modify δ by letting it tending to zero

as n → ∞. Then we have δn → 0 and knδn → 1. We suppose that there exists j0(n)

such that

(j0(n) − 1) δn < t0 ≤ j0(n) δn

where 2 ≤ j0(n) ≤ kn − 1. Finally, we have j0(n) δn → t0(+).

Now, we set

Vn,j =
∣

∣Z̄n(jδn) − Z̄n((j − 1)δn)
∣

∣ , 2 ≤ j ≤ kn − 1

and again ̂0,n = arg max2≤j≤kn−1 Vn,j.

Then we can obtain consistency:

Proposition 6.2. Under A1 and λ 6= λ′, and if δn ≥ (log n)b

n
, b > 1, and δn → 0, then

̂0,nδn → t0(+)

almost surely as n → ∞.

Proof. First observe that for ε > 0,
{∣

∣̂0,n − j0,n

∣

∣ > ε
}

⇒
{

∃ j = 2, . . . , kn − 1, j 6= j0(n) such that Vn,j > Vn,j0(n)

}

.

Next for all η > 0,
{

Vn,j > Vn,j0(n)

}

=
{

Vn,j > Vn,j0(n), Vn,j > η
}

∪
{

Vn,j > Vn,j0(n), Vn,j ≤ η
}

so that

kn−1
⋃

j=2,j 6=j0(n)

{

Vn,j > Vn,j0(n)

}

⊂







kn−1
⋃

j=2,j 6=j0(n)

{

Vn,j > η
}







∪
{

Vn,j0(n) < η
}

.

Consequently, for all ε > 0 and η > 0:

P

(

lim sup
n→∞

∣

∣̂0,n − j0,n

∣

∣ > ε

)

≤ P



lim sup
n→∞

kn−1
⋃

j=2,j 6=j0(n)

{

Vn,j > η
}



 + P

(

lim sup
n→∞

Vn,j0(n) < η

)

.

This implies that the strong consistency of ̂0,n can be derived from the almost sure

behaviour of ∪kn−1
j=2,j 6=j0(n)Vn,j and Vn,j0(n). First, we establish the Kolmogorov theorem

(see [30, p. 389]) for Vn,j0(n). We get for j = j0(n) − 1:

∑

n≥1

V (N(j0(n)−1)δn
)

n2(j0(n) − 1)2δ2
n

=
∑

n≥1

λ

n2(j0(n) − 1)δn
≤
∑

n≥1

λ

n2δn

since j0(n) ≥ 2. Now, if δn ≥ (log n)b

n
, b > 1, from the Bertrand series we obtain

∑

n≥1

V (N(j0(n)−1)δn
)

n2(j0(n) − 1)2δ2
n

≤ λ
∑

n≥1

1

n(log n)b
< ∞.



DETECTING CHANGE-POINTS FOR POISSON PROCESSES 243

Then, the stronger law of large numbers gives

Z̄n((j0(n) − 1)δn) → λ a.s.

For j = j0(n), we may write

∑

n≥1

λ′

n2j0(n)δn

≤ λ′

t0

∑

n≥1

1

n2
< ∞

hence Z̄n(j0(n)δn) → λ′ a.s.

We may conclude that:

Vn,j0(n)
a.s.−−−→

n→∞
|λ′ − λ| 6= 0.

Now, we turn to the almost complete convergence of ∪kn−1
j=2,j 6=j0(n)Vn,j to 0. We have

for all η > 0:

P





kn−1
⋃

j=2,j 6=j0(n)

Vn,j > η



 ≤ S1n + S2n

with

S1n =

j0(n)−1
∑

j=2

P
(∣

∣

∣

1

nδnj

n
∑

i=1

(Ni+jδn
− Ni − λjδn)

− 1

nδn(j − 1)

n
∑

i=1

(Ni+(j−1)δn
− Ni − λ(j − 1)δn)

∣

∣

∣
> η
)

and

S2n =

kn−1
∑

j=j0(n)+1

P
(∣

∣

∣

1

nδnj

n
∑

i=1

(N ′
i+jδn

− N ′
i − λ′jδn)

− 1

nδn(j − 1)

n
∑

i=1

(N ′
i+(j−1)δn

− N ′
i − λ′(j − 1)δn)

∣

∣

∣ > η
)

.

Next, for each term, we use again Bernstein inequality (see Lemma 2.4) to obtain

after some easy calculation that

P





kn−1
⋃

j=2,j 6=j0(n)

Vn,j > η



 = O
(

kn exp

(

− η2nδn

16λ + 4ηd

))

+O
(

kn exp(− η2nδn

16λ′ + 4ηd
)

)

.

Since knδn → 1, log kn + log δn → 0 thus log kn

log δn
→ −1 and the condition δn ≥ (log n)b

n
,

b > 1, implies for all η > 0 that

∑

n

P





kn−1
⋃

j=2,j 6=j0(n)

Vn,j > η



 < ∞.
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Collecting the results, we obtain that for all η > 0

P



lim sup
n→∞

kn−1
⋃

j=2,j 6=j0(n)

{

Vn,j > η
}



 = 0

and P (lim sup
n→∞

Vn,j0(n) ≤ η) = 0 for η chosen small enough, e.g. η = |λ−λ′|
2

. Finally, we

have a.s. for n large enough:

̂0,n = j0(n),

and the final result is derived from j0(n)δn → t0(+).

Remark 6.3. We may specify the integer kn by writing kn =
[

1
δn

]

, thus we get knδn →
1.

6.3. Simulation. In this part, we compute our estimator of t0 for Poisson processes

with various intensities. First, for each intensity varying in {1, 2, 5, 10}, we simulate

105 independent and homogeneous Poisson processes on [0, 1] with sampling rate

equal to 0.001. Next, we fix n = 100 intervals so we have at our disposal N = 103

replications of the
(

Zi(t), i = 1, . . . , n, 0 ≤ t < 1
)

with the change-point t0 randomly

chosen in [0, 1] for each of one. Finally, we compute our estimator of j0 and compute

the probabilities of P (̂0 6= j0) with various of δ in {0.001, 0.01, 0.05, 0.1}.

H
H

H
H

H
H

H
δ

(λ, λ′)
(1, 2) (1, 3) (1, 5) (1, 10)

0.001 0.644 0.394 0.179 0.016

0.01 0.244 0.034 0.021 0.019

0.05 0.121 0.091 0.094 0.098

0.1 0.2 0.19 0.2 0.208

Table 1. Case λ < λ′

H
H

H
H

H
H

H
δ

(λ, λ′)
(2, 1) (3, 1) (5, 1) (10, 1)

0.001 0.863 0.786 0.644 0.277

0.01 0.407 0.132 0.032 0.02

0.05 0.153 0.11 0.107 0.083

0.1 0.202 0.218 0.205 0.183

Table 2. Case λ > λ′

From Tables 1 and 2, we observe that:

- for δ = 0.01 or δ = 0.05, results are globally quite satisfactory;
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- for δ = 0.001, one gets a quite bad estimation of j0. This phenomenon is

consistent with Proposition 6.2 and the condition δn ≥ (log n)b

n
, b > 1 (for n = 100,

one has log 100
100

≃ 0.046 and (log 100)1.1

100
≃ 0.054);

- In both cases, the estimation is better for large values of |λ − λ′|;
- Comparing the cases λ < λ′ and λ > λ′, it appears that obtained results are

close but with slightly smaller probabilities in the case λ < λ′, except in the case

δ = 0.001.

7. POISSON PROCESS WITH RANDOM CHANGE-POINTS

We now suppose that the position of jump is random and we set

Z0(t) = Nt 1{t<T0} + N ′
t 1{t≥T0}; 0 ≤ t < 1.

We construct equidistributed random jumps (Tn) and we put

Zn(t) = (Nn+t − Nn)1{t<Tn} + (N ′
n+t − N ′

n)1{t≥Tn}, 0 ≤ t < 1, n ∈ Z.

Now we make the following assumption:

Assumption A2. (Tn, Nn+t − Nn, N ′
n+t − N ′

n) are globally i.i.d. and we suppose

that (Tn) is i.i.d. with distribution function F over [0, 1] .

We set

Fn(t) =
1

n

n
∑

i=1

1{Ti≤t}, 0 ≤ t ≤ 1, n ∈ Z.

Then, the Glivenko-Cantelli theorem (1933) entails

‖Fn − F‖∞ → 0 a.s. n → ∞

and, from [19, 27]

P (‖Fn − F‖∞ ≥ ε) ≤ 2 exp(−2nε2), ε > 0, n ≥ 1.

We now study expectation and variance of Zn(t):

Lemma 7.1. From A2 we get

EZ0(t) = λt (1 − F (t)) + λ′t F (t), 0 ≤ t ≤ 1

V Zn(t) = λt (1 + λt) (1 − F (t)) + λ′t (1 + λ′t) F (t) − (EZ0(t))
2, 0 ≤ t ≤ 1.

Proof. A2 gives

EZ0(t) = ENtP (t < T0) + EN ′
tP (T0 ≤ t)

and the result is straightforward.

Now, write EZ
2

0(t) = E(Nt 1{t<T0} + N ′
t 1{t≥T0})

2 and since the double product

vanishes, we obtain

EZ2
0(t) = λt (1 + λt) (1 − F (t)) + λ′t (1 + λ′t) F (t).
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The variance is rather intricate but clear.

Remark 7.2. Let us put T̄n = 1
n

∑n
i=1 Ti and since the Ti ’s are bounded and i.i.d.,

the central limit theorem, the strong law of large number, the Hoeffding inequality,

the Berry-Esseen bound and the law of the iterated logarithm are clear!

Now, Corollary 4.3 is not completely applicable but it is possible to use Lemma 7.1

to derive consistency results for the estimation of λ and λ′.

Proposition 7.3. If A2 holds, we may put

Z̄n(ti) = λ̂nti(1 − Fn(ti)) + λ̂′
ntiFn(ti), i = 1, 2,

where Z̄n(ti) = 1
n

∑n
j=1 Zj(ti), i = 1, 2, with 0 < t1 < t2 < 1, F (t1) 6= F (t2).

Then, almost surely for n large enough:

λ̂n =
t2Fn(t2) Z̄n(t1) − t1Fn(t1) Z̄n(t2)

t1t2(Fn(t2) − Fn(t1))

and

λ̂′
n =

t1(1 − Fn(t1)) Z̄n(t2) − t2(1 − Fn(t2)) Z̄n(t1)

t1t2(Fn(t2) − Fn(t1))
.

Finally, we have λ̂′
n → λ′ and λ̂n → λ almost surely.

Proof. Using the Cramer’s rule, we set

Mn =

(

t1(1 − Fn(t1)) t1Fn(t1)

t2(1 − Fn(t2) t2Fn(t2)

)

where det(Mn) 6= 0 almost surely for n large enough. Inverting Mn, we obtain the

desired result.

Now, the Glivenko-Cantelli theorem entails

Fn(tj) → F (tj), j = 1, 2, a.s.

and the result follows from Lemma 7.1 and

Z̄n(tj)
a.s.−−−→

n→∞
λtj (1 − F (tj)) + λ′tj F (tj), j = 1, 2.

We now envisage an exponential rate, we obtain

Proposition 7.4. For some constant d > 0,

P (|λ̂n − λ| > ε) ≤ 4 exp

(

−nb2ε2

d2

)

ε > 0.

Also, we get

|λ̂n − λ| = O
(

(

log n

n

)1/2
)

almost surely.
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Proof. See Appendix and Lemma 2.4.

Remark 7.5. A similar result holds for λ′.

Remark 7.6. From Assumption A2, one may show that

Ĵn =
1

n

n
∑

i=1

[

(N ′
i+Ti

− N ′
i) − (Ni+Ti

− Ni)
]

is a consistent estimator of E(J(T0)) = (λ′−λ)E(T0). Also, the alternative estimator

of E(J(T0)) given by (λ̂′
n − λ̂n)Tn is consistent.
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75, 2014.

[22] S. M. Garba, A. B. Gumel, and M. R. Abu Bakar. Backward bifurcations in dengue transmission

dynamics. Math. Biosci., 215(1):11–25, 2008.

[23] E. Gobet and G. Liu. Rare event simulation using reversible shaking transformations. SIAM J.

Sci. Comput., 37(5):A2295–A2316, 2015.

[24] A. T. Hansen and R. Poulsen. A simple regime switching term structure model. Finance Stoch.,

4(4):409–429, 2000.
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APPENDIX

Proof of Proposition 7.4

Notation. Set

Zi(t) = (Ni+t − Ni)1{t<Ti} + (N ′
i+t − N ′

i)1{t≥Ti} 1 ≤ i ≤ n,

then, from independence of A2, we get

EZi(t) = λt (1 − F (t)) + λ′t F (t), 1 ≤ i ≤ n.

we also put

λ =
a

b
:=

t2F (t2) EZ(t1) − t1F (t1) EZ(t2)

t1t2(F (t2) − F (t1))
,
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where F (t2) > F (t1). Finally, we set

Vn = t2Fn(t2) Z̄n(t1) − t1Fn(t1) Z̄n(t2)

and

Un = t1t2 (Fn(t2) − Fn(t1))

where Un > 0 almost surely for n large enough.

First exponential inequality.

P (|λ̂n − λ| > ε) = P (|Vn

Un
− a

b
| > ε)

then

P (|Vn

Un

− a

b
| > ε) = P (|Vn

Un

− a

b
| > ε, |Un − b| > η)

+ P (|Vn

Un
− a

b
| > ε, |Un − b| ≤ η)

≤ P (|Un − b| > η) + P (|Vn

Un
− a

b
| > ε, |Un − b| ≤ η)

Now, by using Hoeffding inequality (see Lemma 2.4), one obtains

P (|Un − b| > η) = P (|(Fn(t2) − F (t2)) − (Fn(t
1
) − F (t1))| >

η

t1t2
)

≤ P (|Fn(t2) − F (t2)| >
η

2t1t2
) + P (|Fn(t1) − F (t1)| >

η

2t1t2
)

≤ 4 exp(− nη2

2t21t
2
2

).

Second exponential inequality.

P (|Vn

Un
− a

b
| > ε, |Un − b| ≤ η)

≤ P (
Vn

Un
− a

b
> ε, −η ≤ Un − b ≤ η)

+ P (
Vn

Un

− a

b
< −ε, −η ≤ Un − b ≤ η)

= P (Vn > Un(ε +
a

b
),−η + b ≤ Un ≤ η + b)

+ P (Vn < Un(−ε +
a

b
),−η + b ≤ Un ≤ η + b)

≤ P (|Vn − a + εη| > bε − a

b
η)

≤ P (|Vn − a| > bε − (λ + ε)η)

with 0 < η < bε
λ+ε

and we envisage an exponential inequality for P (|Vn − a| > ξ) with

ξ = bε − (λ + ε)η > 0. Now we get

|Vn − a| ≤ t2|Z̄n(t1) − EZ(t1)| + t1|Z̄n(t2) − EZ(t2)|
+ t2EZ(t1)|Fn(t2) − F (t2)| + t1EZ(t2)|Fn(t1) − F (t1)|
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then

P (|Vn − a| > ξ) ≤

P (|Z̄n(t1) − EZ(t1)| >
ξ

4t2
) + P (|Z̄n(t2) − EZ(t2)| >

ξ

4t1
)

+ P (|Fn(t2) − F (t2)| >
ξ

4t2EZ(t1)
) + P (|Fn(t1) − F (t1)| >

ξ

4t1EZ(t2)
).

The first part involves Bernstein’s inequality (see Lemma 2.4) and the second part

the Hoeffding’s one. Connecting Un and Vn one obtains, for ε > 0 and the choice

η = bε
2(λ+ε)

P (|λ̂n − λ| > ε) ≤ 4 exp(− nb2ε2

2(λ + ε)2t21t
2
2

) + 2 exp(− nb2ε2

16t22(EZ(t1))2
)

+ 2 exp(− nb2ε2

16t21(EZ(t2))2
) + 2 exp(− nb2ε2

256t22V Z(t1) + 16t2bcε
)

+ 2 exp(− nb2ε2

256t21V Z(t2) + 16t1bcε
)

Now, putting ε = c0(
log n

n
)1/2 and for c0 large enough, we get, almost surely,

|λ̂n − λ| = O
(

(
log n

n
)
1/2

)

.

and a similar form may be derived for λ′.


