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LEAST SQUARES INTEGRATION-BASED RBF METHOD FOR

SOLVING PARTIAL DIFFERENTIAL EQUATIONS
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ABSTRACT. In this paper, the method of least square and the recently developed integration-

based radial basis function method are applied for solving partial differential equations. Several

boundary value problems defined in rectangular and L-shaped domains with uniform and random

nodes are studied. Superiorities like higher accuracy and convergency are shown through comparisons

with existing results. Furthermore, a two-dimensional Burgers’ equation is taken as an example to

indicate the superior stability and higher accuracy of this proposed method. Numerical results

demonstrate that our method works better than classical Kansa’s method and adaptive meshing

technique.
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1. Introduction

Methods for numerical solutions of partial differential equations (PDEs) have

been dominated by either finite difference method (FDM), finite element method

(FEM) or finite volume method (FVM). These methods are derived by the assump-

tion of local interpolation schemes. Before the implementation of these methods,

discretisation of the domain into a number of finite elements is needed, which is not

a straightforward task.

Consequently, meshless methods have been introduced in the last decades, which

were developed with the objective of eliminating the mesh used in the popular mesh-

dependent methods. As a novel class of numerical techniques for solving PDEs,

meshless methods have attracted considerable attentions in recent years [1, 2, 3, 4, 5].

The mesh-independent property makes meshless methods very useful, especially when

dealing with high-dimensional problems with complex shaped domains.

Radial basis functions (RBFs) have played an important role in the development

of meshless methods when solving PDEs, its many applications include surface fit-

ting, turbulence analysis, neural network and so forth. The development of RBFs

is due to Hardy [6] for multi-variate interpolation problems with scattered data.

Theoretical analysis concerning solvability, accuracy, convergency and error bound
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of RBF approximation (interpolation) have also been built up and vastly studied

[7, 8, 9, 10, 11, 12, 13].

The concept of using RBF and collocation method to solve PDEs was firstly

introduced and implemented by Kansa [14, 15], which is now called RBFCM or Kansa

method. This method is truly meshless and easy-to-use for a broad range of PDEs.

[16, 17, 18] provided theoretical foundations of RBF method for solving PDE and

derived error estimates. To get more accurate results and capable to solve large

scale problem, some special technique has been developed, such as quasi-interpolation

method [19], compactly supported RBFs [20], local RBFs [21]. Numerical results

have been proved that the method of RBF admits higher error convergence rate,

exponential convergence in contrast to the algebraic convergence of Galerkin FEM

and superconvergence of h − p FEM.

It is well-known that the differentiation lower the accuracy and is very sensitive to

the round-off error. In FDM, the central difference scheme gives the first-order numer-

ical derivatives with the round-offer error O(h2) while approximating the second-order

derivatives with the round-offer error O(h) , where h stands for the distance between

nodes. However, the integration preserves the approximation accuracy. Moreover,

the integration is a smoothing process compared with differentiation. If we plug the

RBF approximation into the PDE directly, the approximation accuracy decreases due

to differential operators. Wen et al. [22] recently proposed a method called finite inte-

gration method (FIM) and successfully applied to study material mechanic problems.

By FIM, we firstly transformed the given PDE into an equivalent integration equa-

tion. Instead of finite difference schemes, the numerical integration method is then

applied. By the simple numerical trapezoidal rule for approximating integrations,

FIM was studied and applied to solve one- and two-dimensional PDEs [23, 24]. Even

for PDEs of fractional order, results show that FIM gives results with higher accuracy

and convergency.

When solving two-dimensional problems by FIM with RBF, it is found that the

resultant linear system is nearly singular and rank deficient, which makes the method

unstable. To overcome such disadvantages, the method of least squares is applied.

Several numerical examples are given where results are compared. Note the special

advantage of integration versus differentiation, a two-dimensional Burgers’ equation

is studied to show superiority of FIM-RBF with least squares for problems with shock

wave and layer properties.

In this paper, the integration-based meshless method is further investigated for

solving PDEs. This paper is organized as follows. In Section 2, the methodology

of integration-based method with RBF approximation is introduced and applied to

solve PDEs. In Section 3, further discussions on the linear system that are deduced

by integration-based method with RBF are given. Numerical examples are given in
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Section 4. Some concluding remarks with suggested future works are given in the

final conclusion section.

2. Finite integration method with RBFs in one- and two-dimensional

spaces

2.1. The methodology of integration-based RBF method. Suppose u(x) is an

unknown function, a set of pairwise distinct nodes X , {x1,x2, . . . ,xN} are given in

Ω ∪ ∂Ω, where x = (x, y), xj = (xj , yj), j = 1, 2, . . . , N stand for nodes, Ω ∈ R
2. By

the idea of RBF approximation, u(x) has an approximation as:

(2.1) ũ(x) =

N
∑

j=1

λj φ(‖x − xj‖) ,

where φ(‖x − xj‖) is referred to as RBF centered at xj , ‖x − xj‖ is the usual Eu-

clidean distance between x and xj, λj , j = 1, 2, . . . , N are unknown coeficients to

be determined. This set of nodes {xj}
N

j=1 are called source nodes (or centers), x is

called collocation node (or approximation node).

Usually, source nodes are given and fixed. If the collocation node x is selected to

coincide with centers, unknown coefficients {λj}
N

j=1 can be determined from interpo-

lation conditions u∗(xi) = ui, i = 1, 2, . . . , N , which leads to the following symmetric

linear system in the matrix form

(2.2) ΦΛ = U ,

where the coefficient matrix Φ = (φij)N×N
= (φ(‖xi − xj‖))N×N

, Λ = [λ1, λ2, . . . , λN ]T ,

U = [u1, u2, . . . , uN ]T and uj stands for the function value at xj, j = 1, 2, . . . , N . In

this paper, multiquadric (MQ) is used as RBF. The unknown coefficients can be

computed by

(2.3) Λ = Φ−1 U ,

where Φ−1 , (φ−1
ij )

N×N
is denoted as the inverse of Φ with elements are denoted by

φ−1
ij .

On the other hand, if the collocation nodes

(2.4) X∗ , {x∗

1,x
∗

2, . . . ,x
∗

M} ,

are chosen to be different from source nodes, i.e., X∗ 6= X, see Figure 1. Substi-

tution of x∗

i into (2.1) yields a linear system Φ∗ Λ = U∗, where Φ∗ , (φij)M×N
=

(φ(‖x∗

i − xj‖))M×N
, U∗ = [u(x∗

1), u(x∗

2), . . . , u(x∗

M)]T . The coefficient matrix Φ∗ is

overdetermined (M > N) or underdetermined (M < N). In this case, the method of

least squares, QR decomposition or singular value decomposition are used to get Λ.
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Figure 1. Distribution of centers and nodes.

As (2.1) gives an approximation of u(x) and RBFs are smooth, we have

(2.5)
∂

∂τ
ũ(x) =

N
∑

j=1

λj

∂

∂τ
φ(‖x− xj‖) ,

is an approximation of ∂
∂τ

u(x), where τ = x or y. Evaluation of the equation (2.5) at

collocation nodes x∗

i gives a linear system as:

(2.6)
∂

∂τ
U∗ =

∂

∂τ
Φ∗ Λ ,

where ∂
∂τ

U∗ = [ ∂
∂τ

u(x∗

1),
∂
∂τ

u(x∗

2), . . . ,
∂
∂τ

u(x∗

M)]
T
, and the coefficient matrix ∂

∂τ
Φ∗ =

( ∂
∂τ

φ(‖x∗

i − xj‖))M×N
:

∂

∂τ
Φ∗ =

















∂
∂τ

φ(‖x∗

1 − x1‖)
∂
∂τ

φ(‖x∗

1 − x2‖) · · · ∂
∂τ

φ(‖x∗

1 − xN‖)
∂
∂τ

φ(‖x∗

2 − x1‖)
∂
∂τ

φ(‖x∗

2 − x2‖) · · · ∂
∂τ

φ(‖x∗

2 − xN‖)
∂
∂τ

φ(‖x∗

3 − x1‖)
∂
∂τ

φ(‖x∗

3 − x2‖) · · · ∂
∂τ

φ(‖x∗

3 − xN‖)
...

...
. . .

...
∂
∂τ

φ(‖x∗

M − x1‖)
∂
∂τ

φ(‖x∗

M − x2‖) · · · ∂
∂τ

φ(‖x∗

M − xN‖)

















M×N

,

Replace Λ by (2.3) in (2.6):

(2.7)
∂

∂τ
U∗ =

∂

∂τ
Φ∗ Λ =

∂

∂τ
Φ∗ Φ−1U , D∗

τU .

where D∗

τ , ∂
∂τ

Φ∗ Φ−1. It’s not difficult to see the size of this differentiation matrix

is M × N , where M is the number of collocation nodes and N is the number of

source nodes. The differentiation matrix D∗

τ is either underdetermined (M < N) or

overdetermined (M > N) matrix.
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Differential matrices corresponding to higher-order derivatives, partial deriva-

tives, and mixed partial derivatives can be derived in the similar manner.

In contrast to differentiation, we consider the integration of RBF approximation.
∫ x

x0
u(ξ, y) dξ and

∫ y

y0
u(x, η) dη are approximated by

∫ x

x0

ũ(ξ, y) dξ =
N
∑

j=1

λj

∫ x

x0

φ(‖ξ − xj‖) dξ , ξ = (ξ, y),

∫ y

y0

ũ(x, η) dη =

N
∑

j=1

λj

∫ y

y0

φ(‖η − xj‖) dξ , η = (x, η).

(2.8)

Substituting x∗

i ∈ X∗

i into (2.8), we have

∫

X
∗

x0

ũ(ξ, y) dξ , Φ
∗

x Λ ,

∫

X
∗

y0

ũ(x, η) dη , Φ
∗

y Λ ,

(2.9)

where the left-hand side of above equalities are column vectors given by

∫

X
∗

x0

u∗(ξ, y) dξ ,

[
∫ x∗

1

x0

u∗(ξ, y∗

i ) dξ,

∫ x∗

2

x0

u∗(ξ, y∗

i ) dξ, . . . ,

∫ x∗

M

x0

u∗(ξ, y∗

i ) dξ

]T

,

∫

X
∗

y0

u∗(x, η) dη ,

[∫ y∗

1

y0

u∗(x∗

i , η) dη,

∫ y∗

2

y0

u∗(x∗

i , η) dη, . . . ,

∫ y∗

M

y0

u∗(x∗

i , η)dη

]T

,

and coefficient matrices are Φ
∗

x =
(

∫ x∗

i

x0
φ(‖ξ∗

i − xj‖) dξ
)

N×N
, ξ∗

i = (ξ, yi), Φ
∗

y =
(

∫ y∗

i

y0
φ(‖η∗

i − xj‖) dη
)

N×N
, η∗

i = (η, yi):

Φ
∗

x =

















∫ x∗

1

x0
φ(‖ξ∗

1 − x1‖) dξ
∫ x∗

1

x0
φ(‖ξ∗

1 − x2‖) dξ · · ·
∫ x∗

1

x0
φ(‖ξ∗

1 − xN‖) dξ
∫ x∗

2

x0
φ(‖ξ∗

2 − x1‖) dξ
∫ x∗

2

x0
φ(‖ξ∗

2 − x2‖) dξ · · ·
∫ x∗

2

x0
φ(‖ξ∗

2 − xN‖) dξ
∫ x∗

3

x0
φ(‖ξ∗

3 − x1‖) dξ
∫ x∗

3

x0
φ(‖ξ∗

3 − x2‖) dξ · · ·
∫ x∗

3

x0
φ(‖ξ∗

3 − xN‖) dξ
...

...
. . .

...
∫ x∗

M

x0
φ(‖ξ∗

M − x1‖) dξ
∫ x∗

M

x0
φ(‖ξ∗

M − x2‖) dξ · · ·
∫ x∗

M

x0
φ(‖ξ∗

M − xN‖) dξ

















N×N

,

Φ
∗

y =



















∫ y∗

1

y0
φ(‖η∗

1 − x1‖) dη
∫ y∗

1

y0
φ(‖η∗

1 − x2‖) dη · · ·
∫ y∗

1

y0
φ(‖η∗

1 − xN‖) dη
∫ y∗

2

y0
φ(‖η∗

2 − x1‖) dη
∫ y∗

2

y0
φ(‖η∗

2 − x2‖) dη · · ·
∫ y∗

2

y0
φ(‖η∗

2 − xM‖) dη
∫ y∗

3

y0
φ(‖η∗

3 − x1‖) dη
∫ y∗

3

y0
φ(‖η∗

3 − x2‖) dη · · ·
∫ y∗

3

y0
φ(‖η∗

3 − xN‖) dη
...

...
. . .

...
∫ y∗

M

y0
φ(‖η∗

M − x1‖) dη
∫ y∗

M

y0
φ(‖η∗

M − x2‖) dη · · ·
∫ y∗

M

y0
φ(‖η∗

M − xN‖) dη



















N×N

.
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Replacing the vector of unknowns Λ by (2.3), we have
∫

X
∗

x0

u∗(ξ, y) dξ = Φ
∗

x Φ−1 U , A∗

x U ,

∫

X
∗

y0

u∗(x, η) dη = Φ
∗

y Φ−1 U , A∗

y U ,

(2.10)

where A∗

τ , Φ
∗

τΦ
−1 is called integration matrices, τ = x, y.

For double-layer integrations,
∫ x

x0

∫ ξ2

x0
u(ξ1, y) dξ1dξ2 and

∫ y

y0

∫ x

x0
u(ξ1, η1) dξ1dη1 are

taken as examples. Following the same integration method (2.8)–(2.10), we know

there exist two matrices such that

A∗

xx = Φ
∗

xxΦ
−1 ,

A∗

xy = Φ
∗

xyΦ
−1 ,

(2.11)

where

Φ
∗

xx =

(
∫ x∗

i

x0

∫ ξ2

x0

φ (‖ξi − xj‖) dξ1dξ2

)

M×N

, ξi = (ξ1, y
∗

i ),xj = (xj, yj) ,

Φ
∗

xy =

(
∫ y∗

i

y0

∫ x∗

i

x0

φ (‖x − xj‖) dξ1dη1

)

M×N

, x = (ξ1, η1),xj = (xj , yj) .

Similarly, multi-layer integration can be obtained easily following the same formula

as above.

In practice, integration is more complicated and time consuming than differenti-

ation. Reason lies in the global property of the integral operator compared with the

local property of differential operator. In this paper, it is worth pointing out that

integration matrix corresponding to the multi-layer integration can be approximated

by multiplications of integration matrices that corresponding to lower-order integral

operators. As an example, we rewrite the double integration as

u(x∗

i , y
∗

i ) ,

∫ x∗

i

x0

∫ ξ2

x0

u(ξ1, y
∗

i ) dξ1dξ2

=

∫ x∗

i

x0

(
∫ ξ2

x0

u(ξ1, y
∗

i ) dξ1

)

dξ2

,

∫ x∗

i

x0

u(ξ2, y
∗

i ) dξ2, i = 1, 2, . . . , M .

(2.12)

where u(ξ2, y) ,
∫ ξ2

x0
u(ξ1, y) dξ1. Then from (2.10) we have

U = A∗

x U ,

where U = [u(x∗

1, y
∗

1), u(x∗

2, y
∗

2), . . . , u(x∗

M , y∗

M)]T , U = [u(x1, y1), u(x2, y2), . . . ,

u(xN , yN)]T . Moreover, u is an integration of u, so according to (2.10) we have

U = Ax U ,
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where Ax instead of A∗

x is used to represent integration matrix if X∗ = X, i.e., source

nodes are used as collocation nodes. Hence we have

(2.13) U = A∗

x Ax U,

from which we see the corresponding integration matrix is A∗

xAx. Considering (2.11),

we have A∗

xx ≈ A∗

xAx. Following the same analysis, A∗

xy can be replaced by A∗

yAx

or A∗

xAy. Following the same analysis, for triple integration
∫ y

y0

∫ η2

y0

∫ x

x0
· dξdη1dη2, it’s

corresponding interpolation could be computed through either A∗

yAyAx, A∗

yyAx or

A∗

yyx.

2.2. Application of integration-based RBF method for solving PDEs. Given

a boundary value problem (BVP):

Lu(x) = f(x) , in Ω ,(2.14)

Bu(x) = g(x) , on ∂Ω.(2.15)

where L and B are arbitrary differential operators in the domain Ω and on ∂Ω. The

operator B can specify Dirichlet, Neumann, Robin, or mixed boundary conditions.

Time dependent PDEs can be solved by the method of lines (MOL) technique. For

clarity we only focus on steady state (elliptic type) problems. Moreover, one may

assume L is a linear differential operator while some kinds of linearization techniques

is needed to seek the solution iteratively.

To better illustrate how to apply the integration-based RBF method to solve a

PDE, we study the following simple linear PDE:

a1(x, y)
∂2u

∂x2
+ a2(x, y)

∂2u

∂y2
+ b1(x, y)

∂u

∂x

+ b2(x, y)
∂u

∂y
+ c(x, y)u = f(x, y), (x, y) ∈ Ω ,(2.16)

with Dirichlet boundary condition u(x, y) = g(x, y) on ∂Ω, where a1, a2, b1, b2, c, f

and g are all smooth functions defined in Ω and bounded above. Integrating (2.16)

twice for x and y respectively, the differential equation is transformed into equivalent

integral function through integration by parts
∫ y

y0

∫ η2

y0

[

a1(x, η1)u(x, η1) − 2

∫ x

x0

∂a1

∂x
(ξ2, η1)u(ξ2, η1)dξ2

+

∫ x

x0

∫ ξ2

x0

∂2a1

∂x2
(ξ1, η1)u(ξ1, η1)dξ1dξ2

]

dη1dη2

+

∫ x

x0

∫ ξ2

x0

[

a2(ξ1, y)u(ξ1, y) − 2

∫ y

y0

∂a2

∂y
(ξ1, η2)u(ξ1, η2)dη2

+

∫ y

y0

∫ η2

y0

∂2a2

∂y2
(ξ1, η1)u(ξ1, η1)dη1dη2

]

dξ1dξ2
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+

∫ y

y0

∫ η2

y0

∫ x

x0

[

b1(ξ2, η1)u(ξ2, η1)

−

∫ ξ2

x0

∂b1

∂x
(ξ1, η1)u(ξ1, η1)dξ1dξ2

]

dξ2dη1dη2

+

∫ x

x0

∫ ξ2

x0

∫ y

y0

[

b2(ξ1, η2)u(ξ1, η2)

−

∫ η2

y0

∂b2

∂y
(ξ1, η1)u(ξ1, η1)dη1dη2

]

dη2dξ1dξ2

+

∫ y

y0

∫ η2

y0

∫ x

x0

∫ ξ2

x0

c(ξ1, η1)u(ξ1, η1)dξ1dξ2dη1dη2

=

∫ y

y0

∫ η2

y0

∫ x

x0

∫ ξ2

x0

f(ξ1, η1)dξ1dξ2dη1dη2

+ xf0(y) + f1(y) + yg0(x) + g1(x) ,(2.17)

where f0(y), f1(y), g0(x), g1(x) are functions emerge in the process of integration.

One method to deal with these four one-dimensional functions is using RBF

approximation method. Suppose there are respectively s0, s1, r0 and r1 centers used

for RBF interpolation, i.e. {y
(0)
j }

s0

j=1
, {y

(1)
j }

s1

j=1
, {x

(0)
j }

r0

j=1
and {x

(1)
j }

r1

j=1
:

f ∗

0 (y) =

s0
∑

j=1

α
(0)
j φ

(0)
j (y), f ∗

1 (y) =

s1
∑

j=1

α
(1)
j φ

(1)
j (y),

g∗

0(x) =

r0
∑

j=1

β
(0)
j φ

(0)
j (x), g∗

1(x) =

r1
∑

j=1

β
(1)
j φ

(1)
j (x) ,

where φ
(0)
j (y) = φ(|y − y

(0)
j |), φ

(1)
j (y) = φ(|y − y

(1)
j |), φ

(0)
j (x) = φ(|x− x

(0)
j |), φ

(1)
j (x) =

φ(|x− x
(1)
j |) and {α

(0)
j }

s0

j=1
, {α

(1)
j }

s1

j=1
, {β

(0)
j }

r0

j=1
, {β

(1)
j }

r0

j=1
are coefficients to be deter-

mined. Given a set of nodes X∗ = {x∗

1,x
∗

2, . . . ,x
∗

M}, we have four linear systems:

(2.18) F∗

0 = Φ(0)
y α(0), F∗

1 = Φ(1)
y α(1), G∗

0 = Φ(0)
x β(0), G∗

1 = Φ(1)
x β(1) ,

where F∗

0 = [f ∗

0 (y∗

1), f
∗

0 (y∗

2), . . . , f
∗

0 (y∗

1)], F
∗

1 = [f ∗

1 (y∗

1), f
∗

1 (y∗

2), . . . , f
∗

1 (y∗

1)], G
∗

0 = [g∗

0(x
∗

1),

g∗

0(x
∗

2), . . . , g
∗

0(x
∗

1)], G
∗

1 = [g∗

1(x
∗

1), g
∗

1(x
∗

2), . . . , g
∗

1(x
∗

1)], α(0) = [α
(0)
1 , α

(0)
2 , . . . , α

(0)
s0 ], α(1) =

[α
(1)
1 , α

(1)
2 , . . . , α

(1)
s1 ], β(0) = [β

(0)
1 , β

(0)
2 , . . . , β

(0)
r0 ], β(1) = [β

(1)
1 , β

(1)
2 , . . . , β

(1)
r1 ], and coeffi-

cients matrices are

Φ(0)
y =

(

φ
(0)
j (y∗

i )
)

M×s0

, Φ(1)
y =

(

φ
(1)
j (y∗

i )
)

M×s1

,

Φ(0)
x =

(

φ
(0)
j (x∗

i )
)

M×r0

, Φ(1)
x =

(

φ
(1)
j (x∗

i )
)

M×r1

.

Figure 2 shows how interpolations of f0(y), f1(y), g0(x) and g1(x) are implemented:
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Figure 2. Interpolation for one dimensional functions.

If replace u in (2.17) by its RBFs expansion (2.1), replace integrations by cor-

responding interpolation matrices with multiple integration matrices are replaces

by multiplying lower integration matrices, we have M equalities by plugging x∗

i ,

i = 1, 2, . . . , M into (2.17), which leads to the linear system:

(2.19)
(

A X∗Φ
(0)
y Φ

(1)
y Y ∗Φ

(0)
x Φ

(1)
x

)

















U

α(0)

α(1)

β(0)

β(1)

















= A∗

yyAxxF

where U = [u1, u2, . . . , uN ]T are unknowns to be comptuted, X∗ = diag{x∗

1, x
∗

2, . . . , x
∗

N},

Y ∗ = diag{y∗

1, y
∗

2, . . . , y
∗

N}, F = [f(x∗

1), f(x∗

2), . . . , f(x∗

M)]T , the submatrix A which is

corresponding to integrations in (2.17) is given as

A =A∗

yy(A1 − 2AxA1,x + AxxA1,xx) + A∗

xx(A2 − 2AyA2,y + AyyA2,yy)

+ A∗

yyAx(b1 − Axb1,x) + A∗

xxAy(b2 − Ayb2,x) + A∗

yyA
∗

xxc,
(2.20)

with diagonal matrices given by known coefficient functions as

A1 = diag{a1(x1, y1), a1(x2, y2), . . . , a1(xN , yN)}

A1,x = diag{
∂a1

∂x
(x1, y1),

∂a1

∂x
(x2, y2), . . . ,

∂a1

∂x
(xN , yN)}

A1,xx = diag{
∂2a1

∂x2
(x1, y1),

∂2a1

∂x2
(x2, y2), . . . ,

∂2a1

∂x2
(xN , yN)}

A2 = diag{a2(x1, y1), a2(x2, y2), . . . , a2(xN , yN)}
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A2,x = diag{
∂a2

∂x
(x1, y1),

∂a2

∂x
(x2, y2), . . . ,

∂a2

∂x
(xN , yN)}

A2,xx = diag{
∂2a2

∂x2
(x1, y1),

∂2a2

∂x2
(x2, y2), . . . ,

∂2a2

∂x2
(xN , yN)}

b1 = diag{b1(x1, y1), b1(x2, y2), . . . , b1(xN , yN)}

b1,x = diag{
∂b1

∂x
(x1, y1),

∂b1

∂x
(x2, y2), . . . ,

∂b1

∂x
(xN , yN)}

b2 = diag{b2(x1, y1), b2(x2, y2), . . . , b2(xN , yN)}

b2,x = diag{
∂b2

∂x
(x1, y1),

∂b2

∂x
(x2, y2), . . . ,

∂b2

∂x
(xN , yN)}

c = diag{c(x1, y1), c(x2, y2), . . . , c(xN , yN)}

Regarding the given Dirichlet boundary condition, there exist a matrix B with

elements are either 0 or 1 such that ui = u(xi, yi) = g(xi, yi) when (xi, yi) ∈ ∂Ω:

(2.21) BU = G ,

where G = [g(x1, y1), g(x2, y2), . . . , g(xM , yM)]T .

From (2.19) and (2.21), U can be obtained by solving a linear system

(2.22)

(

A X∗Φ
(0)
y Φ

(1)
y Y ∗Φ

(0)
x Φ

(1)
x

B O O O O

)

















U

α(0)

α(1)

β(0)

β(1)

















=

(

A∗

yyAxxF

G

)

,

where O stands for matrices with all elements are equal to zero.

2.3. Least square method. In (2.22), denote the coefficient matrix as

(2.23) H ,

(

A X∗Φ
(0)
y Φ

(1)
y Y ∗Φ

(0)
x Φ

(1)
x

B O O O O

)

.

The size of H is (M + MB) × (N + r0 + r1 + s0 + s1), where M , N , MB, r0, r1, s0,

s1 represent the number of collocation nodes, source nodes, collocation nodes on ∂Ω,

interpolation centers of four free terms g0(x), g1(x), f0(y), f1(y), respectively

For a special case, if Ω is a rectangular with N1 × N2 uniform centers, we let

collocation nodes are chosen the same as source nodes, i.e., M = N = N1 · N2,

MB = 2(N1 + N2)− 4, and let r0 = r1 = N2 − 1, s0 = s1 = N1 − 1. In this case, H is

a square matrix of size (N1 · N2 + 2(N1 + N2) − 4)× (N1 · N2 + 2(N1 + N2) − 4) [24].

However, from several numerical experiments we found H is always warned to be

nearly singular and rank deficient when using the backsplash order of Matlab to solve

linear system (2.22). So to avoid singularity and rank deficiency, an overdetermined

matrix H is preferred. On the other hand, overdetermined linear system is more

stable.
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There are two ways to achieve this: choose more collocation nodes, i.e. let M

large, or use less interpolation centers for f0(y), f1(y), g0(x), g1(x), i.e. let r0, r1, s0, s1

small.

To better illustrate our ideas, let’s take a rectangular domain as an example.

If N1 × N2 uniformly nodes are chosen as source nodes, with N3 × N4 uniformly

nodes are selected as collocation points, assume r0 = r1 = r and s0 = s1 = s. The

size of H becomes (N3 · N4 + 2(N1 + N2) − 4) × (N1 · N2 + 2(r + s)). Our first idea

using more collocation nodes means let N3, N4 large. The other idea is decrease

r, s. As RBFs are globally defined, collocation nodes can be chosen arbitrarily to

ensure the rank of coefficient matrix is overdetermined and full column ranked, i.e.,

rank(H) = N1 × N2 + 2(r + s). So the matrix HT H is a square matrix and not

singular. In this case, the mthod of least square is used to solve the linear system

(2.22).

3. Numerical Examples

Example 1. We firstly consider the following PDE with variable coefficients and

homogeneous Dirichlet boundary conditions:

x(1 − x)
∂2u

∂x2
+ y(1 − y)

∂2u

∂y2
= −4xy(1 − x)(1 − y), (x, y) ∈ (0, 1) × (0, 1) ,(3.1)

u(0, y) = u(1, y) = u(x, 0) = u(x, 1) = 0 .(3.2)

This 2D BVP admits an analytical solution u(x, y) = xy(1 − x)(1 − y).

According to the method of integration-based RBF, double-layer integrations

with respect x, y variables should be applied on both sides of (3.1) to eliminate dif-

ferentiations ∂2

∂x2 and ∂2

∂y2 .

N1×N2 uniformly distributed nodes are chosen as source nodes with (2N1 − 1)×

(2N2 − 1) uniform nodes are selected as source nodes. To approximated the four free

univariate functions g0(x), g1(x) and f0(y), f1(y), N1 and N2 nodes are used as centers,

respectively. We choose N1 = N2 = N equal to 11, 21 and 31, respectively. Figure 3

shows the distribution of nodes when N1 = N2 = 11. MQ RBF is used with the shape

parameter is chosen equals to 5
N−1

.

To compare with results in [24], the average relative error (RE) is used, which is

defined as

(3.3) RE =
1

M

N
∑

i=1

|ui − u∗

i |

|umax|

where N = N1 × N2 is the total number of source nodes in [0, 1] × [0, 1], umax =

u(1
2
, 1

2
) = 1

16
.
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Figure 3. Regular nodes distribution.

Table 1 gives us numerical comparisons of relative errors with different number

of source nodes, which implies FIM-RBF with least square technique works better

than FIM-OLA, MQ and polynomial spline of radial basis function methods.

N OLA MQ PSF FIM-RBF

11 1.371E − 02 1.911E − 02 1.299E − 02 2.233E − 03

21 5.365E − 03 5.689E − 03 4.496E − 03 9.017E − 04

31 3.083E − 03 1.382E − 02 2.373E − 03 5.354E − 04

Table 1. Average errors for different methods and number of points.

Due to the meshless features of RBF, regular nodes distribution is not necessary.

Suppose 100 nodes are randomly distributed in (0, 1) × (0, 1) with 36 nodes are uni-

formly located on the boundary. The integration nodes are chosen to be 200 nodes

lie in (0, 1) × (0, 1) with 72 nodes uniformly on the boundary. Still use 10 nodes in

x and y direction as integration centers for RBF approximation of g0(x), g1(x) and

f0(y), f1(y). Figure 4 gives us nodes distribution in [0, 1] × [0, 1].

In this case, the shape parameter of MQ is chosen as c = 0.4. The size of the

resultant matrix is 308 × 176 and is full column ranked. By the integration-based

RBF method with least square method, the maximum pointwise error is 5.96E − 04

and the average relative error is 1.54E − 03 .

Example 2. To further demonstrate the smoothness effect of the proposed integration-

based RBF method, we consider the following two-dimensional Burgers’ equation,
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which contains a moving shock wave front

(3.4)
∂u

∂t
=

1

R
∆u − (uux + uuy), (x, y) ∈ (0, 1) × (0, 1) ,

with boundary and initial conditions are set accordingly such that the exact solution

is

(3.5) u(x, y, t) =
1

1 + exp
(

x+y−t

2
R
) .

The coefficient R is a physical parameter called Reynolds number. The solution

contains a shock wave front along the line x + y − t, which is moving with time..

The Burgers’ equation is time dependent and nonlinear, which is different from

previous examples. The backward Euler scheme is adopted to discretize the temporal

derivative and the method of linearization is used to deal with the nonlinear term:

(3.6)
um − um−1

∆t
−

1

R

(

∂2um

∂x2
+

∂2um

∂y2

)

= −
(

um−1um−1
x + um−1um−1

y

)

,

where ∆t is denoted as the time step, um is the approximation of solution at m∆t.

When m = 0, u0(x, y) = u(x, y, 0) = 1

1+exp (x+y

2
R)

.

Different from Example 1, we use N1×N2 uniform nodes in [0, 1]× [0, 1] as source

nodes as well as collocation nodes. To ensure the coefficient matrix is overdetermined

and full column ranked, we use N1−2, N2−2 nodes as centers for RBF approximation

of g0(x), g1(x) and f0(y), f1(y) .

To compare with results given by RBFCM in [25], we let 1
R

= 0.05, ∆t = 0.001,

and N1 = N2 = N3 = N4 = N = 19, r = s = N − 2 = 17. MQ is used with

shape parameter c = 4
N−1

. At this situation, the size of the resultant matrix H

is 433 × 429, which is obviously overdetermined and it’s verified to be column full
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ranked, i.e. rank(H) = 429. By algebraic analysis, HT H is not singular. Therefore

the least squares method does work here.

Profiles of approximated solutions and pointwise errors at different time are shown

in Figure 5, from which we can observe that our method can simulate the solution

of the 2D Burgers’ equation very well. At t = 1.25, the maximum pointwise error

is 2.51 × 10−3, compared with 7.03E − 02 by MFS-DRM and 7.19E − 02 by Kansa

method [25].

As R becomes larger, the wave front becomes steeper, which gives more difficulty

when compute numerical results. Refer to Figure 6 (a) to see profiles of u(x, y) at the

line x = y. It’s obvious that an interior layer arised as R becomes larger.

So it’s naturally to require more points locate near the wave front to get better

approximation as R become larger. Sulman et al. [26] studied this problem when

R = 200. We let N1 = N2 = N3 = N4 = N = 41, r = s = N − 2 = 39. At the time

t = 1.25, the maximum pointwise error is 2.23E − 02 and the discretized L2 norm

error is 4.66E − 03, where the discretized version of L2 norm error is defined as
√

∑N

i=1 |ui − u∗

i |
2

N
,

N , N1 · N2, ui and u∗

i represent exact and numerical function value, respectively.

Numerical solution and pointwise error are displayed in Figure 7, which is better than

results in [26] by FDM with complicated adaptive grid generate technique.

4. Conclusion

In this paper, the integration-based RBF method is introduced. Note that RBFs

are global defined, collocation nodes can be chosen different from source nodes. The

method of least squares is adopted to eliminated possible singularities.

To verify this, two typical examples are given and discussed. The effectiveness of

our proposed method is verified. Compared with differentiation, integration is more

stable and accurate through computation by computer. For problems with shock

waves and boundary (interior) layers, the solution’s derivatives change largely in a

small interval while its integral is smooth. Therefore, instead of solving PDE directly,

solving its equivalent integral equation gives more accurate solution.

Another potential application is solving PDEs with singular terms. Singular-

ity gives more difficulty theoretically and numerically. To avoid singularity, several

common techniques have been applied. Firstly add a small perturbation value to

the eliminate singularity. The solution of the singular PDE can be obtained as this

perturbation goes to zero. Instead of this time consuming process, integration can

eliminate singularity directly. We will continue our research on this problem in the

future.
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Figure 5. Profiles at t = 0.50, t = 0.75, t = 0.10 and t = 1.25 when
1
R

= 0.05, i.e. R = 20 .
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Figure 6. Profiles at the line x = y .
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