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Université A. Mira Bejaia, Algerie

CMUC, Department of Mathematics, University of Coimbra, Portugal
Centre Universitaire de Tamanrasset

ABSTRACT. This work deals with the Mann’s stochastic iteration algorithm under α-mixing
random errors. We establish the Fuk-Nagaev’s inequalities that enable us to prove the almost
complete convergence with its corresponding rate of convergence. Moreover, these inequalities give
us the possibility of constructing a confidence interval for the unique fixed point. Finally, to check
the feasibility and validity of our theoretical results, we consider some numerical examples, namely
a classical example from astronomy.
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1. INTRODUCTION

In many mathematical problems arising from various domains, the existence of

a solution is the same as the existence of a fixed point by some appropriate trans-

formation of the problem. The most known problem in that framework is the root

existence which can be tackled easily as the existence of a fixed point and vice versa.

Therefore, the fixed point theory is of paramount importance in engineering sciences

and many areas of mathematics. Fixed point theory provides conditions under which

maps have the existence and uniqueness of solutions. Over the last decades, that

theory has been revealed as one of the most significant tool in the study of nonlinear

problems. In particular, in many fields, equilibria or stability are fundamental con-

cepts that can be described in terms of fixed points. For example, in economics, a

Nash equilibrium of a game is a fixed point of the game’s best response correspon-

dence. However, in informatics, programming language compilers use fixed point

computations for program analysis, for example in data-flow analysis, which is often

required for code optimization. The vector of PageRank values of all web pages is
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the fixed point of a linear transformation derived from the World Wide Web’s link

structure. In astronomy, the eccentric anomaly E of a given planet is related to a

fixed point equation that cannot be solved analytically, this will be well described

in example (4.2) and many examples could be found in engineering sciences such as

physics, geology, chemistry, biology, mechanical statistics, etc.

Mathematically, a fixed point problem is presented under the following form

(1.1) Find x ∈ X such that Fx = x

where F is an operator, defined on a given space X. The solutions of that equation

if they exist are called “fixed points” of the mapping F . The classical result in

fixed point theory is the Banach fixed-point theorem [2]; it ensures the existence and

uniqueness of a fixed point of certain self-maps of a metric space. Additionally, it

provides a constructive numerical method to approximate the fixed point.

After verifying the existence and uniqueness conditions, it is necessary to find

(or approximate) the unique fixed point of the problem (1.1). This leads to find the

unique root of F − idX where idX denotes the identity operator on X. Analytically,

to find that root, one has to reverse the operator F − idX and one could immediately

think about the difficulty when dealing with inversion and most of the time that

task is impossible. Alternatively, numerical methods become the most appropriate

tool and have attracted many researches these last decades. The pioneering work

after Picard’s iterative method was introduced by Mann [15] to remedy the problem

of convergence while using the Picard’s method for approximating the fixed point

of nonexpansive mapping. Later, many modified algorithms were introduced, by

considering the stochastic part, i.e., considering the errors generated by the numerical

evaluation of the algorithm. For an account of relevant literature on that topic, see

[3, 4, 5, 9, 11, 12, 13, 14].

In the framework of this paper, we consider the Mann iterative algorithm as

described in (2.1) by taking into account the committed errors at each evaluation

of the approximated fixed point xn. These errors are supposed to be random and

modeled by random variables and we suppose them to be strong mixing. Recall that

a sequence (ξi) is said to be strong mixing or α-mixing if the following condition is

satisfied:

(1.2) α (n) = sup
A∈Fk−∞,C∈F

+∞
k+n

|P (A ∩ C)− P (A) P (C)| −→
n−→+∞

0

where Fml denotes the σ-algebra engendered by events of the form {(ξi1 , . . . , ξik) ∈ B},
where l ≤ i1 < i2 < · · · < ik ≤ m and B is a Borel set.

The notion of α-mixing was firstly introduced by Rosenbaltt in 1956 [17] and

the central limit theorem has been established. The strong mixing random variables
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have many interest in linear processes and find many application in finance, for more

motivating examples and properties concerning the mixing notions, see [7, 10].

In this paper, we establish Fuk-Nagaev’s inequalities. These inequalities allow us

to prove the almost complete convergence of Mann’s algorithm to the fixed point, with

convergence rate and the possibility of giving a confidence interval. To strengthen

the obtained theoretical results, some numerical examples are considered.

The rest of the paper is organized as follows: In section 2, the statement of the

problem is described and some known results are recalled. In section 3, some new

results were established by using stochastic methods. In section 4, the validity of our

approach is checked up by considering some numerical examples.

2. PRELIMINARIES

Let (Ω,F ,P) be a probability space and f : R→ R a non-linear function. We

consider the stochastic Mann’s iteration algorithm:

(2.1) xn+1 = (1− an)xn + bnf (xn) + cnξn,

where the sequences of positive numbers (an)n≥1, (bn)n≥1 and (cn)n≥1 satisfy the

following conditions,

lim
n→+∞

bn = lim
n→+∞

an = 0 and
+∞∑
n=1

bn =
+∞∑
n=1

an = +∞

+∞∑
n=1

c2n < +∞.

Without loss of generality, we take

an = bn =
a

n
and cn =

a

n2
, a > 0.

Hence, the stochastic Mann’s iteration algorithm (2.1) takes the following form:

(2.2) xn+1 =
(

1− a

n

)
xn +

a

n

[
f (xn) +

1

n
ξn

]
.

We now introduce some classical hypothesis that will be useful tools for the proof of

established results in the sequel:

(H1) : The fixed point x∗ satisfies

(2.3) ∃ N > 0, |x1 − x∗| ≤ N < +∞.

(H2) : The function f is contractive, i.e, it satisfies the following property:

(2.4) ∀ x, y ∈ R, |f (x)− f (y)| ≤ c |x− y| , c ∈ (0, 1) .
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(H3) : The random variables (ξi)i fulfill the condition of uniform decrease, that

is,

(2.5) ∃ p > 2, ∀ t > 0, P {|ξi| > t} ≤ t−p.

(H4) : The coefficients of the α-mixing sequence (ξn)n satisfy the following arith-

metic decay condition:

(2.6) ∃ d ≥ 1, ∃ β > 1 : α (n) ≤ d n−β, ∀ n ∈ N∗.

(H5) : The α-mixing coefficients satisfy the following condition

(2.7) ∃ ρ > 0, ρ
(β + 1) p

β + p
> 2.

Remark 2.1. The assumption (H1) is classical. Arbitrary choice of x1 and the ex-

istence of x∗ allows us to assume such supposition. The contraction’s assumption

(H2) ensures the existence and uniqueness of the fixed point x∗ of the function f

according to Banach’s theorem for fixed point. When the function f is differentiable,

the condition (H2) is equivalent to the boundness of the derivative f ′, i.e, ∃ c > 0,

sup
x
|f ′ (x)| ≤ c < 1. The hypothesis (H3) is satisfied for all bounded random variables

and Gaussian ones. Assumption (H4) is used in order to characterize the dependence

structure of errors. Moreover, combined to (H3), the assumption (H4) allows the

obtention of Fuk-Nagaev’s inequalities [16], which ensures the almost complete con-

vergence result. As a particular example, the geometric α-mixing sequence (ξi)i and

its mixing coefficients are defined as follows,

∃ d0 > 0, ∃ κ ∈ (0, 1) : α (n) ≤ d0 κ
n, ∀ n ∈ N∗.

The assumption (H5) will be useful for specifying the rate of almost complete

convergence of the stochastic Mann’s iteration algorithm. That condition is classical,

see [1, 8].

First, we state the following theorem which will be used in the sequel during the

proof of the main result.

Theorem 2.2. Let (ξi)i∈N∗ be a centered sequence of real-valued random variables

and (αn)n∈N∗ the corresponding sequence of mixing coefficients as defined in (1.2)

such that the hypothesis (H3) and (H4) are satisfied. Let us set

s2
n =

n∑
i=1

n∑
k=1

|Cov (ξi, ξk)| .

Then, for every real numbers r ≥ 1 and λ > 0, we have

P

(
sup
k∈[1,n]

∣∣∣∣∣
k∑
i=1

ξi

∣∣∣∣∣ ≥ 4λ

)
≤ 4

(
1 +

λ2

rs2
n

)−r
2

+ 4Cnr−1
( r
λ

) (β+1)p
(β+p)

.
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Proof. The proof is well detailed in [16, pages 84 to 87].

Lemma 2.3. Using the hypothesis (H1), we get the following inequality:

(2.8) |xn+1 − x∗| ≤ N

n∏
i=1

(
1− a (1− c)

i

)
+

n∑
i=1

a

i2

n∏
j=i+1

(
1− a (1− c)

j

)
|ξi| .

Proof. The proof is straightforward by induction on n.

Lemma 2.4. For all constants a < 1, we have the following inequalities

(2.9)
n∏

j=i+1

(
1− a (1− c)

j

)
≤
(
i+ 1

n+ 1

)a(1−c)
,

and,

(2.10)
n∑
i=1

a

i2

n∏
j=i+1

(
1− a (1− c)

j

)
≤ aS

(n+ 1)a(1−c)
.

Proof. For the first inequality, we have

n∏
j=i+1

(
1− a (1− c)

j

)
≤ exp

(
−a (1− c)

n∑
j=i+1

1

j

)
≤
(
i+ 1

n+ 1

)a(1−c)
.

The second inequality follows immediately from inequality (2.9) by setting S the sum

of the convergent series (i+1)
i2

a(1−c)
.

3. CONVERGENCE OF MANN ITERATIVE ALGORITHM

The following theorem gives the almost complete convergence by mean of Fuk-

Nagaev’s inequality that will give also the possibility of constructing a confidence

interval.

Theorem 3.1. Under the assumptions (H1)–(H5) and for any real positive ρ such

that 2(β+p)
p(β+1)

< ρ < a (1− c) < 1, we have:

(3.1) xn+1 − x∗ = O

( √
lnn

na(c−1)−ρ

)
a.co.

Proof. Using the inequality (2.8), we have

P (|xn+1 − x∗| > ε)

≤ P

(
N

n∏
i=1

(
1− a (1− c)

i

)
+

n∑
i=1

a

i2

n∏
j=i+1

(
1− a (1− c)

j

)
|ξi| > ε

)

≤ P

(
N

n∏
i=1

(
1− a (1− c)

i

)
+

n∑
i=1

a

i2

n∏
j=i+1

(
1− a (1− c)

j

)
E |ξi| ≥

ε

2

)

+ P

(
n∑
i=1

a

i2

n∏
j=i+1

(
1− a (1− c)

j

)
(|ξi| − E |ξi|) >

ε

2

)
.(3.2)
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Firstly, since the left hand side inside the following probability is not random, we

have

(3.3)

P

(
N

n∏
i=1

(
1− a (1− c)

i

)
+

n∑
i=1

a

i2

n∏
j=i+1

(
1− a (1− c)

j

)
E |ξi| >

ε

2

)
≤ K1e

−n2a(1−c)ε2 .

We set

Zi =
ana(1−c)

i2

n∏
j=i+1

(
1− a (1− c)

j

)
(|ξi| − E |ξi|) .

Note that the random variables (Zi)i are centered and according to (2.5), we show

that, there exists a positive constant M such that,

(3.4) ∀ t > 0, P (|Zi| > t) ≤Mt−p.

Finally, we notice that if the random errors (ξi) are α-mixing, then the random

variables (Zi) remain also with mixing coefficients less than or equal to those of the

sequence (ξi)i. Thus, applying the Fuk-Nagaev’s exponential inequality given by Rio

(Theorem 2.2) to the variables (Zi), we obtain for any ε > 0 and r ≥ 1 :

P (|xn+1 − x∗| > ε) ≤ K1e
−n2a(1−c)ε2 + 4

(
1 +

ε2n2a(1−c)

4rs2
n

)−r
2

+ 4Cnr−1

(
2r

εna(1−c)

) (β+1)p
(β+p)

(3.5)

where,

C = 2Mp (2p− 1)−1 (2βd) p−1
β+p and s2

n =
n∑
i=1

n∑
k=1

|Cov (Zi, Zk)| .

Let us bound the double sum of covariances s2
n,

s2
n =

n∑
i=1

n∑
k=1

|Cov (Zi, Zk)| =
n∑
i=1

V ar (Zi) +
n∑
i=1

n∑
k 6=i

|Cov (Zi, Zk)| .

We recall that,

(3.6)
n∑
i=1

V ar (Zi) ≤
n∑
i=1

a2 (i+ 1)2a(1−c)

i4
V ar (|ξi|) ≤ Sv

since it is a partial sum of a convergent series with positive terms.

On the other hand, for i 6= k, we have

(3.7) |Cov (Zi, Zk)| ≤
a2 (i+ 1)a(1−c)

i2
(k + 1)a(1−c)

k2
|E (|ξi| − E |ξi|) (|ξk| − E |ξk|)| .

According to the inequality given by Ibragimov [10, Theorem 17.2.2 page 307], we

obtain:

(3.8) |E (|ξi| − E |ξi|) (|ξk| − E |ξk|)| ≤ (4 + 6C) (α (|i− k|))
p−2
p ,
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consequently,

(3.9) |Cov (Zi, Zk)| ≤ a2 (4 + 6C)
(i+ 1)a(1−c)

i2
(k + 1)a(1−c)

k2
(α (|i− k|))

p−2
p .

Since the mixing coefficients of the sequence (|ξi| − E |ξi|)i are less than or equal to

those of the sequence (ξi)i, we get,

n∑
i=1

n∑
k 6=i

|Cov (Zi, Zk))| ≤
n∑
i=1

n∑
k=1

a2 (4 + 6C)
(i+ 1)a(1−c)

i2
(k + 1)a(1−c)

k2
(α(1))

p−2
p

≤ (4 + 6C)
n∑
i=1

(i+ 1)a(1−c)

i2

n∑
k=1

a2 (k + 1)a(1−c)

k2
≤ Sc.(3.10)

Combining (3.6) and (3.10), we obtain:

(3.11) s2
n ≤ Sv + Sc = S.

So, from (3.11), we have the inequality

(3.12) P (|xn+1 − x∗| > ε) ≤ T1 + T2 + T3,

where

T1 = K1e
−n2a(1−c)ε2 , T2 = 4

(
1 +

n2a(1−c)ε2

4rS

)−r
2

and T3 = 4Cnr−1
( r

na(1−c)ε

) (β+1)p
β+p

.

For a well chosen positive number r and ε, the quantities T1, T2 and T3 become

a general terms of convergent series. Consequently, we obtain,

+∞∑
n=1

P (|xn+1 − x∗| > ε) < +∞

that ensures the almost complete convergence of the sequence (xn)n to the unique

fixed point x∗. The choice of the tuning positive number r will be specified while

deriving the corresponding rate of convergence.

Recall that xn − x∗ = O (εn) almost completely (a.co), where (εn)n is a sequence

of real positive numbers tending to zero, if there exists a positive constant k such

that,
+∞∑
n=1

P (|xn − x∗| > kεn) < +∞.

Basing on the inequalities obtained above, we take:

ε = εn = kεn, where k =
√

1 + δ, δ > 0 and εn =

√
lnn

na(1−c)−ρ
.

Hence, we obtain

(3.13) T1 = K1e
−(n+1)2a(1−c)ε2 ≤ K1e

−(1+δ) lnn =
K1

n1+δ
.
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For a suitably chosen r such that r > 2
ρ
, we obtain,

(3.14) T2 = 4

(
1 +

(1 + δ)nρ

rS

)−r
2

≤ K2n
−ρ r

2

where,

K2 =

(
rS

1 + σ

)r/2
.

With regard to T3, we have,

T3 ≤ 4Cnr−1

(
r√

1 + δnρ lnn

) (β+1)p
β+p

= 4Cr
(β+1)p
β+p

−1 n(√
1 + δnρ lnn

) (β+1)p
β+p

.

With r chosen as in (3.14), we deduce,

(3.15) T3 ≤ K3
1

nρ
(β+1)p
β+p

−1 (lnn)
(β+1)p
β+p

,

which is a general term of Bertrand series, it is convergent because of the hypothesis

(H5). It leads that:

(3.16) P

(
|xn+1 − x∗| >

√
1 + δ

√
lnn

na(1−c)−ρ

)
≤ K1

n1+δ
+
K2

nρ
r
2

+
K3

nρ
(β+1)p
β+p (lnn)

(β+1)p
β+p

.

The right-hand side of the last inequality is a term of a convergent series.

Remark 3.2. Remark that in the obtained rate of convergence given by the formula

(3.1), more the quantity 2(β+p)
p(β+1)

is small, more we have the choice of taking ρ smaller

and consequently the rate of convergence becomes more interesting.

Corollary 3.3. Under the assumptions (H1)–(H5), for a given level σ, there exists

a natural integer nσ for which the fixed point x∗ of the function f belongs to closed

interval of center xnσ and radius ε with a probability greater than or equal to 1− σ.

(3.17) ∀ ε > 0, ∀ σ > 0, ∃ nσ ∈ N : P (|xnσ − x∗| ≤ ε) ≥ 1− σ.

Proof. Indeed, using Kronecker’s Lemma, we obtain lim
n→+∞

α (n) = 0 which implies

(3.18) lim
n→+∞

K1

n1+δ
+
K2

nρ
r
2

+
K3

nρ
(β+1)p
β+p (lnn)

(β+1)p
β+p

= 0.

Since there exists a natural integer nσ such that

(3.19) ∀ n ∈ N, n ≥ nσ − 1 =⇒ K1

n1+δ
+
K2

nρ
r
2

+
K3

nρ
(β+1)p
β+p (lnn)

(β+1)p
β+p

≤ σ,

thus, (3.17) arises from (3.16) and (3.19).
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4. NUMERICAL RESULTS

In this section, a simulation study is proposed to check the validity of our obtained

theoretical results. We consider two examples. In the first one, a contractive function

where its unique fixed point is known exactly and we compare the fixed point with

the approximated ones obtained using the Mann’s iterative algorithm. In the second

example, we consider a classical problem from astronomy, where the mathematical

equation cannot be solved to obtain the exact value of the fixed point and we use the

Cauchy’s criterium to compare two successive iterates to ensure the convergence of

the sequence obtained using iterative Mann’s algorithm.

xn+1 =
(

1− a

n

)
xn +

a

n

[
f (xn) +

1

n
ξn

]
0 < a(1− c) < 1, ξ0 = 0, n ∈ N∗.

To characterize the strong mixing random errors (ξi), we consider an autoregres-

sive model (ξi)i of order 1 (see [6]), described as follows

(4.1) ξi+1 = ϕξi + gi,

where gi is a Gaussian white noise process, ϕ is a constant such that |ϕ| < 1. For the

simulation of Gaussian random variables (gi)i, we use the method of Box-Muller:

(4.2) gk =
√
−2ln(u1) cos(2πu2)

where u1 and u2 are uniform distributed random numbers on (0.1)

Example 4.1. We consider the following function defined by:

f : [0, 5]→ [0, 5]

x 7→
√
x+ 1

The function f is a contractive function with c = max
x∈[0,+∞)

∣∣f ′(x)
∣∣ = 1

2
. Hence f has a

unique fixed point x∗ = 1+
√

5
2

= 1, 618033988749895, which is known as golden ration.

For x1 = 1.3, a = 1
4

and ϕ = 0.8, the following results are obtained:

n xn |xn − x∗|
103 1.614142671526978 0.003891317222917

104 1.615420224332314 0.002613764417581

105 1.616115916146472 0.001918072603423

Example 4.2. Most of mathematical problems come from engineering sciences (physics,

chemistry, geology, astronomy, etc.). When studying some physical problems using

the appropriate mathematical models, we obtain an equation or a set of equations

and usually cannot be solved analytically because in general, these equations are cor-

rupted by noise or the known mathematical tools do not allow us to solve them. To

illustrate this fact, we consider the following classical example from astronomy.
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Consider a planet in an orbit around the sun as described by the following dia-

gram.

Let n be the mean angular motion of the Mercury’s orbit around the sun, t the

elapsed time since the planet was last closet to the sun (this is called perifocus or

perihelion in astronomy) and e =
√

1− b2

a2 , the eccentricity of the planet’s elliptical

orbit. Using Kepler’s laws of planetary motion, we obtain the location of the planet

at time t. x = a (cos (E)− e)

y = a
√

1− e2 sin (E)

The quantity E is called the eccentric anomaly and is given by the following equation

E = nt+ e sin (E) = M + e sin (E)

where M is called the mean anomaly which increases linearly in time at the rate n.

Note that E is the fixed point of the function f , where f (x) = M + e sin (x) for a

given time t and the frequency of the orbit ω. In this equation, we cannot find an

explicit formula of the eccentric anomaly E. It is easy to check that f is a contraction,

moreover, we have,

|f (x)− f (y)| ≤ e |x− y| ,

which ensures the existence and uniqueness of the fixed point E.

For our simulation, by choosing the Mercury planet, we have its eccentricity

e = 0.20563069 and the mean anomaly M = 3.05076572. The Mann’s process is

implemented for a = 0.9, ϕ = 0.7, and given an initial guess x1 = 3, we obtain the

following iterates:

n xn |xn − xn−1| |xn − xfp|
100 3.066277803444744 5.084582991976561e-06 3.292480386907215e-05

1000 3.066247563732222 2.842158499660741e-07 2.685091347043311e-06

104 3.066245125153754 6.291136500635730e-08 2.465128789985727e-07

105 3.066244900326525 7.696832948766996e-09 2.168565016447133e-08
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Remark 4.3. Note that the numerical solution of the equation f(x) = x given by

Matlab is xfp = 3.066244878640875. As we can observe, the used Mann algorithm

gives nice approximations of the unique fixed point of the function f . Thus, the

complementary numerical examples considered above make the obtained theoretical

results of convergence well palpable.
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