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ABSTRACT. In this work, we have established the exponential properties of the Mittag-Leffler
functions Eq,1(−λtq) and Eq,q(−λtq), where 0 < q < 1, and λ > 0. Further, using these results as
a tool, we have proved that the solution of the linear Caputo fractional reaction diffusion equation
converges. We have also presented some numerical examples.
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1. Introduction

In the past few decades, the qualitative and quantitative study of fractional dy-

namic system has attained great importance due to its application in various branches

of science and engineering. Also from modeling point of view, solving non-linear frac-

tional partial diiferential equation is more useful. The application of solving nonlinear

fractional differential equation can be seen in image processing. See [2, 12, 13, 16]

for details. In order to solve nonlinear fractional dynamic system, by any iterative

methods, initially we need to solve the corresponding linear dynamic system on its

interval of existence. In this work, we consider the linear Caputo fractional reaction

diffusion equation with initial and boundary conditions. The representation form for

the linear fractional diffusion equation has been obtained in [3]. The Caputo frac-

tional dynamic system yields the result of integer dynamic system as a special case.

In this work, we have considered the Caputo fractional derivative, of order q, where

0 < q < 1, with respect to time. For q = 1, our fractional dynamic system yields

the linear reaction diffusion equation with a non-homogeneous term, and with initial

and boundary conditions as special case. The solution of the linear Caputo fractional
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reaction diffusion equation involves series of Mittag-Leffler functions of order q, for

0 < q < 1. The Mittag-Leffler functions involved are the generalization of the expo-

nential functions. In this paper, we establish the convergence of the infinite series of

the Mittag-Leffler functions Eq,1(−λtq) and Eq,q(−λtq) for 0 < q < 1. This is routine

when q = 1, since the exponential properties of the exponential functions are well

established. Although, there is a research monograph [4] on the Mittag-Leffler func-

tion, the exponential properties of Mittag-Leffler function has not been established.

For that purpose, we have developed two auxiliary results relative to Eq,q(−λtq) and

Eq,q(−λtq), for 0 < q < 1, and λ > 0. This enable us to prove the convergence of

the infinite series of Mittag-Leffler functions on [0,∞) when the initial condition, the

non-homogeneous term and the boundary conditions are bounded on its domain. This

result has been established in our main result. In addition, in our basic numerical

result section, we have presented two examples and the graphs of the corresponding

solution. Our future aim is to develop a numerical code to compute the solution of

the Caputo linear fractional reaction diffusion equation.

2. Preliminary Results

In this section, we recall some known results and definitions that are needed for

our main results.

Definition 2.1. The Caputo (left-sided) fractional derivative of u(t) of order q, n−
1 ≤ q ≤ n, is given by the equation:

(2.1) cDqu(t) =
1

Γ(n− q)

∫ t

0

(t− s)n−q−1un(s)ds, t ∈ [0,∞), t > t0.

In particular, if q = n, an integer, then cDqu = u(n)(x) and cDqu = u
′
(x) if q = 1.

Definition 2.2. The Riemann-Liouville fractional integral of arbitrary order q defined

by

(2.2) D−qu(t) =
1

Γ(q)

∫ t

0

(t− s)q−1u(s)ds,

where 0 < q ≤ 1.

Definition 2.3. The Riemann-Liouville (left-sided) fractional derivative of u(t), when

0 < q < 1, is defined as:

(2.3) Dqu(t) =
1

Γ(1− q)
d

dt

∫ t

0

(t− s)q−1u(s)ds, t > 0.

Note that the Caputo integral of order q for any function is same as the Riemann-

Liouville integral. Next we define the Mittag Leffler functions which are useful in

computing the solution of linear fractional differential equation.
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Definition 2.4. The two parameter Mittag-Leffler function is defined as

(2.4) Eq,r(λ(tq)) =
∞∑
k=0

(λtq)k

Γ(qk + r)
,

where q, r > 0, and λ is a constant. Furthermore, for r = q, (2.4) reduces to

(2.5) Eq,q(λt
q) =

∞∑
k=0

(λtq)k

Γ(qk + q)
.

If r = 1 in (2.4), then we have:

(2.6) Eq,1(λt
q) =

∞∑
k=0

(λtq)k

Γ(qk + 1)
.

If q = 1, then

(2.7) E1,1(λt) = eλt,

where eλt is the usual exponential function.

The Mittag-Leffler functions are the generalization of the exponential functions.

See [1, 4, 7, 14] for more details on Mittag-Leffler function.

In order to obtain the representation form for the solution of linear Caputo frac-

tional reaction diffusion equation, we need the explicit solution of the linear Caputo

fractional ordinary differential equation.

Conside the linear Caputo fractional differential equaation of the form:

(2.8) cDq
tu = λu+ f(t), u(t0) = u0, where 0 < q ≤ 1.

The explicit solution of (2.8) is given by

(2.9) u(t) = u0Eq,1(λt
q) +

∫ t

0

(t− s)q−1Eq,q(λ(t− s)q)f(s)ds,

where Eq,1(−λtq) and Eq,q(−λtq) are Mittag-Leffler functions. See [1, 7, 14] for more

details.

Consider the Caputo fractional reaction diffusion equation:

(2.10) cDq
tu− kuxx = Q(x, t), (t, x) ∈ QT ,

(2.11) u(x, 0) = f(x), x ε Ω,

(2.12) u(0, t) = A(t), u(L, t) = B(t), (t, x) ε ΓT ,

where Ω = [0, L], J = (0,∞), QT = J ×Ω, k > 0 and ΓT = (0,∞)× ∂Ω, where ∂Ω is

the boundary of Ω. We also assume that A(t), B(t) ε C1[J,R], f(x) ∈ C(2+α) [Ω, R],

where C2+α means that f(x) is the Hölder continuous function of order 2 + α, 0 <

α < 1 and Q(x, t) ε C1,2[QT , R].
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Under these conditions, the explicit solution of the reaction diffusion fractional

equation (2.10–2.12) is given by:

(2.13)

u(x, t) =
∞∑
n=1

[

∫ L

0

f(x0)φn(x0)dx0Eq,1(−kλntq)

+

∫ t

0

(t− s)q−1Eq,q(−kλn(t− s)q[
∫ L

0

Q(x, s)φndx]ds

+ k
nπ

L

∫ t

0

(t− s)q−1E − q, q(−kλn(t− s)qA(s)ds

+ (−1)n+1k
nπ

L

∫ t

0

(t− s)q−1(Eq, q(−kλn(t− s)qB(s)ds]φn(x),

where Eq,1(−λtq) and Eq,q(−λtq) are Mittag-Leffler functions, 0 < q ≤ 1. This has

been obtained using the eigenfunction expansion method. See [3] for details. Also,

note that, here φn(x) = sin nπ
L
x. For other types of boundary conditions, φn(x) is

computed accordingly.

3. Auxiliary Results

The representation formula for the solution of the linear Caputo fractional dif-

fusion equation has been obtained in [3]. However, they have not established the

convergence of the solution when the initial condition, boundary condition and the

non homogeneous terms are bounded on its domain. This is well known for reaction

diffusion equation of integer order. It is to be noted that the explicit solution of

(2.10–2.12) involves the infinite series involving the Mittag-Leffler functions. In the

special case, when q = 1, the integer case, the solution involved will have the series

involving the exponential functions. The convergence of the infinite series involving

the exponential functions are relatively easy, since the exponential properties of the

exponential function are well established. However the Mittag-Leffler functions do

not possess the exponential properties which is essential for the convergence of the

series involving Mittag-Leffler functions. In this section, we develop some properties

of the Mittag-Leffler function which will be useful in establishing the convergence of

the infinite series involved in the explicit representation of the solution of the Ca-

puto reaction diffusion equation with initial and boundary condition. In this section,

initially we recall some known properties of Mittag-Leffler function.

The non-negativity of Eq,1(−λtq) and Eq,q(−λtq), λ ∈ R+, 0 < q ≤ 1 are shown

with the help of graphs, i.e. figure 1 and figure 2. In figure 1, we have graphs of

Eq,1(−tq) and for different values of q, for 0 < q ≤ 1. In figure 2, we have graphs

of Eq,q(−tq) for 0 < q ≤ 1. The graphs have been obtained using the MATLAB

code written by Podlubny. See [8] for details. One can also draw the graphs of

Eq,1(−λtq), Eq,q(−λtq) for fixed q and varying λ using the same code. We now use
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Figure 1. E(q, 1) graph

for q = 0.5, 0.7, 0.9, 1.

Figure 2. E(q, q)graph

for q = 0.5, 0.6, 0.8, 1.

the nonnegativity of the Mittag-Leffler functions to establish some kind of exponential

properties of Eq,1(−λtq) and Eq,q(−λtq).

Lemma 3.1. Let Eq,1(−λtq) be the Mittag-Leffler function of order q, where 0 < q ≤
1. Then, Eq,1(−λ1tq)

Eq,1(−λ2tq)
< 1 where λ1, λ2 > 0 such that λ1 = λ2 + k, for k > 0.

Proof. In order to prove the result, consider

(3.1) H(t) = Eq,1(−λ1t
q)− Eq,1(−λ2t

q).
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Our claim is true if H(t) < 0. Observe that H(0) = 0.

Taking the Caputo derivative of order q, 0 < q < 1, on both sides, we get

cDqH(t) = −λ1Eq,1(−λ1t
q) + λ2Eq,1(−λ2t

q)(3.2)

= −λ2H(t)− kEq,1(−λ1t
q).(3.3)

Using the explicit solution of the linear fractional equation (2.9), we get

(3.4) H(t) = u0Eq,1(−λ2t
q)− k

∫ t

0

(t− s)q−1Eq,q(−λ2(t− s)q))Eq,1(−λ1(t− s)q)ds.

Since H(0) = 0, k > 0 and Eq,1(−λtq), Eq,q(−λtq) are positive from the graphs of

figure 1 and figure 2, we have H(t) < 0. This proves our claim.

Lemma 3.2. Let Eq,q(−λtq) be the Mittag-Leffler function of order q, where 0 < q ≤
1. Then Eq,q(−λ1tq)

Eq,q(−λ2tq)
< 1, where λ1, λ2 > 0, such that λ1 = λ2 + k, for k > 0.

Proof. The proof of this lemma follows on the same lines as that of Lemma 3.1.

4. Main Results

In this section, we recall the representation form of the solution of (2.10–2.12).

It is to be noted that the solution of (2.10–2.12) can be split as u1(x, t), u2(x, t) and

u3(x, t) where u1(x, t), u2(x, t) and u3(x, t) respectively are the explicit solutions of

(2.10–2.12) as follows:

(a) u1(x, t) is the solution (2.13), when Q(x, t) = 0, A(t) = 0 = B(t),

(b) u2(x, t) is the solution (2.13, when A(t) = 0 = B(t), f(x) = 0,

(c) u3(x, t) is the solution (2.13), when Q(x, t) = 0, f(x) = 0.

Notice that u(x, t) = u1(x, t) + u2(x, t) + u3(x, t), where u(x, t) is the solution of

(2.10–2.12).

We establish individually that u1(x, t) and u2(x, t) converges for t ∈ [0,∞) by

using results established in Lemma 3.1 and Lemma 3.2. Also, one can easily prove

that u1(x, t), u2(x, t) and u3(x, t) are the unique solution when f(x), Q(x, t), A(t)

and B(t) are bounded functions.

In our first main result, we establish the convergence of the solution u1(x, t) and

u2(x, t) on [0,∞)× [0, L].

Theorem 4.1. u1(x, t) converges on [0,∞)× [0, L] when |f(x)| < N1, N1 > 0, where

u1(x, t) is as in (a).

Proof. The explicit solution u1(x, t) of (2.10–2.12) is given by

(4.1) u1(x, t) =
∞∑
n=1

[ ∫ L

0

f(x0)φn(x0)dx0Eq,1(−kλntq)]φn(x).
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We have from (4.1)

|u1(x, t)| ≤ N1

∫ L

o

∞∑
n=1

Eq,1(−kλntq)ds,

since |f(x)| < N1 and |φn(x)| < 1. In the above relation,
∫ L

0
ds = L, it follows that

|u1(x, t)| ≤ N1L

∞∑
n=1

Eq,1(−λntq).

Here λn = n2π2

L2 . It is enough to prove that
∑∞

n=1Eq,1(−kλntq) converges.

Using the ratio test and Lemma 3.1, we can show that

Eq,1(−kλn+1t
q)

Eq,q(−kλntq)
< 1, for t > 0.

This proves the convergence of the series
∑∞

n=1Eq,1(−kλntq). This concludes the

proof.

Theorem 4.2. u2(x, t) converges on [0,∞) × [0, L] when |Q(x, t)| < N2, N2 > 0,

where u2(x, t) as in (b).

Proof. The explicit solution u2(x, t) of (2.10–2.12) is given by

(4.2) u2(x, t) =
∞∑
n=1

[∫ t

0

(t− s)q−1Eq,q(−kλn(t− s)q)
] [∫ L

0

Q(x, s)φndx

]
ds]φn(x).

We have from (4.2),

u2(x, t) ≤ N2

∞∑
n=1

∫ t

0

(t− s)q−1Eq,q(−λn(t− s)q)ds,

since |Q(x, t)| < N2, |φn(x)| < 1, the above relation becomes

|u2(x, t)| ≤ N2

∞∑
n=1

∫ t

0

(t− s)q−1Eq,q(−λn(t− s)q)ds.

That is

|u2(x, t)| ≤ N2

∫ t

0

∞∑
n=1

(t− s)q−1Eq,q(−kλn(t− s)q)ds.

Here λn = n2π2

L2 . It is enough to prove that
∑∞

n=1Eq,q(−kλntq) converges.

Using Lemma 3.2, we have

Eq,q(−kλn+1(t− s)q)
Eq,q(−kλn(t− s)q)

< 1, for t > 0.

Using ratio test in the above inequality, we get

(t− s)q−1Eq,q(−kλn+1(t− s)q)
(t− s)q−1Eq,q(−kλn(t− s)q)

< 1,

where t > 0. This proves the convergence of |u2(x, t)| on [0,∞). This concludes the

proof.
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Theorem 4.3. The explicit solution u3(x, t) converges on [0,∞)×[0, L] when |A(t)| <
M1 and |B(t)| < M2, M1,M2 > 0, where u3(x, t) as in (c).

Proof. The proof of convergence for u3(x, t) follows on the same lines as in Theorem 4.2

except that Lemma 3.2 is used in place of Lemma 3.1.

Hence the solution u(x, t) = u1(x, t)+u2(x, t)+u3(x, t) converges on [0,∞)×[0, L],

where u(x, t) is the solution of (2.10–2.12).

5. Basic Numerical Results

In this section, we have provided some examples of the type u1(x, t) and u2(x, t).

We have computed the solution and drawn the graphs using MATLAB and MATH-

EMATICA.

In example 1, we choose Q(x, t) = A(t) = B(t) = 0 and f(x) = 2 sinx. That is,

we consider the linear fractional Caputo diffusion equation of the form (5.1).

Example 5.1. Consider

(5.1)

cDqu− uxx = 0,

u(x, 0) = 2 sinx,

u(0, t) = 0 = u(1, t).

The explicit solution of equation (5.1) is given by

u1(x, t) = Eq,1(−π2tq) sinx.

In figure 3, we have graphed u1(x, t) as a 2D graph for given value of t and different

values of q. The notation c has been used in place of t in the graph. In figure 4, we

have drawn the graph of u1(x, t) = E0.7,1(−π2tq) sinx, t ∈ [0, 10].

Figure 3. 2-d graph of u(x, t) = sinx ∗ Eq,1(−tq) at different values of q

.
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Figure 4. 3-d graph, graph of u(x, t) = Eq,1(−π2tq) sinx when q = 0.7.

Figure 5. same 3-D graph as in figure 4 in another direction.

Example 5.2. Consider

(5.2)

cDqu− uxx = Γ(1 + q)(1 + tq) sinx;

u(x, 0) = 0;

A(t) = 0 = B(t).

One can easily show that the solution of (5.2) as

u2(x, t) = tq sinx.

The graph of u2(x, t) is shown in figure 5 for q = 0.9.

6. Concluding Remarks

We have established the convergence of the solution of linear Caputo reaction frac-

tional diffusion equation on the interval [0,∞). This was established using the results

regarding the properties of Mittag-Leffler functions from Lemma 3.1 and Lemma 3.2.

We have also presented the graphical solution of (2.10–2.12) in special cases. In the
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Out[3]=

Figure 6. 3-d graph, graph of u2(x, t) = tq sinx when q = 0.9.

future work, we plan to develop a code to compute the solution of (2.10–2.12) numer-

ically. This will be useful in solving nonlinear Caputo reaction fractional diffusion

equation.
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