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ABSTRACT. In this paper, a nodal based smoothed point interpolation method (NS-RPIM) is

implemented using Voronoi smoothing domains to solve elliptic partial differential equations with

different node selection strategies. Shape functions for field variable approximation are built using

the radial point interpolation method (RPIM) with pure radial basis functions (RBFs) without

polynomial basis. The smoothed Galerkin weak form is applied to construct the discretized system

equations. Triangle background cells with voronio smoothing domains and quadrilateral mesh with

smoothing domains of equally-shared areas are used. It is found that in all cases that the NS-RPIM

provides results with higher convergency rates for distorted mesh compared with the standard FEM.

In addition, in all numerical examples, solutions for the energy norm by NS-RPIM are found to be

upper bounds with respect to the FEM counterparts and even to exact solutions. In terms of

accuracy, however, NS-RPIM could be more or less accurate than that of FEM dependent on the

problem.
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1. Introduction

Many problems in engineering can be well modeled in the form of partial differ-

ential equations (PDEs) in mathematics. It is well known that the Finite Difference

method (FDM) [1,2,3] and Finite element method (FEM) [4,5,7] are widely used to

solve PDEs. The mathematical theories of FEM are studied [6,7]. The fully com-

patible FEM based on the standard Galerkin weak form is overly-stiff, inaccuracy in

stress solutions and high reliance on quality quadrilateral mesh [7]. Recently meshfree

methods [8–14] offer attractive alternatives to the FEM for many problems using weak

or weaked weak (W2) formulations. Some meshfree methods, like Kansas Method

[27,28], use strong form collocation to discretize PDEs. In many meshfree methods,
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the integration is still necessary. A strain smoothing technique was proposed by

Chen [15] to stabilize the nodal integration process. Based on the strain smoothing

technique, a generalized gradient smoothing (GGS) technique [31] was proposed for

discontinuous nodal shape functions. By combining the Galerkin weak form and the

GGS, Liu’s team proposed the smoothed Galerkin weak form [19–23] for different

engineering problems, including solid mechanics, heat transfer, acoustic problems.

Based on the smoothed Galerkin weak form, there formed a series of numerical meth-

ods which can effectively produce solutions of nice properties. For example, cell-based

smoothed finite element method that use FEM continuous shape functions (CS-FEM)

has volumetric locking free property [19] and edge based smoothed point interpolation

method (ES-PIM) has ultra-accurate property [25]. The node based smoothed finite

element methods (NS-FEM) and node based smoothed point interpolation methods

(NS-PIM) can obtain the softening effects and upper bound solutions [20,22,23,24].

Because more nodes can be used for shape functions construction, it can offer addi-

tional flexibility in formulation and can deliver much better solution in the NS-PIM

method. However, approximated functions are generally no longer continuous in the

domain. Therefore, fundamental changes in theory are required for these kinds nu-

merical methods, which leads to the so-called G space theory [17–18]. The G space

is a discrete space and does not require differentiable operations. And functions in G

space are allowed certain discontinuity. It has been proved that solutions obtained by

NS-PIMs are in G space and have many nice properties like softer, spatially stable,

higher convergence in energy norm solutions than the FEM. Furthermore, they can

provide super-convergent solution in the strain energy for solid mechanics problems

governed by elliptic PDEs [26]. A more comprehensive review can be found in [32].

In this paper, the NS-RPIM is applied to solve elliptic partial differential equa-

tions. Radial basis functions (RBFs) and local support nodes are used to construct

nodal shape functions by point interpolation Method (PIM). Nodal shape functions

are called RPIM shape functions. They have the delta function property which allows

straightforward imposition of essential boundary conditions. Support-node selection

strategies based on triangle background cells and quadrilateral background cells are

also introduced in the paper. Two approaches are used to constructing smoothing do-

mains based on background cells, which are equally-shared area approach for quadri-

lateral background cells and Voronoi smoothing domains for triangle background cells.

Equally-shared areas are constructed by connecting segments’ midpoints and central

points of quadrilateral background cells. Solutions obtained by NS-RPIM are not

sensitive to mesh distortion. Therefore, we can obtain results with desired accuracy

when problem domains are not regular and NS-RPIM is very promising in dealing

with large deformation problems in engineering. Convergency behaviors of numerical

solutions are studied in different irregular meshes. Another important property of
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the NS-RPIM is that it can obtain upper bound solutions in energy norms than that

of exact ones. We know that FEM method can have lower bound solutions in energy

norm since it is a stiff model. Combing properties of energy norms solutions of FEM

with that of NS-RPIM, we can estimated the exact solution in energy norm when it

cannot be obtained.

This paper contains five sections. The Section 2 introduces the setting of the

problems, governing PDEs and the construction of the nodal shape functions by the

RPIM. We also introduce two node selection strategies based on background cells .

In Section 3, equally shared smoothing domains and Voronoi smoothing domains are

constructed based on background cells. We then brief the smoothed Galerkin weak

form, discretion system by NS-RPIN based on the GGS technique, the G space theory

and the smoothed Galerkin weak form. In Section 4, the numerical experiments are

tested to show convergency behaviors with distorted meshes and the upper bound

properties. We sum some concluding remarks in Section 5.

2. Functions approximation using Point Interpolation Method (RPIM)

In this paper, we consider the Possion Equations with both Dirichlet and Num-

man boundary conditions imposed on the boundary as:

Lu = f in Ω(2.1)

u|Γ1
= g1(2.2)

∂u

∂n
|Γ2

= g2(2.3)

where Lu = −∑d

i=1 aii∂iiu is the elliptic operator and Ω is a domain in R
d, Γ1,Γ2

is subset of boundary ∂Ω which satisfy Γ1 ∪ Γ2 = ∂Ω. Scattered node set X =

{x1, . . . ,xNn
} are arbitrarily given in the domain Ω and on the boundary ∂Ω. Nodal

basis functions φi(x), i = 1, 2, . . . , Nn are needed to approximate the numerical solu-

tion. Unlike the Finite Element Method (FEM) which uses polynomial basis functions

to develop nodal basis functions, we use pure RBFs in this paper:

φi(x) = φi(r) i = 1, 2, . . . , Nn

where r = ‖x−xi‖2 is the Euclidean norm in R
d of difference between point x and the

ith node xi. It should be noted that no polynomial basis are used. Then numerical

solution uh at any point x ∈ R
d can be approximated by RBFs using local support

nodes:

(2.4) uh(x) =
Ns∑

i=1

φi(x)ai = ΦT (x)a
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where ai, i = 1, 2, . . . , Ns are unknown coefficients and vector aT (x) = [a1, a2, . . . , an],

Ns is the number of local support nodes of x, φi, i = 1, 2, . . . , Ns are the basis of

supports nodes which can be determined in the node selection part.

2.1. Nodal Shape Functions by RPIM. Nodal shape functions are constructed

by the radial point interpolation method (RPIM), which forces the approximated

function passing through all the local support nodes. We have the following condi-

tions:

(2.5) uk = uh(xk) =

Ns∑

i=1

φi(xk)ai k = 1, 2, . . . , Ns

and in matrix form, it becomes

us = Θsa

in which us = [u1, u2, . . . , uNs
] is the vector collecting all function values at the Ns

local support nodes, Θs is the square moment interpolate matrix with RBFs evaluated

on the local nodes:

Θs =




φ1(x1) φ2(x1) · · · φn(x1)

φ1(x2) φ2(x2) · · · φn(x2)

· · ·
φ1(xn) φ2(xn) · · · φn(xn)



.

It has been proved that matrix Θs is always invertible for scattered nodes. Therefore,

we can calculate the coefficient vector a as

a = Θ−1
s us.

Substituting the value of a to Eq. 2.4, we have:

(2.6) uh(x) = Ψs(x)us
T

where Ψs(x) is the row matrix of nodal shape functions of the Ns support nodes:

(2.7) Ψs = ΘΘ−1
s = [ψ1(x) ψ2(x) · · ·ψNs

(x)]

Based on the above RPIM construction process, RPIM nodal shape functions

possess the Delta function property [14]

φi(xj) =

{
1 when i = j,

0 when i 6= j

in which xj is coordinates of jth node. This property allows easy treatment for essen-

tial conditions at the boundary node. However, differences in nodal shape functions

of FEM, RPIM shape functions are constructed by using the support nodes. There-

fore, it may not continuous at points where support nodes are updated. In FEM [7],

we generally need coordinate mapping to ensure the continuity. The RPIM method
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Figure 1. Quadrilateral(a) and Triangular(b) Background cells and

support node selection

is straightforward and do not need mapping, because G space theory allows the use

of discontinuous functions.

When constructing the RPIM nodal shape functions, we need to select the sup-

port nodes of the interest point x, for which background cells are useful. Numerical

integration also needs background cells. In 2D problems, triangular cells (T3) and

quadrilateral cells (Q4) which are nonoverlapping and seamless (i.e Ω =
∑Nc

k=1 Ωc
k and

Ωc
i

⋂
Ωc

j = ∅, i 6= j) are mostly used in FEM. In this work, these two kinds back-

ground cells are used to select the support nodes. When use quadrilateral cells (Q4),

for an point x of interest, we choose four nodes (1, 2, 3, 4) of the element that hosts

the point x in Figure 1. For triangular cells (T3) hosting i1, we choose three nodes

(1, 2, 3) of the element and three nodes (4, 5, 6) of the neighbouring elements which

share the same edge with the element. For points belongs the boundary element,

based on the same selection strategy, four or five support nodes will be selected, as

show in Figure 1.

3. The Smoothed Galerkin Weak form and Dicretized System Equations

3.1. Node Based Smoothing Domains. Based on the above support node selec-

tion strategies, the shape functions are discontinuous on the boundary of background

cells. The GGS is needed to define the inner product of shape functions, so they can

belongs to a G1
h space, for which a set of smoothing domains are required. The prob-

lem domain Ω is further divided into Nn node based smoothing domains which must

satisfy two conditions: 1. Ω =
∑Nn

k=1 Ωs
k and Ωs

i

⋂
Ωs

j = ∅, i 6= j, i.e nonoverlapping,

no gap and each smoothed domain contains only one node; 2. The boundary of the

each smoothed domain Γs
i , i = 1, 2, . . . , Nn should satisfy the “no-sharing rule”: Γs

i ,
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Figure 2. Voronoi (a)and Equally Shared (b) Smoothing Domain:

Smoothing Domain: red polygon; Background cell: blue polygon

i = 1, 2, . . . , Nn should not share any finite portion of the lines on which the function

is not square integrable. Two kinds node based smoothing domains are used in our

work: equally-shared smoothing domains and the Voronoi smoothing domains, as

show in Figure 1(a) and Figure 1(b).For quadrilateral background cells(Q4), we use

equally-shared smoothing domains which are generated by connecting sequentially

the mid-edge points to the central point of the adjoint background quadrilaterals

sharing the node. Voronoi smoothing domains associated with the nodes are built by

using the standard Voronoi diagram based on the triangle background cells. Figure 2

shows these two kinds smoothing domains.

Based on the Voronoi smoothing domains and triangle background cells, we in-

troduce another node selection strategy. Functions at a point located on boundary of

Vorinoi smoothing domain segment Γs
i is approximated using nodes of the triangles

connected cut by Γs
i . For example, for any point x on segment AB, four support

nodes 1, 2, i, 3 are selected (see in left part of Figure 2(b)).

3.2. The Smoothed Galerkin weak Form. Based on the argument in [14], if

function u,W are both continuously differentiable at the closure of Ωs
i , then the

derivative of u has the following integral representation:

(3.1)
∂u

∂xj

(x) =

∫

Ωs

i

∂u(ξ)

∂xj

W (x − ξ)dξ j = 1, 2, . . . , d, i = 1, 2, . . . , Nn

then by the Green’s theorem, we can obtain:

∂u

∂xj

(x) =

∫

Γs

i

u(ξ)njW (x− ξ)dξ

−
∫

Ωs

i

u(ξ)
∂W (x − ξ)

∂xj

dξ j = 1, . . . , d, i = 1, . . . , Nn(3.2)
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where nj is the jth component of the unit outer normal vector n on Γs
i and W is the

smoothing function. For simplicity, we use the Heaviside smoothing function in this

paper which is

W (x − ξ) =

{
1

As

i

when x ∈ Ωs
i ,

0 Otherwise.

where As
i is the area of the smoothing domain Ωs

i . Then we can approximate the

derivative of function u as

(3.3)
∂u

∂xj

(x) ≈ ∂̄u

∂xj

(x) =
1

As
i

∫

Γs

i

u(ξ)njdξ j = 1, . . . , d, i = 1, . . . , Nn.

Because of the shape construction process and two node selection strategies given

in Section 2 and Section 3, the approximated solution uh in Eq. 2.5 have only finite

discontinuous points on the boundary of smoothing domains, Eq. 3.3 can be used

to approximate the derivative of the numerical solution for both kinds of smoothing

domains.

The smoothed Galerkin weak form (weakend weak form) for the PDE becomes

[14]:

(3.4)
Nn∑

i=1

(
As

i

(
d∑

j=1

∫

Γs

i

vnjdξ

∫

Γs

i

unjdξ

))
=

Nn∑

i=1

(∫

Ωs

i

fvdξ +

∫

Γ2

gvdξ

)

Our numerical solution will be obtained based on the above smoothed Galerkin weak

form. It is obviously seen form Eq. 3.4 that we do not need u, v in H1 space any

more, because we do not require derivatives of the functions. They need to be in the

following Gs space [30]:

Gs(Ω) =





f(x) ∈ L2(Ω)
Ns∑
i=1

1
As

i

∣∣∣
∫
Γs

i

f(x)nidx
∣∣∣
2

is bounded on Ω 〈1〉
Ns∑
i=1

1
As

i

∣∣∣
∫
Γs

i

f(x)nidx
∣∣∣
2

= 0, iff f(x) ≡ c (c is any constant) 〈2〉





where ni is the outer vector on the boundary Γs
i of smoothing domain Ωs

i .

Proposition 3.1 (Upper bound property of NS-RPIM [29]). The solution in energy

form for the PDE is defined as

Ue =
1

2

∫

Ω

(∇u)T (∇u)dΩ.

The NS-RPIM solutions in energy norm has the following property

Ue(u) ≥ Ue ≥ Ue(ũ)

where Ue(u) is the numerical solution in strain energy by NS-RPIM, Ue is that of the

exact solution and Ue(ũ) is that of the numerical solution by compatible FEM.
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3.3. Discrete System of NS-RPIM. Functions u, v in G1
h space can be approx-

imated by nodal shape functions and corresponding nodal values. For any x ∈ Ω

[14],

(3.5) u(x) = Ψs(x)Us
T , v(x) = Ψs(x)Vs

T ,

where Ψs is the matrix of RPIM shape function obtained using the support nodes of

x, Us and Vs are the function values of support nodes. Substituting above approx-

imations to the smoothed Galerkin weak form Eq. 3.4 and write the formulation in

matrix form, we can obtain the following discrete system

(3.6) KUT = F

where K is matrix obtained from the integration term in Eq. 3.4, U is the vector of

node value of function u and F is the vector of right hand side. They can be expressed

as

(3.7) K =

Nn∑

sd=1

As
iB

T
s Bs, U = [u1, . . . , uNn

], F =

Nn∑

sd=1

FT
s .

where

(3.8) Bs = [Bs,1,Bs,2, . . . ,Bs,Ns
], and Bs,i = [B1

s,i, B
2
s,i, . . . , B

d
s,i]

T

and by Gaussian integration on the boundary of each smoothing domain, we obtain

B
j
s,i =

∫

Γs

i

ψi
s(x)njdξ

=

Nsg∑

m=1

(
Ng∑

n=1

ωnψ
i
s(xmn)nj(xmn)

)
, i = 1, . . . , Ns, j = 1, . . . , d.(3.9)

where Nsg is the number of the Γs
i and Ng is the number of Gauss points located

each segment, ωn is the weighting of the corresponding gauss point. For right hand

side vector, by the same argument we have

Fs = [Fs,1, Fs,2, . . . , Fs,Ns
], with

Fs,i =

∫

Ωs

i

fψi
s(x)dξ +

∫

Γ2

g2ψ
i
s(x)dξ, i = 1, . . . , Ns.(3.10)

Solving the linear system Eq. 3.4, we can obtain the nodal function values. The

functions of the solution and there derivative can then easily obtained using the RPIM

shape functions.
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4. Numerical Experiments

In our numerical examples, Gaussian radial basis functions φi(x) = e−ε2‖x−xi‖
2

,

i = 1, 2, . . . , Nn are used for construct the nodal shape functions, where ε > 0 is the

shape parameter. We use a numerically stable approach (RBF-QR) [33] to perform

the Gaussian radial basis interpolation in the RPIM process. This RBF-QR can

overcome the ill-condition of the matrix when shape parameter ε is small and can

obtain more accurate solution.

In all numerical experiments, we compute the RMES error over the whole domain

Ω:

Er =

√∑Nn

i=1(u
∗
i − ũi)2

Nn

in which u∗, ũn are the analytic solution and the numerical solution obtained by NS-

RPIM for the PDE respectively. To study the property of the presented NS-RPIM, we

also compute the equivalent energy norm as an indicator of the error of the numerical

scheme:

Ue =
1

2

∫

Ω

BTBBdΩ =

{
1
2

∑Ns

i=1A
s
i ((B

s

i )
TB

s

i ) for NS-RPIM,
1
2

∑Ne

j=1A
e
j((B

e
j )

TBe
j ) for FEM,

where As
i , A

e
j, i = 1, . . . , NS, j = 1, . . . , Ne are areas of the smoothing domain for

NS-RPIM and element for FEM respectively. Convergence rates of our numerical

method is defined as

(4.1) r = ln

(
Eh1

r

Eh1
r

)
\ ln

(
h1

h2

)

where Eh1

r , Eh1

r are the relative errors under two different characteristic length h1, h2

which defined as h =
√

AΩ

Ne

where AΩ is the area of the whole problem domain, Ne is

the number of background cells.

4.1. Example 1. We consider the first example which exact solution is u(x, y) =

sin(x2 + y2) and the elliptic operator is L = −( ∂2

∂x2 + ∂2

∂x2 ). In this example, we use

two kinds of background cells: quadrilateral and triangular background cells.

We use quadrilateral background cells in this example to show the performance

of the method. When we consider the Q4 background cells, to analysis the influence

of mesh distortion for our method, we add random disturbance by beta distribution

to the location coordinates of the nodes which is

(4.2) f(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα+1(1 − x)β−1 x ∈ (0, 1)

where Γ(α),Γ(β) are Γ functions with α, β as distribution parameter. The distortion

parameter is defined as:

Dt = µ(2ǫ− 1),
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Figure 3. Analytic solution and numerical solution by NS-RPIM

when 121 nodes are used.

in which µ ∈ [0, 1] is the irregular factor and ǫ is a random number produced using

beta distribution.

In this case, the problem domain is: Ω = [0, 1] × [0, 1]. Dirichlet boundary

conditions are imposed on the boundary of domain ∂Ω = Γ1 = {x = 0, y ∈ [0, 1]; x =

1, y ∈ [0, 1]; y = 0, x ∈ [0, 1]; y = 1, x ∈ [0, 1]}. For NS-RPIM method, equally shared

smoothing domains based on quadrilateral cells are used. For FEM, the quadrilateral

elements are used. The exact energy norm in Ω is 0.5333. Figure 3 plots the analytic

solution and numerical solution by NS-RPIM. Figure 4(a) is the RMES errors as

node numbers increasing. From Figure 4(b), it can be seen that when background

quadrilateral cells are not regular, the accuracy of numerical solution by FEM decrease

dramatically. However, the errors by NS-RPIM are very stable and capped small.

Hence, the NS-RPIM is resistance to mesh distortion. The table of Figure 5(a) lists

the energy norms by FEM and NS-RPIM for different characteristic length of the

mesh. In Figure 5(a), it can be obviously seen that NS-RPIM solutions are an upper

bound to that of FEM. Figure 5(b) shows the convergence process of the numerical

solutions. It can be seen that solutions by NS-RPIM provide upper bounds, and

solutions by FEM provides lower bounds. They together bound the exact solution

from two sides.

4.2. Example 2. In this example, we first study the convergency performance of the

NS-RPIM. The domain and the elliptic operator is same as that for the Example 1.

The analytic solution in this case is u(x, y) = ex2+y2

and Dirichlet boundary conditions

are imposed on the boundary. For quadrilateral background cells, Table 1 present the
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Figure 4. RMES errors as node number increasing(a) and RMES er-

rors compared with FEM as mesh are not regular (b)

RSME errors when irregular factors are 0.6, 0.7 and 0.8, respectively, for different

node numbers. It can also be seen that the numerical solutions by NS-RPIM in

these two cases are more accurate than solutions by FEM. Here, we further evaluate

relative convergency rate of NS-RPIM in comparison with FEM. Figure 6 presents

the convergence curves when irregular factor from 0.5 to 0.9 and it shows that both

convergency rates and accuracies of solutions by NS-RPIM are higher than that of
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Figure 5. Energy Norms as character length decrease in Ex 1 for

quadrilateral background cells

FEM when irregular factor is larger than 0.5. These results show again that the

NS-RPIM is not sensitive to mesh distortion.

Next, we study the upper bound properties of NS-RPIM for different background

cells and different kinds of smoothing domains. For quadrilateral background cells and

equally shared smoothing domain in domain Ω1 = {(x, y) ∈ R
2|x ∈ [0, 1], y ∈ [0, 1]},

the exact solution in energy norm is 11.8804. Figure 7 shows the energy norms by

NS-RPIM together with that of FEM. It is observed again that the energy norms by

NS-RPIM is upper bounded solutions to both exact solutions and numerical solutions

by FEM. For triangle background cells and voronoi smoothing domains in domain

Ω = {(x, y) ∈ R
2|x ∈ [−1, 1], y ∈ [−1, 1]}, the exact solution for energy norm is

47.5218. We use all-nodes-on-path selection strategy. Figure 8 is solutions in energy

norms by NS-RPIM and that of FEM. It can be seen that energy solutions by NS-

RPIM are upper bound solutions to exact solutions and energy norms by FEM are

the lower bound solutions. We noted that in this example, the accuracy of NS-RPIM

is lower than that of FEM counterpart.
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Table 1. RMES errors by SRPIM in irregular mesh for EX2

Irregular factor node number RMES Errors of NS-RPIM RMES Errors of FEM

100 8.6929 ∗ 10−2 9.2845 ∗ 10−2

400 1.8416 ∗ 10−2 3.7186 ∗ 10−2

0.6 900 1.0007 ∗ 10−2 2.4114 ∗ 10−2

1600 6.5816 ∗ 10−3 2.3374 ∗ 10−2

100 5.3376 ∗ 10−2 5.3557 ∗ 10−2

400 2.9277 ∗ 10−2 3.8827 ∗ 10−2

0.7 900 1.1572 ∗ 10−2 2.3926 ∗ 10−2

1600 7.8882 ∗ 10−3 1.0104 ∗ 10−2

100 7.9872 ∗ 10−2 9.0156 ∗ 10−2

400 1.8967 ∗ 10−2 3.2993 ∗ 10−2

0.8 900 1.2868 ∗ 10−2 2.7812 ∗ 10−2

1600 8.6827 ∗ 10−3 2.4967 ∗ 10−2

Table 2. RMES errors of FEM and SRPIM for EX3

h NS-RPIM FEM

0.1 2.43 ∗ 10−3 1.712 ∗ 10−3

0.05 9.9380 ∗ 10−4 6.4927 ∗ 10−4

0.025 3.7894 ∗ 10−4 2.3756 ∗ 10−4

0.00625 5.0433 ∗ 10−5 3.0454 ∗ 10−5

4.3. Example 3. In this example, we consider the example with singular points in

the problem domain. The exact solution is u(x, y) =
√
x+ y and we can easily com-

puting the Lu = −∆u = 1
2

1√
(x+y)3

. It can be seen that point (0, 0) is a singularity

point on the boundary of problem domain at which both the first and second deriva-

tives do not exist. Table 2 shows that our NS-RPIM can obtain numerical solutions

which accuracy is same order with that of FEM even under the regular quadrilateral

mesh. Figure 9 shows that convergency rates of the NS-RPIM are higher than that

of FEM. Accuracies are in the same order and we can even obtain the better solution

when background meshes are not regular. Figure 10 plots the absolute errors of FEM

and NS-RPIM when characteristic length of mesh is 0.05. Table 3 is the numerical

solutions when irregular factor changes from 0.6 to 0.8, it can be seen again that we

can obtain more accurate and higher convergence rates when meshes are distortion.

5. Conclusions

In this implementation of NS-RPIM, we use pure radial basis functions for con-

structing RPIM shape functions and polynomial basis are not used. Triangle back-

ground cells with voronoi smoothing domains, and quadrilateral background cells
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Figure 6. Convergency of EX3 for distortion meshes

with smoothing domains of equally share areas are applied to create our NS-RPIM

models. We found that NS-RPIM results have higher convergency rates when com-

pared the results by FEM using the same mesh. We also found that NS-RPIM is

insensitive to mesh distortion. Thus this method is very promising in dealing with
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h Enpim1 Enexact Enfem1

0.1 12.0730 11.8804 11.8552

0.05 11.9337 11.8804 11.8740

0.025 11.8940 11.8804 11.8788

0.0125 11.8838 11.8804 11.8800

(a)
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Figure 7. Energy Norms as character length decrease in Ex2 for

quadrilateral background cells

Table 3. RMES errors by SRPIM in irregular mesh for EX3

irregular factor node number NS-RPIM error FEM error

100 5.4557 ∗ 10−3 2.4120 ∗ 10−3

400 1.4338 ∗ 10−3 1.6315 ∗ 10−3

0.6 900 1.1135 ∗ 10−3 1.5885 ∗ 10−3

1600 7.0601 ∗ 10−4 8.8682 ∗ 10−4

100 6.0276 ∗ 10−3 4.8284 ∗ 10−3

400 2.5590 ∗ 10−3 2.9642 ∗ 10−3

0.7 900 1.1230 ∗ 10−3 1.3434 ∗ 10−3

1600 7.7790 ∗ 10−4 8.8278 ∗ 10−3

100 4.3137 ∗ 10−3 5.3834 ∗ 10−3

400 1.9565 ∗ 10−3 3.9094 ∗ 10−3

0.8 900 1.3146 ∗ 10−3 3.2711 ∗ 10−3

1600 6.9621 ∗ 10−4 1.1706 ∗ 10−3
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h Enfem UExact Enpim

56 47.4424 47.5218 54.9589

196 47.4901 47.5218 50.8592

236 47.4888 47.5218 50.5012

326 47.4970 47.5218 49.9657

(a)
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Figure 8. Energy Norms as character length decrease in Ex2 for Tri-

angle background cells

large deformation problems. For solutions of energy norm, NS-RPIM provides upper

bounds to the exact solution and, in contrast that the FEM can provides the lower

bound solutions. Together, they can bound the exact solution from two sides for all

problem we tested so far.
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Figure 9. Convergency of EX3 for distortion meshes
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