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ABSTRACT. In this work, the method of particular solutions (MPS) has been used for solving

nonlinear Poisson-type problems defined on different geometries. The polyharmonic splines is used

as the basis function so that no shape parameter is needed in the solution process. The MPS is

also applied to compute the sizes of critical domains of different shapes for a quenching problem and

compared with the sizes of critical domains obtained from some other numerical methods. Numerical

examples are presented to show the efficiency and accuracy of the method.
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1. INTRODUCTION

The nonlinear partial differential equation is one of the most active fields of recent

research. Most of the real world problems, including gas dynamics, fluid mechanics,

elasticity, relativity and many more, are modeled by the nonlinear partial differential

equations. In general, the exact solutions of many of such problems are not available.

Therefore, numerical approximation has to be done to find the solutions of the prob-

lems. There are many numerical schemes to solve nonlinear problems. Some of them

are the finite element method (FEM) [15], the finite difference method (FDM) [14],

the boundary element method (BEM) [12] and the meshless methods [2, 6, 11]. The

mesh based methods like the FEM and the FDM require extensive work of mesh gen-

eration of the computational domain, resulting large computational resources to solve

the problem. Furthermore, the generation of the mesh for the irregular domain is non

trivial. The radial basis function (RBF) collocation methods are meshless methods

which are able to overcome these drawbacks. In this paper, we have used the MPS

[8, 6, 17], one of the RBF collocation methods, to solve some nonlinear Poisson-type

problems defined on regular and irregular domains. In addition, the MPS is also

applied to compute the size of the critical domains for the quenching problems [5].

The MPS is modified to make the method more efficient.
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Consider the initial boundary value problem

∆u −
∂u

∂t
= −f(t, u) in Ω,(1.1)

u(x, 0) = u0(x) on D̄,(1.2)

u(x, t) = 0 on S,(1.3)

where D ∈ R
m is a bounded convex domain, Ω = D × (0,T), S = ∂D × (0,T), and

T ≤ ∞ such that

lim
u→c−

f(t, u) = ∞,

for some positive constant c. This kind of problem was first studied by Kawarada

[13] in 1975. The solution u is said to quench if there exists a finite time T such that

(1.4) sup
{

|ut(x, t)| : x ∈ D̄
}

→ ∞ as t → T−.

The time at which the quenching occurs is called the quenching time. When u is an

increasing function of t, a necessary condition for (1.4) is

(1.5) max
{

u(x, t) : x ∈ D̄
}

→ c− as t → T−.

The point in the Euclidian space where the solution u reaches c is called quenching

point. For one dimensional case, Acker and Kawohl [1] proved that the origin is

the only quenching point for the problem (1.1)–(1.3) when the domain is a ball with

center at origin. Also, Deng and Levine [9] extended the results from balls to convex

domain D with smooth boundary ∂D. They showed that the quenching points are

in a compact subset of D. In 1994, Chan and Ke [5] studied the critical domains

and developed a method to find the size of such domain for the problem (1.1)–(1.3)

defined on a domain with piecewise smooth boundary. A critical domain D∗ is a

domain such that the solution exists for all domain D at all time when D ⊂ D∗ and

the quenching always occurs at finite time T in D ⊇ D∗. With u0 ≡ 0, Chan and

Ke [5] proved that a unique critical domain exists for each shape of domain of the

problem (1.1)–(1.3). This means distinct shape of domain has distinct critical domain

size. The size of the domain is specified by area in 2D and volume for 3D or higher.

In 2007, Tian [16] applied a numerical method using Delta-shaped basis function to

compute the critical domains for quenching problems and compared the results with

the results already established with some other computational methods.

Let D ⊆ R
m and D1 ⊆ R

m. They will have same shape if there exists x0 ∈ D∩D1

and a positive constant λ such that

(1.6) D1 = {y : y = x0 + λ(x − x0)} for x ∈ D.

If the problem (1.1)–(1.3) is defined on the domain D1 with known shape and x0 is

at the origin, we can transform this problem into a problem defined in different sized
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domain D having the same shape in the following way:

∆uλ −
∂uλ

∂t
= −λ2f(λ2t, uλ) in Ω,(1.7)

uλ = 0 on D̄ ∪ S,(1.8)

where (cf. Chan and Ke [5]),

(1.9) λ =

(

size of D1

size of D

)1/m

.

From (1.9), we see that the size of the critical domain is determined by λ. The

modified MPS has been used to compute λ.

The paper is organized as follows. In Section 2, a brief review for the MPS for

solving nonlinear Poisson-type problems with Dirichlet’s boundary condition is given.

In Section 3, an algorithm for the computation of quenching problems is given. In

Section 4, some numerical examples for solving nonlinear Poisson-type problems are

given, and critical domains for quenching problems are computed and compared to

the results already established by some other numerical methods. Conclusion is given

in Section 5.

2. THE METHOD OF PARTICULAR SOLUTIONS (MPS)

In this section, we give a brief review of the MPS [8, 6, 17] using polyharmonic

splines. For simplicity, let us consider the following Poisson problem in 2D

∆u(x, y) = f(x, y), (x, y) ∈ Ω,(2.1)

u(x, y) = g(x, y), (x, y) ∈ ∂Ω,(2.2)

where Ω ⊆ R
2 is a bounded and closed domain with boundary Ω, f and g are known

functions.

Let φ be a radial basis function (RBF) and {pl}
w
l=1 be a basis of Pm, the set

of two dimensional polynomials of degree ≤ m with w = (m + 1)(m + 2)/2. Let

{(xi, yi)}
n
i=1 be a set of pairwise distinct interpolation points with {(xi, yi)}

ni

i=1 ⊆ Ω

and {(xi, yi)}
n
i=ni+1 ⊆ ∂Ω such that n = ni + nb.

The MPS has been widely used in the context of RBFs with shape parameter such

as MQ, inverse MQ, Gaussian. Recently, Yao et al. [18] has extended the MPS using

polyharmonic splines with augmented polynomials as the basis function as follows

(2.3) u(x, y) ≃ û(x, y) =

n
∑

j=1

aiΦ(r) +

w
∑

l=1

an+lpl(x, y), (x, y) ∈ Ω,

where r = ‖(x, y) − (xj , yj)‖ and

(2.4) ∆Φ(r) = r2k ln r, k ∈ Z
+.
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Note that Φ in (2.4) can be easily obtained through repeated integration in the polar

coordinates. It follows that

(2.5) Φ(r) =
r2k+2

4(k + 1)2
ln r −

r2k+2

4(k + 1)3
.

Furthermore,

f(x, y) ≈ ∆û(x, y) =
n

∑

j=1

ajr
2n ln r +

w
∑

l=1

an+lql(x, y), (x, y) ∈ Ω,(2.6)

where

∆pl(x, y) = ql(x, y), l = 1, 2, . . . , w.

In addition, the following augmented equation needs to be imposed [10]

n
∑

j=1

ajpl(x, y) = 0, l = 1, 2, . . . , w.(2.7)

Using (2.3) and (2.7), we can establish the following matrix system

[

û

0w

]

=

[

AΦ Pnw

PT
nw 0ww

]













a1

a2

...

an+w













,(2.8)

where 0w is the zero matrix of order w × 1, û = [û(x1, y1), . . . , û(xn, yn)]
T , AΦ =

[Φ(rij)]1≤i,j≤n and Pil = pl(xi, yi), i = 1, 2, . . . , n. From (2.8), we have

a =

[

AΦ Pnw

PT
nw 0ww

]−1 [

û

0w

]

,(2.9)

where a = [a1, a2, . . . , an+w]T . By collocating the interior points, we have

(2.10) f(xi, yi) =

n
∑

j=1

ajr
2k ln r +

w
∑

l=1

an+lql(xi, yi), i = 1, 2, . . . , ni.

with the additional augmented equations

(2.11)

ni
∑

j=1

ajql(xj , yj) = 0, l = 1, 2, . . . , w.

Similarly, by collocating the boundary points, we have

(2.12) g(xi, yi) =

n
∑

j=1

ajΦ(rij) +

w
∑

l=1

an+lpl(xi, yi), i = ni + 1, . . . , n.

with additional augmented conditions

(2.13)
n

∑

j=ni+1

ajpl(xj , yj) = 0, l = 1, 2, . . . , w.
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From (2.10)–(2.13), we have the following block matrix system

(2.14)







φnin Qniw

Φnbn Pnbw

[QT
niw

,PT
nbw

] 0ww



















a1

a2

...

an+w













=







fni

gnb

0w






.

Using (2.14), (2.9) becomes

(2.15)







φnin Qniw

Φnbn Pnbw

[QT
niw

,PT
nbw

] 0ww







[

AΦ Pnw

PT
nw 0ww

]−1 [

û

0ww

]

=







fni

gnb

0w






.

We can rewrite the equation (2.15) as

(2.16)







φnini
φninb

Qniw

Φnbni
Φnbnb

Pnbw

QT
niw

PT
nbw

0ww













Φnini
Φninb

Pniw

Φnbni
Φnbnb

Pnbw

P T
niw

P T
nbw

0ww







−1 





ûni

ûnb

0w






=







fni

gnb

0w






.

Let

A =







φnini
φninb

Qniw

Φnbni
Φnbnb

Pnbw

QT
niw

PT
nbw

0ww






, B =







Φnini
Φninb

Pniw

Φnbni
Φnbnb

Pnbw

P T
niw

P T
nbw

0ww






.

Since the matrices A and B have same second row, Lemma 1 in the Appendix implies

that the second row of matrices AB−1 and BB−1 are equal. Thus, the product matrix

AB−1 takes the form

(2.17) AB−1 =







Cnini
Cninb

Cniw

0nbni
Inbnb

0nbw

Cwni
Cwnb

Cww






.

Consequently, from (2.16) and (2.17), we have

(2.18)







Cnini
Cninb

Cniw

0nbni
Inbnb

0nbw

Cwni
Cwnb

Cww













ûni

ûnb

0w






=







fni

gnb

0w






.

Note that (2.9) can be further reduced to the following matrix system

(2.19)

[

Cnini
Cninb

0nbni
Inbnb

] [

ûni

ûnb

]

=

[

fni

gnb

]

.

The equation (2.19) implies that

Cnini
ûni

+ Cninb
ûnb

= fni
,(2.20)

ûnb
= gnb

.(2.21)

Substituting (2.21) into (2.20), we can further reduce to the following system

(2.22) ûni
= C−1

nini
(fni

−Cninb
gnb).
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It is obvious that solving (2.22) is more efficient than solving (2.18).

Since the problems we considered are nonlinear, we used Picard method to carry

out the iteration [7]. The iteration is summarized as follows:

Algorithm 1

Step 1: Construct a sequence
{

u(i) : i ∈ N ∪ {0}
}

such that

u(0) = 0 and

∆u(i+1) = f(u(i)) in Ω,

u(i+1) = g on ∂Ω.

Step 2: At each iteration, compute u(i+1) using modified MPS.

Step 3: If
∣

∣u(i+1) − u(i)
∣

∣ < ǫ, ǫ > 0,

stop,

end.

Step 4: u(i+1) at the final iteration is the required

approximate solution.

The above mentioned MPS can be extended to more general equations containing

variable coefficients or three dimensional cases. We refer readers to [6] for more details.

3. CRITICAL DOMAINS FOR QUENCHING PROBLEMS

In this section, we apply the MPS to find the critical domain for the quenching

problem (1.7)–(1.8). We suppose f(u) = 1/(1 − u). Then, we have,

∆u − ut = −
γ

1 − u
in Ω,(3.1)

u = 0 on D̄ ∪ S,(3.2)

where γ = λ2. The critical value of γ is obtained from the steady state form of the

above problem. We have,

∆U = −
γ

1 − U
in D,(3.3)

U = 0 on ∂D.(3.4)

Once we compute the critical value γ∗ of γ, we can use equation (1.9) to compute

critical size of the considered domain. Here, we present an algorithm to compute the

critical value γ∗.
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Algorithm 2

Step 1: The upper bound γupper for γ∗ is obtained from the

solution of the problem

∆ξ = −1 in D,

ξ = 0 on ∂D.

We have, γupper = 1/maxD̄ξ and choose γlower = 0.

Estimate γ∗ with γ(1) = (γupper − γlower)/2.

Step 2: For each γ(k), Compute
{

U (i)
}

defined by

U (0) = 0 on D̄,

and for i ≥ 1,

∆U (i) = − γk

1−U (i−1) in D,

U (i) = 0 on ∂D.

For each γ(k), Compute
{

U (i)
}

by the modified MPS.

If
{

U (i)
}

converges, the corresponding γ(k) is the

lower bound for γ∗; otherwise, it is an upper bound.

Step 3: If
∣

∣γ(k−1) − γ(k−2)
∣

∣ < ǫ, ǫ > 0,

(a given tolerance), then γ(k−1) is

the approximate critical value.

Step 4: Update γ(k−1) in the following way:

If
{

U (i)
}

in Step 2 converges,

γ(k) = γ(k−1) + 1
2

∣

∣γ(k−1) − γ(k−2)
∣

∣ ;

otherwise

γ(k) = γ(k−1) − 1
2

∣

∣γ(k−1) − γ(k−2)
∣

∣.

Step 5: Repeat Steps 2 − 4 until the tolerance is reached.

As a numerical experiment, the critical values are computed by using the mod-

ified MPS with the above algorithm for the problem (3.1)–(3.2) defined on different

domains of given shape. Furthermore, using the relation (1.9), the critical size of

the domains are calculated and compared with the sizes obtained from some other

numerical methods.

4. NUMERICAL RESULTS

To demonstrate the effectiveness of the modified MPS, we consider three numeri-

cal examples of Poisson-type nonlinear problems with regular and irregular domains.

The domains we considered are squares, amoeba-like, and peanut-like domains. Fur-

thermore, critical size of the domains are computed for the quenching problems de-

fined on regular and irregular domains and compared the results with the results

obtained from some other computational methods. The parametric equation of the
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boundary ∂Ω is defined as follows

∂Ω = {(x, y)|x = r(ϑ) cos(ϑ), y = r(ϑ) sin(ϑ), 0 ≤ ϑ < 2π} ,

where

(4.1) r(ϑ) = esin ϑ sin2(2ϑ) + ecos ϑ cos2(2ϑ)

is the amoeba-like boundary and

(4.2) r(ϑ) =

√

cos(2ϑ) +
√

1.1 − sin2(2ϑ)

is the peanut-like boundary. The profiles of amoeba-like and peanut-like domains are

shown in Figure 1.
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Figure 1. The profiles of amoeba-like and peanut-like domains.

The root-mean-squared error (RMSE) and the maximum error (MAX) are used

to measure the accuracy of the solutions. They are defined as follows

RMSE =

√

√

√

√

1

nt

nt
∑

j=1

(ûj − uj)2,

and

MAX = max
1≤j≤nt

|ûj − uj|,

where nt is the number of test points in the domain and ûj and uj are the approximate

solution and exact solution at the jth test point respectively.

Through all the numerical examples except example 4.5 in this section, we have

chosen the tolerance ǫ = 10−7 in Algorithm 1 to ensure the accuracy of the solution.

We choose polyharmonic splines of order 2 as the radial basis function plus a polyno-

mial basis up to degree 2; i.e., {1, x, y, x2, xy, y2}. If necessary, higher accuracy can

be further achieved using high order of polyharmonic splines. We find polyharmonic

splines of order 2 is sufficient for solving nonlinear problems in this section. The

boundary and interior points are selected uniformly through the domain.
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Example 4.1. Let us consider the nonlinear Poisson problem with Dirichlet boundary

condition:

∆u(x, y) = 3u2, (x, y) ∈ Ω,(4.3)

u(x, y) = g(x, y), (x, y) ∈ ∂Ω,(4.4)

where g(x, y) is given based on the following analytical solution

uexact(x, y) =
4

(3 + x + y)2
.

In Table 1, we show the numerical results for three different domains. From the

table, we observe that the accuracy is quite high. The algorithm is also very efficient

since only a small number of iterations is required for all these three domains. The

reasons that the unit square domain has high accuracy could be due to the domain

is more regular and the area of the domain is smaller than the other two domains.

Table 1. The RMSE and Maximum error with different domains.

Domain (ni, nb) # Iterations RMSE MAX

Unit Square (841, 236) 6 4.378e − 08 1.233e − 07

Amoeba (861, 300) 15 5.220e − 07 8.406e − 06

Peanut (832, 290) 15 1.204e − 06 2.265e − 05

Example 4.2. Let us consider the following nonlinear Poisson type problem:

∆u(x, y) = u3 −
5

2
− (1 −

x2

4
− y2)3, (x, y) ∈ Ω,(4.5)

u(x, y) = g(x, y), (x, y) ∈ ∂Ω,(4.6)

where g(x, y) is given based on the following exact solution

uexact(x, y) = 1 −
x2

4
− y2.

In this example, we have tested our method to the Poisson-type nonlinear PDE which

includes the space variables x and y in the source term. The numerical results are

presented with the same domains as in previous examples. In Table 2, we observe

that less number of iterations are required to obtain excellent accuracy. Therefore,

the method can be a good alternative to solve such problem accurately and efficiently.

Example 4.3. In this example, we consider Poisson-Boltzmann Equation [3], a typ-

ical example of Poisson-type nonlinear equations. This equation has been widely

applied in many physical problems including bio-molecular processes and electro-

static interactions between colloidal particles. Here, we solve this equation defined
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Table 2. The RMSE and Maximum error with different domains.

Domain (ni, nb) # Iterations RMSE MAX

Unit Square (841, 236) 7 2.987e − 10 6.224e − 10

Amoeba (861, 300) 15 3.132e − 09 9.966e − 09

Peanut (832, 290) 8 1.937e − 09 3.827e − 09

on a square domain to observe the efficiency and accuracy of the present method.

Consider the problem

∇ · (ε∇u) = κ sinh(u) + f, (x, y) ∈ Ω(4.7)

with boundary condition

(4.8) u(x, y) = g(x, y), (x, y) ∈ ∂Ω.

Here, ε and κ are some known field functions. In this experiment, we let ε = 1

and κ = 1. The function g(x, y) is given based on the following exact solution,

uexact(x, y) = x2 +y2 +ex cos(y) and the source term f = 4− sinh(x2 +y2 +ex cos(y)).

We have generated different sets of interior points and boundary points on a square

domain D = [−1, 1] × [−1, 1]. In Table 3, various number of interior and boundary

points are chosen and excellent results have been observed. The improvement of the

accuracy is consistent with the increasing number of interior and boundary points.

The number of iterations for various number of interior and boundary points in Table 3

is 26.

Table 3. The RMSE and Maximum error with different set of collo-

cation points.

(ni, nb) RMSE MAX

(361, 88) 3.516e − 05 1.049e − 04

(576, 116) 1.526e − 05 4.830e − 05

(1089, 316) 4.778e − 06 1.646e − 05

(1444, 476) 2.831e − 06 9.953e − 06

(3364, 596) 5.766e − 07 2.084e − 06

Example 4.4. In this example, we extend the MPS for solving nonlinear problems

to compute the critical domains of quenching problems using Algorithm 2. Let us

consider the rectangular domain D = [0, a] × [0, b]. The ratio a/b determines the

shape of the rectangle. Using the relation (1.9), we have,

Critical size of the domain = γ∗ · (Area of D).(4.9)



MPS FOR QUENCHING PROBLEMS 145

In Table 4, we show the results of the critical size of the rectangular domains with

different ratios a/b and also compared our results with Chan and Ke [5], who had

adopted the finite difference method (FDM). We have taken 841 interior points and

236 boundary points. The results of both approaches are very close to each other.

Since the computational domain is rectangular, the FDM can be easily applied. How-

ever, for irregular domain, the FDM will have difficulty in implementing the solution

algorithm. On the other hand, the numerical procedure for the proposed MPS for

irregular domain is the same as the rectangular domain. This is one of the attractive

features of the MPS for solving nonlinear or quenching problems.

Table 4. Critical size of domains for rectangles with different ratio a/b.

Ratio a/b FDM MPS

0.125 18.80540 18.81603

0.250 9.67221 9.67679

0.375 6.85011 6.85462

0.500 5.59863 5.60066

0.625 4.96792 4.97582

0.750 4.64531 4.64751

0.875 4.49641 4.50236

1.000 4.45375 4.46474

Example 4.5. In this example, the critical domain sizes of quenching problems are

produced for three different domain shapes including regular and irregular geometries

and compared with Chan [4] and Chan and Ke [5], Tian [16]. Chan [4] devised

a computational method using Green’s function whereas Chan and Ke [5] used the

finite difference method and Tian [16] applied a numerical method using Delta-shaped

basis function to compute the sizes of the critical domains.

In this numerical experiment, we have considered three domains, namely rectan-

gle, ellipse and peanut. The rectangular domain is defined as [0, 0.5] × [0, 1] whereas

the elliptic domain is defined as

(4.10) D =

{

(x, y) :
x2

a2
+

y2

b2
< 1

}

where a = 0.4575 and b = 0.3. The peanut-like domain we use in this example is

different from the one we considered in the examples above. The domain is defined

in polar form as

r(ϑ) =
1

4
(1 + cos2(ϑ)), 0 ≤ ϑ ≤ 2π.

To make the comparison, we choose the domain exactly the same as taken by previous

authors in [4, 5, 16]. The profile of peanut-like domain in this example is shown in
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Figure 2. In this example, we have chosen the tolerance ǫ = 10−9 in Algorithm 1. We

have chosen 729 interior points and 208 boundary points of the rectangular domain

and 858 interior points and 300 boundary points for the elliptical domain. Similarly,

the interior points and boundary points taken for the peanut-like domain are 780

and 300 respectively. Furthermore, the area of the rectangle, ellipse and peanut-like

domains are 0.5, 0.4312, and 0.4663 respectively. As shown in Table 5, we notice

that the critical size of three domains using the modified MPS is close to the results

obtained by other methods. The computer running time for rectangle, ellipse, and

peanut-like domains are 4.44, 6.59, and 6.61 seconds respectively. There is no report

of the numerical efficiency from previous work.
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Figure 2. The profile of peanut-like domain.

Table 5. Critical size of domains for different geometries.

Domains Delta-shaped function MPS FDM Green’s function

Rectangle 5.599 5.601 5.599 −

Ellipse 4.460 4.463 − 4.460

Peanut 5.052 5.053 − −

5. CONCLUSIONS

The MPS has been modified and applied for solving nonlinear Poisson-type prob-

lems. The numerical results indicates that the method can be an attractive alternative

to other traditional methods. Furthermore, the method is further used to compute

the critical domains of the quenching problems and compared the results to some

other established numerical methods such as finite difference method. The compar-

isons show that the MPS can effectively solve nonlinear singular problems. Unlike

the FDM, it can solve such problems more efficiently defined on irregular domains

with higher dimensions. The simplicity of the implementation is another attraction
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of this method, apart from the numerical accuracy and the efficiency. The proposed

method can easily be extended to higher dimensional nonlinear problems with differ-

ent boundary conditions defined on different geometries which is a grate challenge for

the traditional mesh based methods.

APPENDIX

Lemma 1. Let A, B and C be three matrices of same size and they are in block

matrix form with 3 row partitions and 3 column partitions such that the sub matrices

on the second row of the matrix A are equal to the corresponding sub matrices of B.

Let

A =







A11 A12 A13

A21 A22 A23

A31 A32 A33






, B =







B11 B12 B13

A21 A22 A23

B31 B32 B33







and C =







C11 C12 C13

C21 C22 C23

C31 C32 C33






.

Then the sub matrices on the second row of the product matrix AC are equal to the

corresponding sub matrices of the product matrix BC.
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