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GROWTH OF GROUPS OF WIND GENERATED WAVES
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A high-Reynolds-number stress closure model is used to perform numerical simulations of the wind

flow above different groups of waves. The group profiles can change as the individual waves grow

within its envelop due to the energy transfer between the wind and the group. The focus of this

study is the behavior of the critical layer and the associated “cat’s-eye” structures centered around

the critical height, where the real part of the complex wave speed is equal to the mean flow velocity.

The position and size of these structures depend on the wave age and the wave steepness. It is

shown that the larger the structures become, the more disturbance of the wind flow above the wave

occurs. The results obtained here demonstrate the formation of cat’s-eye structures which appear

asymmetrically over the waves within a group.
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1. Introduction

The question of growth and decay of wind generated waves in the ocean has been

studied extensively but the interactions and energy transfer between the water wave

and the ambient wind is still not fully understood. Most of the studies (experimental,

numerical or analytical) consider monochromatic or idealized wave profiles. As it

has been observed extensively, waves actually travel in groups for which the profiles

change as the waves in their envelop are traveling. In this study we are considering the

influence of grouping on the growth of ocean waves induced by wind shear flows. We

focus our attention to the region around the height were the real part of the complex

wave speed is equal to the mean flow velocity. This region, called the “critical layer”,

is the central point in Miles’ theory [1] and Lighthill’s interpretation of growth of

waves [2]. Miles stated that the amount of energy transferred from the surrounding

wind to the waves is proportional to the value of the curvature of the velocity profile

at the critical height. In this region closed streamlines structures called “cat’s-eyes”

are developed. The larger these structures are, the more disturbance of the wind

flow above the wave occurs. In some previous work [3], a high-Reynolds-number

stress closure model over a moving idealized wavy surface was used to show that

their size and position are dependent on the wave age and wave steepness, which is
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in accordance with direct numerical simulations results [4]. In this study, we use the

same Reynolds stress model over different groups of waves to determine the height of

the critical layer and the overall shape, size and position of the cat’s-eye structures

which develop over individual waves within the group envelop.

2. Governing equations

The air flow with density ρa and kinematic viscosity νa over the group of waves

is governed by the incompressible Reynolds averaged Navier-Stokes equations:

∂Ui
∂xi

= 0(2.1)

DUi
Dt

= − 1

ρa

∂P

∂xi
+

∂

∂xj

[
νa

(
∂Ui
∂xj

+
∂Uj
∂xi

)
− u′iu′j

]
(2.2)

where Ui is the mean velocity component in the xi-direction, P is the mean pressure,

u′iu
′
j is the Reynolds-averaged stress correlation and t is time.

A model for the Reynolds-averaged stress correlations is needed to close equation

(2.2). A rational approach for providing a model for u′iu
′
j in equation (2.2) relies on

its transport equation, which may be written in the following form

Du′iu
′
j

Dt
= Pij + Πij − εij + dij(2.3)

where Pij = −(u′iu
′
k∂Uj/∂xk+u

′
ju
′
k∂Ui/∂xk) is the production term, Πij represents the

velocity-pressure gradient correlation, εij the viscous dissipation, and dij represents

diffusion by both molecular viscosity and the triple velocity moments. On the left-

hand side of (2.3), the stress convection, and the production term are both exact

and require no further modelling. However, all other terms contain further unknowns

which must be modelled. For this we adopt a high-Reynolds-number turbulence model

[5]. In this model, the pressure correlation Πij is decomposed into a redistributive

part, φ∗ij, and a non-redistributive part by

Πij ≡ −
1

ρa

(
u′i
∂p′

∂xj
+ u′j

∂p′

∂xi

)
= φ∗ij +

u′iu
′
j

2K
dpkk(2.4)

where dpkk = −(1/ρa)∂u′kp
′/∂xk represents the pressure diffusion of the turbulent

kinetic energy K = 1
2
u′iu
′
i.

The model employed for the redistributive part of the pressure correlation, φ∗ij, is

based on the cubic realizable form derived by Fu [6]. The dissipation εij is modelled

as

εij =
(
1− A1/2

) ε
K
u′iu
′
j + 2/3εδij(2.5)
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where A = 1 − 9/8(A2 − A3), A2 = aijaij, A3 = aijajkaki and aij = u′iu
′
j/K − 2/3δij.

This is very similar to the form adopted in other high-Reynolds-number flows, see for

example Gibson & Launder [7].

In (2.5) The dissipation rate ε is obtained from the solution of its own transport

equation:

Dε

Dt
= cε1

εPkk
2K
− cε2

ε2

K
+

∂

∂xl

[(
νaδlk + cεu′lu

′
k
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ε

)
∂ε
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]
+cε3A

1/2(1− A)
ε√
K
u′iu
′
j

∂A

∂xi

∂

∂xj

(
K3/2A1/2

ε

)
(2.6)

with coefficients

cε1 = 1.0, cε2 = 1.92/(1 + 0.7AdA
1/2
2 ), Ad = max(0.2, A), cε3 = 1.0, cε = 0.18

The only remaining term in the stress transport equations is the diffusion term

dij =
∂

∂xk

(
νa
∂u′iu

′
j

∂xk
− u′iu′ju′k

)
(2.7)

The viscous diffusion is, of course exact, and the triple correlations are modelled via

the proposal of Hanjalic & Launder [8] proposal

u′iu
′
ju
′
k = −cs

K

ε

[
u′iu
′
l

∂u′ju
′
k

∂xl
+ u′ju

′
l

∂u′iu
′
k

∂xl
+ u′ku

′
l

∂u′ju
′
i

∂xl

]
(2.8)

where cs = 0.11.

3. Numerical scheme

The finite volume method is used to solve the governing equations. The volumes

are non-orthogonal and collocated such that all flow variables are stored at the cen-

tered of the cells. The numerical scheme uses a pressure based solver [9]. A first

order forward discretization in time is used, and the convective fluxes are approxi-

mated with the higher-order upstream-weighted scheme, QUICK of Leonard [10]. The

pressure and diffusive fluxes are discretized using a central difference operator. The

finite volume method and the chosen discretizations lead to penta-diagonal system

solved using a tri-diagonal, matrix algorithm (TDMA).

The discretization is proceeded by a transformation of the Cartesian coordinates

of the governing equations to the non-orthogonal coordinates ξ and ζ using the Jaco-

bian transformation matrix. The transport equation for any scalar property Φ many



338 FREDERIQUE DRULLION

X

Y

­0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

0.02

0.04

0.06

0.08

0.1

X

Y

0.05 0.1 0.15
0

0.005

0.01

0.015

0.02

0.025

Figure 1. Computational mesh

be expressed in non-orthogonal direction as

∂

∂t
(JρaΦ)︸ ︷︷ ︸

transient term

+
∂

∂ξ

(
ρaU
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)

+
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(
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)
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(
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)
+

∂
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(
βΦJ

∂Φ

∂ζ

)
︸ ︷︷ ︸

diffusion

= JSΦ︸︷︷︸
source

(3.1)

where U (ξ,ζ) = Uzζ−Wxζ and W (ξ,ζ) = Wxξ−Uzξ are contravarient velocity compo-

nents, J is the Jacobian of the transformation, SΦ is the source term including diffusive

terms, pressure terms in the momentum equation, αΦ = ΓΦ(x2
ζ+z

2
ζ ), βΦ = ΓΦ(x2

ξ+z
2
ξ ),

where ΓΦ is isotropic diffusivity, and the subscripts ξ, ζ denote partial differentiations.

The mesh covering the computational domain contains 200 × 100 nodes and

extends over six wavelengths in horizontal direction and two wavelength in the vertical

direction. As can be seen from figure 1, it is refined near the water surface in order

to capture the steep gradients which are inherently present there.
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4. Problem set up and group construction

We consider groups of waves composed by superposition of three cosine waves (see

equation 4.2 below). The groups are traveling in deep water at the speed cr =
1

2

√
g

k
and a wind whose mean velocity is assumed to be logarithmic is blowing above them.

At the height of one wavelength above the surface of the wave, the wind velocity is

imposed to be Uλ .

The turbulent flow has a mean velocity profile U(ζ) = U1 ln(ζ/ζ0), U1 ≡ U∗/κ,

U∗ being the friction velocity, κ being the von Kármán’s constant, and ζ0 is the

surface roughness. Note that, ξ and ζ are the wave-following coordinates, given by

the following transformation

x = ξ, z = ζ + h(ξ, ζ)(4.1)

where h = h(ξ, ζ) maps z = h0 onto ζ = 0 and is evanescent for kζ ↑ ∞ but is

otherwise arbitrary. The computational domain is taken to six wavelengths horizon-

tally and two wavelengths vertically. The groups only extend over four wavelengths

(from x = 0 to x = 4λ) and are surrounded by a flat surface. The latter ensures the

periodicity in boundary conditions in the x-direction. In our simulations, the frame

of reference is traveling with the group. The initial wave group profile is given by:

h0 = a[cos(kX ) + ε1 cos(k1X ) + ε2 cos(k2X )](4.2)

where a is the initial wave amplitude k is the wave number, k1 = 1 +
√

2ak and

k2 = 1−
√

2ak and where X = ξ − crt.

5. Boundary conditions

A strictly horizontal velocity U = Uλ −
cr
2

is imposed at the top of the compu-

tational domain, taking into account the fact that the frame of reference is moving

with the waves at the speed
cr
2

.

At the bottom of the domain, the mean velocity components match the wave orbital

velocities. The orbital velocities for 0 ≤ x ≤ 4λ, are given by

u = −cgak[cos(kx) + ε1k1 cos(k1x) + ε2k2 cos(k2x)]− cg
v = −cgak[sin(kx) + ε1k1 sin(k1x) + ε2k2 sin(k2x)]

Note that, for the flat surfaces surrounding the group portion on the south boundary,

namely when x < 0 and x > 4λ, we impose the conditions u = −cg and v = 0.

In the streamwise direction, periodic boundary conditions are imposed on all the

mean variables and the turbulent stresses together with the turbulent dissipation rate.

At the top and the bottom of the computational domain the boundary conditions

imposed on the stresses and the dissipation rate are the same as the one used in [11].
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Figure 2. Contour plots and velocity vector field of the stream func-

tion over group1 wave for three values of the wave age cr/U∗=1 (top);

3.5 (middle), and 7 (bottom).

The boundary conditions for stresses and dissipation rate is taken from our earlier

paper [11].

6. Results

In this paper we report computations of turbulent flow over two groups, in a frame

of reference moving with the wave, namely group1 and group2. For both groups, the

initial amplitude of the main cosine wave is a(0) = 0.0025m and its wavelength is

λ = 0.1016m. (εi)1,2 for group1 and group2 are respectively: (ε1 = 0.2 , ε2 = 0.1) and

(ε1 = 0.25 , ε2 = 0.5 ).

Note that, for all the diagrams, the vertical axis has been normalized using the fun-

damental wave number k.

6.1. Non growing groups. We first consider the influence of the wave age on

the cat’s-eye structures over non-growing groups for the following three wave ages:

cr/U∗ = 1, cr/U∗ = 3.5, and cr/U∗ = 7.

Figures 2 and 3 show the contour plots of the stream function for respectively

group1 and group2 as a function for three wave ages cr/U∗ = 1, 3.5 and 7. As it can

be seen from these figures, at lowest value of cr/U∗ cat’s-eye structures are formed

downstream of the steepest waves in the group. As the wave age increases to 3.5,

we note that new weaker cat’s-eye structures appear in the lee of the waves where
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Figure 3. Contour plots of stream function and velocity vector field

over group2 wave for three values of the wave age cr/U∗= 1 (top); 3.5

(middle), and 7 (bottom).

they were not previously present, the pre-existing structures increase in size and

their center slightly shift toward the peak of the wave behind of them, the cat’s-eye

structures also slightly lift up from the surface of the wave. At cr/U∗ = 7 the cat’s-eye

become stronger and move further over the peak of the waves in the group. At the

largest value of the wave age we can observe a maximum disturbance of the mean

flow above the waves, the critical height, passing through the center of the cat’s-eye

structures is lifted above the crests of the waves.

6.2. Growing groups. We next consider the case where groups of waves for which

the initial profile as well as the lower boundary condition can evolve under the in-

fluence of the wind flow above the wave. For the growing groups, the computational

mesh is regenerated every 50 time steps, where each time step consists of 500 iter-

ations and is increased as the waves become steeper. All the variables are then in-

terpolated/extrapolated onto the new mesh. The growth factor for each wave within

the group is eKcit, where K can be taken to be k, k1 or k2 and

ci = 8cga/λ.

This choice of the complex wave celerity is chosen such that it yields a similar mag-

nitude as that used in our earlier contribution [12]. A more physical expression may

be deduced from parameterization expression for the energy-transfer rate from wind

to waves, see [14].



342 FREDERIQUE DRULLION

X

k
Z

0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

4iteration 900

X

k
Z

0.1 0.2 0.3 0.4 0.5

0

1

2

3

iteration 1500

X

k
Z

0 0.1 0.2 0.3 0.4 0.5

1

2

3

4
iteration 500

Figure 4. Contour plots of stream function over growing group1 wave

for a single value of the wave age cr/U∗ = 5.75. Steepest wave is

depicted at the bottom.

In figure 4, we display the result of simulations for group2 growing under the

influence of the surrounding wind, for one fixed value of the wave age cr/U∗ = 4.5.

As it can be seen, when the wave steepens, the cat’s-eye structures are formed in the

lee of the waves in the group. As the waves grow so do the cat’s-eyes, and similar to

our other computations for monochromatic waves and bimodal Stokes waves [11] (see

also Sullivan et al. [4]), the critical height rises further up from the surface of the

waves. It is also evident that the flow become more asymmetrical which shows how

the air flow over the downwind part of the group is lower than over the upwind part.

7. Conclusion

The high-Reynolds-number stress model adopted in this study, successfully sim-

ulate the turbulent wind flow above growing and non growing groups of waves for

different wave ages. Our simulations show that the height of the critical layer as

well as the shape and positions of the cat’s-eye structures that form in the lee of

the waves of the groups are dependent on the wave age as it was previously shown

for monochromatic and stokes waves with the same model [11]. As the waves of the

groups are growing, so are the cat’s-eye structures. The flow above the waves becomes

asymmetrical. This asymmetry causes the critical layer height to be lower over the

downwind part of the group what is in accordance with the conclusion of our earlier

papers [12, 13]. The positive growth of the individual waves on the upwind part of the
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wave group exceeds the negative growth on the downwind part. Hence, the effect of

grouping on the critical layer produces a net horizontal force on the waves, in addition

to the sheltering effect.
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