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ABSTRACT. This paper deals with study of reliability and availability of machines operated

under periodic surveillance test. Machines fail randomly in Poisson probability distribution and

are repaired exponentially. The main objective of the paper is to find probability distribution

function for the system with the help of which reliability, availability, unavailability of the system

are obtained explicitly. The mathematical model is constructed in terms of system of equations

with the assumption of the defects of machines (standby, common cause and independent) with

two types of failure mode (minor and major) and their repair (minor and major). To solve these

equations, matrix pseudo-inverse technique has been used. Numerical results are obtained by using

computational software to show the applicability of the model.
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1. INTRODUCTION

Reliability of a system plays an important role in machining system, manufac-

turing system, quality control, communication system, internet and intranet system,

robot and robotic system. So it is much more worth while to mention some of the

works done on the line. Carr and Savage [1] studied the reliability model of a system

with redundancy which depends on two factors: first the component failures which

is maintained by functional system topology and second the probability of adequate

system performance in each functional configuration. Lu and Lewis [8] analyzed

the reliability model of k-out-of-n configuration for partially redundant safety system

which ensure the high level of reliability and safety with limited financial and space re-

sources. Lee and Wang [7] proposed the approximately optimal testing policy for two

non identical units parallel standby system. Singh [18] studied K-out-of-M+N warm

standby redundant system with common cause failures under the assumption that
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failure rates for both operating and standby units are constant with heterogeneous

repair rate. Dhillon and Yang [2] analyzed the reliability model of warm standby

system with common cause failure and human error failure and they obtained the ex-

pressions for system availability, reliability, mean time to failure (MTTF), and time

to failure variance. Huang et al. [5] developed the reliability model and obtained

its analytical solution for a warm standby redundant system with two identical non-

repairable sets having N functional units. Permila et al. [15] analyzed the stochastic

modeling of a 2-out-of-2: G system of identical units with one more identical unit as

spare in cold standby. Wu et al. [19] studied a k-out-of-n:G repairable system with

one replaceable repair equipment, where the lifetimes and repair times of components

follow exponential distributions and arbitrary distributions, respectively. They also

made the provision that when one component breaks down, it is repaired by the repair

equipment. If the repair equipment fails during the repair period, then it is replaced

by a new one.

Some times machining system fails not only by erroson, wearout, breaking but

it also fails due to vibration, sound, temperature, environmental change, humidity,

moisture which are not certain. Such failures are termed as common cause failure.

Some of the authors threw the light on some of reliability models with the imposition

of common cause failure. Jacob et al. [6] analyzed the reliability of deteriorating

standby system with repairs for common cause failure and critical human error and

obtained point-wise availability. Mosleh [12] developed the reliability model to pre-

vent the common cause failures of the nuclear power plant. Pan and Nonaka [14]

constructed the reliability model with the provision of common cause failures and

evaluated the structure importance, probability importance and β-importance of the

systems which helped reliability analysis to limit the common cause failure so that

the system structure may work for long time.

Availability is another part of concept in the study of system reliability. Avail-

ability is the ability of an item to perform its required function at a stated instant of

time or over a stated period of time [17]. Several authors contributed to the study

of the availability of the system. Raje et al. [16] developed the Markov model for

availability assessment of a two unit standby pumping system. Nourelfath and Du-

tuit [13] solved the redundancy optimization problem for multi-state systems using

universal moment generating function (UGF) technique to evaluate the system avail-

ability. Heising [3] investigated the time dependent unavailability models which are

combined with Markov models, including common cause failures using β-factor.

Surveillance requirements involve periodic tests such as monthly or weekly. The

main purpose of testing is to assure that equipment of the safety system normally

in standby will be operable when the equipment in the operation fails. Martorell et

al. [11] gave the insight into allowed outage time (AOT), surveillance test interval
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(STI) and their intersections using probabilistic methods. Martorell et al. [10] worked

on the surveillance and maintenance tasks to prevent the dominant failure cause of

critical components by using reliability centered maintenance (RCM) method to es-

tablish maintenance task for critical component. Marton et al. [9] suggested the

new model of ageing probabilistic safety assessment (APSA) which is used to support

risk-informed decision and technical specification requirements of nuclear power plant

(NPP). Hellmich and Berg [4] investigated a new model of probabilistic safety assess-

ment (PSA) introducing the Markov model to discuss various strategies for organizing

repair and periodic surveillance test of two-train standby safety system.

2. MODEL FORMULATION

This paper deals with periodic surveillance test, taken periodically to improve

the reliability and availability of the system. Our model is 1-out-of-2 standby system

operated under periodic surveillance test where one machine is in operation and the

other is under surveillance test. When the surveillance test of second machine is

completed, the second machine comes into the operation where the first machine

will go in surveillance test. During the surveillance test if failure in the machine is

detected, it is repaired immediately. At the same time no additional test is done on

the other machine. When the repair is completed, the periodic surveillance test on

that machine is resumed. Two types of failures (minor and major) and their repairs

(minor and major) are taken into account. Reliability and availability of the system

we have studied with repair, surveillance test and standby system provision can rarely

be found in the area. Our work differs from the earlier works conducted by several

authors in a way that we have provisioned minor and major failures and their minor

and major repairs which not only enhance the reliability and availability of the system

but also lead our problem more realistic.

2.1. Notations Used in the Model: We have used the following notations in the

model:

A = The machine is available and is able to provide the service.

S = The machine is under surveillance test state.

Ff = The machine is in the state of minor failure.

Fm = The machine is in the state of major failure.

Rf = The machine is in the state of minor repair.

Rm = The machine is in the state of major repair.

β = Beta factor, β ∈ [0, 1]

β̄ = 1-β

λ1 = Standby minor failure rate.

λ2 = Standby major failure rate.
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βλ1 = Common cause minor failure rate of the both machine.

βλ2 = Common cause major failure rate of the both machine.

βλ3 = Common cause minor in one and major in other failure rate.

β̄λ1 = Independent minor failure rate.

β̄λ2 = Independent major failure rate.

µr = Minor repair rate.

µR = Major repair rate.

η = Transition rate emanating from a surveillance test state.
1
η = Mean surveillance test duration (mean STD).

ξ = Transition rate from a standby to a surveillance test state.
1
ξ = the mean surveillance time interval (mean STI).

r = The probability that a machine under surveillance test can be brought successfully

into operation when a system demand occur.

E = Set of states which are included in the mathematical model of the system.

Q1 = Set of states corresponding to system availability.

Q2 = Set of states corresponding to system availability with probability r.

Pi = Probability distribution of ith state.

2.2. Description of the Model and Methodology. In the transition diagram

(Figure 1), the states are numbered from 1 to 36. Combination of two letters de-

scribe the state of the first and second machine respectively. The Markov model is

introduced in the transition diagram.

Machines of the system under consideration have constant standby minor failure rate

λ1 and the major failure rate λ2. Only one standby redundant system has been pro-

visioned. The beta factor model is applied for common cause failures. Here β ∈ [0,1]

denotes beta factor, βλ1 is the common cause minor failure rate whereas βλ2 is the

common cause major failure rate. Again β̄ = 1 − β, then β̄λ1 is the independent

minor failure rate and β̄λ2 is the independent major failure rate.

In the transition diagram (Figure 1), both machines are available in the green states

1,14,23,36. In the orange color states 2,3,8,9,17,18,19,20,28,29,34,35 one machine is

available whereas other is either failure or under repair. The blue states 15,16,21,22

stand for the states in which one machine is failure where other is under surveillance

test. We assume the probability that a machine which is under surveillance test can be

brought successfully into operation when a system demand be r. Then the probability

of the system availability which is in the state where one machine is failed and other is

under surveillance test is r. The red states 4,5,6,7,10,11,12,13,24,25,26,27,30,31,32,33

represent the system failure states either failure both machines or one machine is

failure and other is under repair.
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Figure 1. Transition diagram for two machines.

(Source: Basu Dev Ghimire and Ram Prasad Ghimire)

2.3. Balance Equations. From the transition diagram (Figure 1) with the transi-

tion rates listed above, for each state, using sum of the probabilities incoming to the

state = sum of the probabilities outgoing from this state we obtained the following

balance equations:

(2.1) −(2β̄λ1 + 2β̄λ2 + 2βλ3 + βλ1 + βλ2 + ξ)P1 + µrP19 + µRP20 + ηP23 = 0
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(2.2) β̄λ1P1 − (λ1 + λ2 + ξ)P2 = 0

(2.3) β̄λ2P1 − (λ1 + λ2 + ξ)P3 = 0

(2.4) βλ3P1 + λ2P2 − ξP4 + λ1P9 = 0

(2.5) βλ1P1 + λ1P2 − ξP5 + λ1P8 = 0

(2.6) βλ2P1 + λ2P3 − ξP6 + λ2P9 = 0

(2.7) βλ3P1 + λ1P3 − ξP7 + λ2P8 = 0

(2.8) β̄λ1P1 − (λ1 + λ2 + ξ)P8 + ηP21 + µrP25 + µRP27 = 0

(2.9) β̄λ2P1 − (λ1 + λ2 + ξ)P9 + ηP22 + µrP24 + µRP26 = 0

(2.10) ξP4 − µRP10 + λ1P17 = 0

(2.11) ξP5 − µrP11 + λ1P18 = 0

(2.12) ξP6 − µRP12 + λ2P17 = 0

(2.13) ξP7 − µrP13 + λ2P18 = 0

(2.14) ξP1 − (λ1 + λ2 + η)P14

(2.15) ξP3 + λ2P14 − ηP15 = 0

(2.16) ξP2 + λ1P14 − ηP16 = 0

(2.17) ξP9 − (λ1 + λ2 + µR)P17 = 0

(2.18) ξP8 − (λ1 + λ2 + µr)P18 = 0

(2.19) −(λ1 + λ2 + µr)P19 + ξP28 = 0

(2.20) −(λ1 + λ2 + µR)P20 + ξP29 = 0

(2.21) −ηP21 + λ1P23 + ξP34 = 0

(2.22) −ηP22 + λ2P23 + ξP35 = 0

(2.23) −(λ1 + λ2 + η)P23 + ξP36 = 0

(2.24) λ2P19 − µrP24 + ξP30 = 0
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(2.25) λ1P19 − µrP25 + ξP31 = 0

(2.26) λ2P20 − µRP26 + ξP32 = 0

(2.27) λ1P20 − µRP27 + ξP33 = 0

(2.28) µRP10 + µrP11 + ηP16 − (λ1 + λ2 + ξ)P28 + β̄λ1P36 = 0

(2.29) µRP12 + µrP13 + ηP15 − (λ1 + λ2 + ξ)P29 + β̄λ2P36 = 0

(2.30) λ2P28 − ξP30 + λ1P35 + βλ3P36 = 0

(2.31) λ1P28 − ξP31 + λ1P34 + βλ1P36 = 0

(2.32) λ2P29 − ξP32 + λ2P35 + βλ2P36 = 0

(2.33) ⇒ λ1P29 − ξP33 + λ2P34 + βλ3P36 = 0

(2.34) −(λ1 + λ2 + ξ)P34 + β̄λ1P36 = 0

(2.35) −(λ1 + λ2 + ξ)P35 + β̄λ2P36 = 0

(2.36) ηP14 + µRP17 + µrP18 − (2β̄λ1 + 2β̄λ2 + 2βλ3 + βλ1 + βλ2 + ξ)P36 = 0

Again,

(2.37) P1 + P2 + P3 + P4 + P5 + P6 + P7 + P8 + P9 + P10 + P11 + P12 + P13 + P14

+P15 + P16 + P17 + P18 + P19 + P20 + P21 + P22 + P23 + P24 + P25 + P26 + P27 + P28 +

P29 + P30 + P31 + P32 + P33 + P34 + P35 + P36 = 1

Setting

2β̄λ1 + 2β̄λ2 + 2βλ3 + βλ1 + βλ2 + ξ = δ1,

λ1 + λ2 + ξ = δ2,

λ1 + λ2 + η = δ3,

λ1 + λ2 + µR = δ4,

λ1 + λ2 + µr = δ5,

β̄λ1 = δ6,

β̄λ2 = δ7,

βλ1 = δ8,

βλ2 = δ9,

βλ3 = δ0,

the system of equations (2.1)-(2.37) can be written in the matrix form as,
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(2.38) BP = C

where B =

[
B1 B2

B3 B4

]
, and

B1=

−δ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

δ6 −δ2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

δ7 0 −δ2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

δ0 λ2 0 −ξ 0 0 0 0 λ1 0 0 0 0 0 0 0 0 0

δ8 λ1 0 0 −ξ 0 0 λ1 0 0 0 0 0 0 0 0 0 0

δ9 0 λ2 0 0 −ξ 0 0 λ2 0 0 0 0 0 0 0 0 0

δ0 0 λ1 0 0 0 −ξ λ2 0 0 0 0 0 0 0 0 0 0

δ6 0 0 0 0 0 0 −δ2 0 0 0 0 0 0 0 0 0 0

δ7 0 0 0 0 0 0 0 −δ2 0 0 0 0 0 0 0 0 0

0 0 0 ξ 0 0 0 0 0 −µR 0 0 0 0 0 0 λ1 0

0 0 0 0 ξ 0 0 0 0 0 −µr 0 0 0 0 0 0 λ1

0 0 0 0 0 ξ 0 0 0 0 0 −µR 0 0 0 0 λ2 0

0 0 0 0 0 0 ξ 0 0 0 0 0 −µr 0 0 0 0 λ2

ξ 0 0 0 0 0 0 0 0 0 0 0 0 −δ3 0 0 0 0

0 0 ξ 0 0 0 0 0 0 0 0 0 0 λ2 −η 0 0 0

0 ξ 0 0 0 0 0 0 0 0 0 0 0 λ1 0 −η 0 0

0 0 0 0 0 0 0 0 ξ 0 0 0 0 0 0 0 −δ4 0

0 0 0 0 0 0 0 ξ 0 0 0 0 0 0 0 0 0 −δ5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



,

B2 =



µr µR 0 0 η 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 η 0 0 0 µr 0 µR 0 0 0 0 0 0 0 0 0

0 0 0 η 0 µr 0 µR 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−δ5 0 0 0 0 0 0 0 0 ξ 0 0 0 0 0 0 0 0



,
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B3 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 µR µr 0 0 0 0 η 0 0

0 0 0 0 0 0 0 0 0 0 0 µR µr 0 η 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 η 0 0 µR µr

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



,

B4 =

0 −δ4 0 0 0 0 0 0 0 0 ξ 0 0 0 0 0 0 0

0 0 −η 0 λ1 0 0 0 0 0 0 0 0 0 0 ξ 0 0

0 0 0 −η λ2 0 0 0 0 0 0 0 0 0 0 0 ξ 0

0 0 0 0 −δ3 0 0 0 0 0 0 0 0 0 0 0 0 ξ

λ2 0 0 0 0 −µr 0 0 0 0 0 ξ 0 0 0 0 0 0

λ1 0 0 0 0 0 −µr 0 0 0 0 0 ξ 0 0 0 0 0

0 λ2 0 0 0 0 0 −µR 0 0 0 0 0 ξ 0 0 0 0

0 λ1 0 0 0 0 0 0 −µR 0 0 0 0 0 ξ 0 0 0

0 0 0 0 0 0 0 0 0 −δ2 0 0 0 0 0 0 0 δ6

0 0 0 0 0 0 0 0 0 0 −δ2 0 0 0 0 0 0 δ7

0 0 0 0 0 0 0 0 0 λ2 0 −ξ 0 0 0 0 λ1 δ0

0 0 0 0 0 0 0 0 0 λ1 0 0 −ξ 0 0 λ1 0 δ8

0 0 0 0 0 0 0 0 0 0 λ2 0 0 −ξ 0 0 λ2 δ9

0 0 0 0 0 0 0 0 0 0 λ1 0 0 0 −ξ λ2 0 δ0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −δ2 0 δ6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −δ2 δ7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −δ1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



,

P =
[
Pm Pn

]′
,

Pm =
[
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18

]
,

Pn =
[
P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36

]
,
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C =
[
C1 C2

]′
,

C1 =
[

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
]
,

C2 =
[

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
]

The order of matrix B is 37x36, that of B1 is 19x18, B2 is 19x18, B3 is 18x18, B4 is 18x18, P is

36x1, Pm is 1x18, Pn is 1x18, C is 37x1, C1 is 1x18 and C2 is 1x19.

For numerical computations, we have applied pseudo-inverse technique to solve the system of equa-

tions (2.1) - (2.37).

From equation (2.38)

(2.39) P = (BTB)−1(BTC)

2.4. Availability and Unavailability. The system availability A and unavailability Ā at steady

state are given by

(2.40) A =
∑
i∈Q1

Pi + r
∑
i∈Q2

Pi

where
∑
i∈Q1

Pi =

3∑
i=1

Pi +

9∑
i=8

Pi + P14 +

20∑
i=17

Pi + P23 +

29∑
i=28

Pi +

36∑
i=34

Pi

and
∑
i∈Q2

Pi =

16∑
i=15

Pi +

22∑
i=21

Pi

(2.41) Ā =
∑

i∈E−(Q1∪Q2)

Pi + (1− r)
∑
i∈Q2

Pi

Clearly,

(2.42) A+ Ā = 1

2.5. Numerical Results and Interpretation. Numerical results have been obtained by using

computing software by varying one parameter while fixing remaining parameters in equation (2.40)

which we describe in figure 2 through figure 16 one by one. To observe how the availability depends

on the different parameters, we have taken the following values of effective parameters: r = 0.9;

ξ = 0.01; η = 0.2; β = 0.02; β̄ = 1− β; µr = 0.2; µR = 0.1; λ1 = 0.002; λ2 = 0.0001; λ3 = 0.001

Figure 2. Availability vs. mean surveillance test duration (hours).
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Figure 3. Availability vs. mean surveillance test duration (hours).

Figure 4. Availability vs. mean surveillance test duration (hours).

The dependency of system availability on mean STD at different values of r are shown in figures

2, 3 and 4. Figure 2 shows availability decreases almost linearly with the increase of mean STD when

the value of r is less than 0.5. Figure 3 reveals in one hand that, initially availability of machine at

r = 0.66 increases and decreases gradually with the increase of mean STD. On the other hand, the

availability of the machine at r = 0.67 and 0.68 increases with the increase of mean STD. Figure 4

explores that when r is greater than 0.7 the availability increases almost linearly with the increase

of mean STD.

Figure 5. Availability vs. mean surveillance test interval (days).
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Figure 5 deals with availability as the function of mean surveillance test interval (mean STI)

for three different values of r. The availability decreases gradually with the increase of mean STI

for different values of r = 0.4, r = 0.7 and r = 0.9.

Figure 6. Availability vs. mean surveillance test interval (days).

Similarly figure 6 demonstrates the availability as the function of mean STI for two different

values of beta factors. The availability decreases with the increase of mean STI. When β changes

from 0.02 to 0.2, the trade-off between two availability significantly wide with the increase of mean

STI.

Figure 7. Availability vs. major repair rate.

Figure 8. Availability vs. minor repair rate.
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The dependency of availability in the system on major repair rate and minor repair rate can

be observe in figure 7 and figure 8 respectively for different values of r. The availability increases

gradually with the increase of major repair rate in figure 7 and minor repair rate in figure 8 at r =

0.7, r = 0.8 and r = 0.9.

Figure 9. Availability vs. beta factor.
Linearly decrements of availability with the increment of beta factors for r = 0.4, r = 0.6 and

r = 0.9 have been viewed in figure 9.

Figure 10. Availability vs. standby minor failure rate.

Figure 11. Availability vs. standby major failure rate.

Figure 10 and figure 11 predicts that availability decreases steeply with the increase of standby

minor failure rates and standby major failure rates respectively.
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Figure 12. Availability vs. common cause minor failure rate of both machines.

Figure 12 and figure 13 reveal the impact of common cause minor failure rate of both machines

and common cause major failure rate of both machines respectively on the availability for three

different values of ξ = 0.1, ξ = 0.2, ξ = 0.3. But the decreasing rate of availability is more for the

lesser value of ξ when βλ1 and βλ2 increasing.

Figure 13. Availability vs. common cause major failure rate of both machines.

Figure 14. Availability vs. common cause minor failure rate in one

and major failure rate in other machines.
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Figure 14 explores the application of common cause minor failure rate in one and major failure

rate in other machine on availability. As βλ3 increases, availability decreases for three different

values of ξ = 0.1, ξ = 0.2, ξ = 0.3. This shows the better agreement with real life situation.

Figure 15. Availability vs. independent minor failure rate.

Figure 15 and figure 16 analyze the availability decreases significantly when the independent mi-

nor failure rate and independent major failure rate respectively increases at ξ = 0.1, ξ = 0.2, ξ = 0.3.

But the decreasing rate of availability is less in figure 15 with compare to figure 16, which is practi-

cally true because less time is required to repair independent minor failure than independent major

failure.

Figure 16. Availability vs. independent major failure rate.

3. Conclusion

Mathematical model under study has been constructed with major and minor states from which

set of system of equations has been established. For the solution purpose matrix-pseudo-inverse-

method has been deployed. Various measures of performances have numerically been obtained by

varying some of the influenced parameters into consideration. Numerical results obtained get better

agreement with real life situations. Model under study may be applicable to machining system,

manufacturing system, communication system, internet and intranet system, robot and robotic

system.
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