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ABSTRACT. This paper presents the numerical computations of 2D Boussinesq equations with

fractional dissipation. A parallel pseudospectral method is developed and implemented for the com-

putation. Given smooth initial data, whether the solutions of the system with all the possible values

of the parameters develop finite time singularity or not is yet to be known. This issue is addressed

by presenting the evolution of geometry of the level curves, energy spectra and associated norms of

two major quantities involved in the system. The solutions were computed for different values of

parameters. Some of the numerical solutions presented here strongly indicate potential singularity

in finite time suggesting a need for further investigations.
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1. INTRODUCTION

The 2D Boussinesq equations with fractional dissipation are given by

(1.1)


∂tu+ u · ∇u = −∇p− ν(Λ)αu+ θe2,

∂tθ + u · ∇θ + κ(Λ)βθ = 0,

∇ · u = 0,

where u = (u1, u2) is the velocity field, p is the pressure and θ is a scalar quantity

carried by the fluid. The real numbers ν ≥ 0, κ ≥ 0, 0 < α ≤ 2, 0 < β ≤ 2 are

parameters, and the vector e2 = (0, 1). The Zygmund operator Λ = (−∆)
1
2 is defined

through the Fourier transform,

Λ̂αf(k) = |ξ|αf̂(k).

Using ω = ∇× u, equations (1.1) can be written as
∂tω + u · ∇ω = −ν(Λ)αω + ∂x1θ,

∂tθ + u · ∇θ + κ(Λ)βθ = 0,

∇ · u = 0,

(1.2)

where u can be recovered by the relation u = ∇⊥∆−1ω.
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The main issue regarding the equations (1.1) is: given u(x, 0) = u0(x), and

θ(x, 0) = θ0(x), which are both smooth and approach 0 at infinity, does the Boussi-

nesq system (1.1) have a global classical solution in time. When α = β = 2, (1.1)

reduces to the standard Boussinesq equations with Laplacian dissipation. The stan-

dard Boussinesq equations model geophysical flows such as atmospheric fronts and

oceanic circulation, and also play an important role in the study of Raleigh-Bernard

convection. The global regularity in this case can be established using the same meth-

ods as for the 2D Navier-Stokes equations [12]. When there is no dissipation, namely

ν = κ = 0 in (1.1), the global regularity problem is open. Several important findings

have been made in the recent years in this case. Authors in ([5] and [6]) established

global well-posedness results of 2D Boussinesq equations with fractional diffusion. In

particular, the solutions of (1.1) has global classical solutions when α = 2 and κ = 0

or when β = 2 and ν = 0 ([3] and [10]). Additionally, the authors in ([19] and [20])

independently extended these results to higher dimensions. Recently, Stefanov and

Wu in [13] established the global existence and smoothness of classical solutions of

(1.1) for α >
√
1777−23

24
= 0.798103.., β > 0 and α+β = 1. The main goal of this paper

is to study the open case α+β = 1 and α < 0.798 through rigorous numerical compu-

tations. The spatial domain used in the computations here is the periodic box [0, 2π]2.

Because of the periodic boundary conditions used in the computations, the pseu-

dospectral scheme appears to be the most suitable method (see, e.g. [4]). More

precisely, we approximate the solutions θ and ω in (1.2) by θ̃ and ω̃ in the following

forms.

θ̃(x, t) =

N/2−1∑
k1,k2=−N/2

θ̂(k1, k2)e
ik·x,

ω̃(x, t) =

N/2−1∑
k1,k2=−N/2

ω̂(k1, k2)e
ik·x,

where θ̂ and ω̂ are the Fourier transforms of θ and ω respectively, namely

θ̂(k1, k2) =
1

(2π)2

∫
T 2

θ(x1, x2)e
−i(k1x1+k2x2)dx1dx2

ω̂(k1, k2) =
1

(2π)2

∫
T 2

ω(x1, x2)e
−i(k1x1+k2x2)dx1dx2

and N is a fixed integer given by N = 2m for some integer m. A parallel algorithm

for the pseudospectral method was developed and implemented to compute the solu-

tions. These computations reveal detailed finite time behavior, large-time asymptotic

and key parameter dependence of the solutions and provide valuable information for

further investigations on the global regularity issue concerning the Boussinesq equa-

tions.
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2. Numerical Solution Scheme

In this section, the numerical method is developed for the equations (1.2). Fourier

transforms of the first two equations in (1.2) yield

∂̂tω + û1ωx1 + û2ωx2 = −ν (̂Λ)αω + ∂̂x1θ,

∂̂tθ + û1θx1 + û2θx2 = −κ(̂Λ)βθ.

The condition ∇ · u = 0 further reduces the equations to

∂̂tω + ̂(u1ω)x1 + ̂(u2ω)x2 = −ν (̂Λ)αω + ∂̂x1θ,

∂̂tθ + ̂(u1θ)x1 + ̂(u2θ)x2 = −κ(̂Λ)βθ.

After taking the Fourier transform of the space derivatives, these equations are con-

verted into the following equations.

∂̂tω + ik1(̂u1ω) + ik2(̂u2ω) = −ν|k|αω̂ + ik1θ̂

∂̂tθ + ik1(̂u1θ) + ik2(̂u2θ) = −κ|k|β θ̂

Finally, the time derivative of ω and θ can be expressed as

∂̂tω = −ik1(̂u1ω)− ik2(̂u2ω)− ν|k|αω̂ + ik1θ̂,

∂̂tθ = −ik1(̂u1θ)− ik2(̂u2θ)− κ|k|β θ̂.

As seen above, the space derivatives are calculated in the Fourier space. The

nonlinear terms u1ω, u2ω, u1θ and u2θ are computed in the physical space. The time

integration is carried out by fourth-order Runge-Kutta method.

The same smooth initial conditions were used for both θ and ω. These are the

same initial condition used by the authors in [1] as given below.

(2.1) ω(x1, x2, 0) = θ(x1, x2, 0) = sin(x1) sin(x2) + cos(x2)

These initial data represent the simplest type of smooth initial data with nonlinear

behavior.

3. Parallelization Scheme

Standard mpi routines were used to communicate among the processes. Matrix

parallelization was carried out by slab decomposition. For example, if there are N

rows and p workers (processes 1 through p) along with one master (process 0), then the

process 0 will distribute N
p

rows to each process. The remaining rows ( mod (N, p))

are handled by the process 0 itself. Each process then completes its part of the job
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Figure 1. Parallelization through slab decomposition

and sends it back to the process 0. Figure (1) depicts the process for a matrix with

six rows and four processes (process 0,1,2,3).

All the computations were done on Intel Pentium Xeon EM64T quad Core E5405

@ 2.0 GHz processors in Cowboy Super Computing Center, Oklahoma State Univer-

sity, Stillwater, OK. A total of 128 machines were used with uniform mesh sizes

up to 4096 × 4096. The Fourier transform process was parallelized by utilizing the

parallelized mpi fftw routines.

4. Exponential Filter

In order to reduce the aliasing errors in the computation, the Fourier multipliers

ikj for the differential operator ∂
∂xj

were used to obtain ikjφ(|kj|), where

φ(k) = e−η(
k

N
)mf

for |k| ≤ N . Here N is the numerical cutoff for the Fourier modes, and mf is the

order of the filter. The value of α was so chosen that φ(N) = e−η=machine epsilon.

For a smooth function f(x),

||f(x)−DNf(x)|| = O(N−mf ),

where DNf = F−1(ikφ(|k|)F (f)) is the numerical approximation of f ′(x). F denotes

the Fourier transform operator. For the purpose of these computations, e−η=machine

accuracy=2.2204 e-16 was used. Therefore, η = − ln(2.2204e− 16) = 36.0437. Unlike

in the conventional 2/3 rd dealiasing method where the higher frequency modes are

replaced by zeros, this method suppresses the higher frequency modes but keeps some

of the information. Figure 2 portrays the graph of a sample exponential filter.
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Figure 2. Exponential filter

5. Error Analysis of the Method

Unlike in the 3-point finite difference method or five points finite difference meth-

ods, the pseudospectral method uses N-points formulas. As for example, for N=10,

one would need a tenth order finite difference or finite element methods to achieve an

error of O(h10). As N increases, the pseudospectral method benefits in two different

ways. First the interval h (the interval between the grid points) becomes smaller.

This would cause the error to rapidly decrease even if the order of the method were

fixed. Unlike finite difference and finite element methods, however, the order is not

fixed. When N increases from 10 to 20, the error becomes O(h20) in terms of the new

smaller h. Since h is O(1/N), in pseudospectral method, the error is of O((1/N)N).

However, the errors from truncation and from the time integration are still in place.

Before the program was implemented to the actual system (1.2), it was imple-

mented to the following linearized problem along with the initial condition ω(x1, x2, 0)

given in (2.1). The linearization was done by putting u1 = 1, u2 = 1, ν = 0, κ = 0,

and θ = 0. In this case the system converts to the transport equation

(5.1) ∂tω + ∂x1ω + ∂x2ω = 0.

The exact solution of (5.1) is given by

ω(x1, x2, t) = ω0(x1 − t, x2 − t).

L2 norms and L∞ norms of the computed solution were compared with those of

the exact solutions. Figure 3 represents the spectra of the computed solutions and
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those of the exact solutions side by side from time t = 1 to t = 10. For the same time

interval, the L2 and L∞ errors of ω are presented in Table 1.

Figure 3. Spectra of exact and computed solutions from t = 1 to t = 10

time (t) L2 error of ω L∞ error of ω

1 1.1593e-006 2.1461e-006

2 2.3186e-006 4.0945e-006

3 3.4779e-006 6.2720e-006

4 4.6373e-006 8.5361e-006

5 5.7966e-006 1.0739e-005

6 6.9559e-006 1.2309e-005

7 8.1153e-006 1.4724e-005

8 9.2746e-006 1.7105e-005

9 1.0434e-005 8.5361e-006

10 1.1593e-005 1.9344e-005

Table 1. L2 and L∞ errors of ω

6. Numerical Results

This section presents the results from the numerical computations in the form

of level curves, energy spectra and norms of θ and ω. The study was carried out by

varying the values of the parameters α, β, ν and κ at different values. These com-

putational results show that the geometry of level curves as well as the growth of

norms depend on the values of the key parameters used in the equations. During the

evolution of the numerical solutions, the quantities ||ω||2, ||ω||∞, ||θ||2 and ||θ||∞ were

recorded and closely monitored. The time step ∆t used was small enough to meet

the CFL condition.
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The computation was done in two parts. In the first part, the value of α was

set to 0.6 and that of β = 1 − α. The values of ν and κ were set to 0.2 throughout

the computations. The regions where the level curves come close to each other were

monitored in order to predict potential finite time singularity of the solutions. Level

curves and norms of ω and θ at different times are presented here. Figure 4 shows

the level curves of θ and ω at t = 0. Figure 5 represents the level curves of ω and

θ from time t = 1 to t = 10. Likewise, Table 2 shows the evolution of L2 and L∞

norms of θ and ω from t = 0 to t = 10.

Figure 4. Initial level curves of both θ and ω

Figure 5. Level curves of ω and θ for α = 0.6, β = 1− α and ν = κ = 0.2

In the second part of the computations, value of the parameter α was lowered

to 0.4 with β = 1 − α. The values of ν and κ were maintained at 0.2. The same

initial data were used for this computation. The evolution of level curves and associ-

ated norms resulted from this round of computations are presented in the following

graphs and tables. Figure 6 represents the level curves of ω and θ from time t = 1
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time (t) L2 norm of ω L∞ norm of ω L2 norm of θ L∞ norm of θ

0 0.8660 1.4142 0.8660 1.4142

1 0.7835 1.3492 0.6942 1.1233

2 0.8050 1.5780 0.5533 0.8926

3 0.8660 1.8576 0.4320 0.7027

4 0.9453 2.0307 0.3285 0.5501

5 0.9658 1.9833 0.2487 0.4342

6 0.8979 1.7203 0.1928 0.3577

7 0.8180 1.3607 0.1515 0.2906

8 0.7616 1.2131 0.1185 0.2321

9 0.7061 1.1756 0.0930 0.1839

10 0.6422 1.0488 0.0737 0.1452

Table 2. Norms of ω and θ for α = 0.4, β = 1− α and ν = κ = 0.2

to t = 10. In order to understand the behavior of the solutions in the Fourier space,

power spectra of ω and θ are also presented here. Figure 7 represents spectra of ω and

θ averaged over angles from time t = 1 to t = 10. For these values of the parameters,

the level curves seem to have come much closer at times, but the regions vary as the

time goes on. The L2 and L∞ norms of θ and ω are presented in Table 3.

Figure 6. Level curves of ω and θ for α = 0.4, β = 1− α and ν = κ = 0.2

7. Conclusion

The approximate solutions of equations (1.2) corresponding to the parameters

α = 0.6, β = 1 − α and ν = κ = 0.2 do not seem to develop finite time singularities
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Figure 7. Energy spectra of ω and θ for α = 0.4, β = 1 − α and

ν = κ = 0.2

time (t) L2 norm of ω L∞ norm of ω L2 norm of θ L∞ norm of θ

0 0.8660 1.4142 0.8660 1.4142

1 0.7908 1.3692 0.6858 1.1048

2 0.8137 1.6154 0.5391 0.8695

3 0.8715 1.8990 0.4113 0.6834

4 0.9423 2.0692 0.3021 0.5417

5 0.9585 2.0132 0.2237 0.4390

6 0.8898 1.7429 0.1749 0.3559

7 0.7971 1.3871 0.1380 0.2827

8 0.7273 1.1546 0.1065 0.2200

9 0.6675 1.0808 0.0826 0.1694

10 0.6044 1.1546 0.0654 0.1302

Table 3. Norms of ω and θ for α = 0.4, β = 1− α and ν = κ = 0.2

for the type of initial condition used in the computations. Both the norms are un-

der control in this case. On the other hand, level curves of ω and θ corresponding

to α = 0.6, β = 1 − α and ν = κ = 0.2 come closer and closer at various regions

of the computational domain. The L∞ norm of ω seem to slightly increase around

t = 4, but starts to decrease after that until t = 10. While the norms of θ are still

under control, these strange behavior of the solutions of ω imply the need for further

numerical computations, and theoretical and geometric analysis in order to better

understand whether the solutions develop any type of singularities in finite time or

not. The Fourier modes are well resolved in both rounds of computations.
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system in Hölder spaces, J. Partial Differential Equations, 25 (2012), 220238.

[3] D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv.

Math, 203 (2006), 497513.

[4] D. Gottlieb, S.A. Orszag, S.A, Numerical Analysis of Spectral Methods: Theory and Applica-

tions, CBMSNSF, Regional Conference Series in Applied Mathematics vol. 26. SIAM, Philadel-

phia (1977)

[5] T. Hmidi, S. Keraani, F. Rousset, Global well-posedness for a Boussinesq-Navier-Stokes system

with critical dissipation, J. Differential Equations, 249 (2010), 2147-2174.

[6] T. Hmidi, S. Keraani, F. Rousset, Global well-posedness for Euler-Boussinesq system with critical

dissipation, Comm. Partial Differential Equations, 36 (2010), 420-445.

[7] Q. Jiu, C. Miao, J. Wu and Z. Zhang, The 2D incompressible Boussinesq equations with general

critical dissipation, SIAM J. Math. Anal. 46 (2014), 3426-3454.

[8] Q. Jiu, J. Wu, and W. Yang, Eventual regularity of the two-dimensional Boussinesq equations

with supercritical dissipation, J. Nonlinear Science, in press.

[9] K. Ohkitani, Comparison between the Boussinesq and coupled Euler equations in two dimensions,

Tosio Katos method and principle for evolution equations in mathematical physics (Sapporo,

2001). Surikaisekikenkyusho Kokyuroku No. 1234 (2001), 127-145.

[10] T. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations, Discrete and

Cont. Dyn. Syst. 12 (2005), 1-12.

[11] A. Sarria and J. Wu, Blowup in stagnation-point form solutions of the inviscid 2d Boussinesq

equations, arXiv:1408.6625 [math.AP] 28 Aug 2014.

[12] A. Majda, A. L. Bertozi, Vorticity and Incompressible Flow, Cambridge University Press,

Cambridge, U.K. , 2001.

[13] A. Stefanov, J. Wu, A Global regularity result for the 2D Boussinesq Equations with critical

dissipation, arXiv:1411.1362v3 [math.AP] 2 Mar 2015

[14] J. Wu, The 2D Boussinesq equations with partial or fractional dissipation, Lectures on the

analysis of nonlinear partial differential equations, Morningside Lectures in Mathematics, Edited

by FangHua Lin and Ping Zhang, International Press, Somerville, MA, 2014, in press.

[15] J. Wu and X. Xu, Well-posedness and inviscid limits of the Boussinesq equations with fractional

Laplacian dissipation, Nonlinearity 27 (2014), 2215-2232.

[16] J. Wu, X. Xu, Z. Ye, Global regularity for several incompressible fluid models with partial

dissipation, J Math. Fluid Mechanics, (2016), DOI 10.1007/s00021-016-0291-4.



2D BOUSSINESQ EQUATIONS WITH FRACTIONAL DISSIPATION 507

[17] J. Wu, X. Xu and Z. Ye, Global smooth solutions to the n-dimensional damped models of

incompressible fluid mechanics with small initial datum, J. Nonlinear Science, in press.

[18] W. Yang, Q. Jiu and J. Wu, Global well-posedness for a class of 2D Boussinesq systems with

fractional dissipation, J. Differential Equations 257 (2014), 4188-4213.

[19] K. Yamazaki, On the global regularity of N-dimensional generalized Boussinesq system, Appl.

Math., 60 (2015), 103-133.

[20] Z. Ye, A note on global well-posedness of solutions to Boussinesq equations with fractional

dissipation, Acta Math. Sci. Ser. B Engl. Ed., 35B (1) (2015), 112-120.


