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ABSTRACT. The main current public-health research question is whether breastfeeding by Hu-

man Immunodeficiency Virus(HIV)-infected mothers can be made safer as to transmission risk, given

the possible adverse effects of refraining from breastfeeding. Various ongoing or planned trials and

studies concentrates on mode of infant feeding or antiretroviral therapy to the infant over the breast-

feeding period. An important task is to determine risk of transmission of perinatal HIV and when

it occurs. Several ongoing HIV prevention trials throughout the developing world are evaluating

different methods to reduce perinatal HIV transmission. Perinatal transmission refers to mother to

infant HIV transmission occurring before or at the time of the birth. It results from fetal exposure to

the maternal fluids or infected maternal secrations. The present article proposes statistical models

that simultaneously estimates the risks of perinatal transmission together with the sensitivity of

the screening tests for HIV infection. These models also allow estimating infectivity through breast

feeding during postpartum period. The article aims at brief overview of various lag time distribu-

tions and presenting a tour of tools and techniques available in statistical literature for analysing

such data sets. The proposed methodology is demonstrated with a case study.

KEY WORDS: HIV transmission probabilities; Mother-to-infant HIV transmission; Perinatal HIV

transmission.

1. INTRODUCTION

An important public health issue is to determine the risk of transmission of peri-

natal HIV and when it occurs. Perinatal HIV transmission can occur either at an-

tepartum, this is referring to the period from conception to delivery; at intrapartum,

this is referring to the period during delivery; and postpartum, this is referring to the

period following the birth. Perinatal transmission refers to, mother to infant trans-

mission of HIV occurring before or at the time of the birth and results from fetal
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exposure to the maternal fluids or infected maternal secretions. Several hypothesis

regarding the mechanism and timing of transmission have been proposed, although

the exact mechanism remains unknown. It is estimated that 90 percent HIV in-

fected infants are infected through perinatal transmission ( Raji Balasubramanian et

al.,2001). Several ongoing HIV prevention trials through out the developing world are

using different methods to reduce perinatal HIV transmission. According to United

Nations Programme on HIV/ AIDS, an estimated 1800 HIV infected infants are born

each day in the developing world. Various studies have shown that treatment can

reduce the transmission rate by 67 percent or more (Conor, E.M.et al., 1994). In

2010, 1.8 million people died from HIV/AIDS and another 2.6 million people were

reported to be infected with the virus. The risk of HIV infection during the post-

partum period arises when an HIV infected mother breastfed her infant. Estimation

of the distribution of the time of perinatal transmission is difficult because tests of

infection status can only be undertaken after birth. DNA and RNA polymerase chain

reaction (PCR) assays and HIV culture have been most commonly used as diagnostic

tests for perinatal HIV infection. The risk of transmission by an infected mother

occurring before or during birth (without interventions to reduce the transmission)

is 15-25 percent ( A review of available evidence 2004 ). The present study is an

extension of N.Gupte et al., 2007 work carried out as a randomized control study,

conducted in Johannesburg, South Africa. This was an open label clinical trial of the

use of Nevirapine (NVP) and Zidvudine (AZT) administered postnatally to infants

born to HIV infected mother who had no prior treatment with antiretroviral theraphy

(ART).

The article is organised as follows. Section 2, is an introductory material giving the

data description and also a discussion of the construction of likelihood for the under-

lying data. It also explains the notations used in the subsequent sections. In section

3, the different models are being proposed assuming various distributions for the lag

times for estimation of the probability of perinatal HIV transmission and also to

study of the suitability of the model is discussed. Application of proposed models to

the data on the South African post exposure prophylaxis (PEP) has been discussed.

An attempt is made to model the said transmission using exponential distribution,

geometric distribution and shifted geometric distribution as lag time distribution. In

section 4, we have discussed about the consistency of the parameters estimated and

applicability of AIC and BIC for suitability of model selection and discussion of some

related results. In section 5 we have discussed about the use of discrete distribution

for modeling and compared the results with the case of continuous distribution for

modeling. Section 6, is devoted to simulation study for the proposed models.
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2. Modeling for perinatal HIV transmission

2.1. Notations and related discussion. In this section we revisit the analysis

done by a model proposed by (N.Gupte et al., 2007) to estimate the probabilities

of perinatal HIV transmission and the sensitivity of the viral assay used for HIV

diagnosis in infants . Let η be the probability that the infection occurred either in

antepartum or in intrapartum period. Further suppose that an infected infant is

being breastfed at time t following the birth, let λ(t) to be hazard rate of infection

through breastfeeding at time t. Infants were tested for HIV infection using viral

assays such as polymerase chain reaction(PCR). PCR is highly sensitive test that can

detect small amounts of DNA or RNA (genetic material) in blood or tissue samples

using an amplification techniques that multiplies the existing DNA/RNA so that it

can be more easily detected. Let N be the number of mother infant pairs under

study. Infants born to HIV infected mothers will be tested, using DNA PCR at the

following ages ( time points ) t1, t2,... ,tk (k>1); where tk is the visit after breastfeeding

cessation. Let X i = (Xit1 , Xit2 , ..., Xitk) denote results of DNA PCR assays at the

scheduled visits t1, t2, ..., tk for ith the infant; i = 1, 2, ..., N . Where,

(2.1) Xij =

{
1 ; if DNA PCR is positive

0 ; if DNA PCR is negative

i = 1, 2, ..., N , j = t1, t2, ..., tk. Let di denote the duration of breastfeeding if the

ith infant is breastfed. If an infant is not breastfed then di = 0. Let ω denote the

proportion of breastfed infants. The observed data are X =(X1, X2, ..., XN) and D

=(d1, d2,... dN). It is assume that all HIV infected infants are identified using DNA

PCR. It is also assumed that DNA PCR assay to be perfectly specific at all times.

Unfortunately, the DNA PCR for detecting HIV infection is not perfectly sensitive. In

fact, studies suggests that the sensitivity of PCR increases with an infants age (Owens,

D.K et al., 1996). The sensitivity of PCR may depend on the timing of transmission

and the time since infection. Our main interest is to study of sensitivity of PCR

which is characterized by random variables U and V ; which are defined as follow U:

Number of days after birth for getting a positive PCR with µu be the mean and Fu(t)

be distribution function of U. Further, V: Number of days after infection for getting

a positive PCR; if the transmission takes place through breastfeeding with µv be the

mean and Fv(t) be distribution function of random variable V. Random variables U

and V are considered as lag times for positive PCR assay. In view of above description

one can observed that to model the maternal infant HIV transmission it is sufficient to

model lag time distribution by an appropriate probability distribution. Unfortunately

these lag time random variables are not observables hence usual procedure of direct

estimation based on sample coming from the under lying distribution cannot be used.

Hence it is proposed to assume various probability distributions as a model for lag
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time distributions and carry out the analysis and models will be compared based on

the nature of the estimates and also using Akaike Information Criterion (AIC) or

Bayesian Information Criterion (BIC). The first such attempt was made by Gupte

et al with exponential distribution for the lag time distribution for random variables

U and V. Since U and V are the number of days we thought that it is appropriate

to model these using discrete distribution such as geometric distribution rather than

exponential distribution. As mentioned above comparison among these models along

with model given by N.Gupte et al., is carried out in subsequent section. The article

also proposes some more models based on various lag time distributions such as

geometric, shifted geometric for both U and V variables.

2.2. The Likelihood. In this section we revisit the likelihood developed by N.Gupte

et al., for the estimation of θ =(η, λ(t), µu, µv ). Here θ is the parameter of interest.

The likelihood function is given as

L(θ|X,D) = [pBFt1 (θ)]n
BF
t1 ∗ [pNBFt1

(θ)]n
NBF
t1 ∗ {

k−1∏
j=1

[pBFtj ,tj+1
(θ)]

nBFtj,tj+1} ∗(2.2)

{
k−1∏
j=1

[pNBFtj ,tj+1
(θ)]

nNBFtj,tj+1} ∗ [pBFtk (θ)]n
BF
tk ∗ [pNBFtk

(θ)]n
NBF
tk

where,

nt1
BF : Number of breastfeeding infants who test positive at t1,

nt1
NBF : Number of non breastfeeding infants who test positive at t1,

nBFtj ,tj+1
: Number of breastfeeding infants who test negative at time tj

and positive at time tj+1,

nNBFtj ,tj+1
: Number of non breastfeeding infants who test negative at time tj

and positive at time tj+1,

ntk
BF : Number of breastfeeding infants who test negative at time tk,

ntk
NBF : Number of non breastfeeding infants who test negative at time tk,

with

pBFt1 (θ) = ω ∗ (1− η) ∗
∫ min{t1,di}

0

λ(u) ∗ exp{−
∫ u

0

λ(s)ds}(2.3)

∗Fv(t1 − u)du+ ω ∗ η ∗ Fu(t1)

pNBFt1
(θ) = (1− ω) ∗ η ∗ Fu(t1)(2.4)
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pBFtj ,tj+1
(θ) = ω ∗ (1− η) ∗

∫ min{tj ,di}

0

λ(u)exp{−
∫ u

0

λ(s)ds} ∗(2.5)

{Fv(tj+1 − u)− Fv(tj − u)}du+∫ min{tj+1,di}

tj

λ(u)exp{−
∫ u

0

λ(s)ds} ∗ Fv(tj+1 − u)du+

η ∗ ω ∗ {Fu(tj+1)− Fu(tj)}

pNBFtj ,tj+1
(θ) = (1− ω) ∗ η ∗ (Fu(tj+1)− Fu(tj))(2.6)

pBFtk (θ) = ω ∗ (1− η) ∗
∫ min{tk,di}

0

λ(u)exp{−
∫ u

0

λ(s)ds}(2.7)

∗(1− Fv(tk − u))du+

1−
∫ min{tk,di}

0

λ(u)exp{−
∫ u

0

λ(s)ds}du+ ω ∗ η ∗ {1− Fu(tk)}

and

pNBFtk
(θ) = (1− ω) ∗ [η ∗ (1− Fu(tk)) + (1− η)](2.8)

respectively.

Observe that above likelihood is in the multinomial distribution functional form.

From equations (2.3) to (2.8) the probabilities are the functions of the parameter θ

=(η, λ(t), µu, µv ) a vector valued parameter belonging to an admissible parameter set

Θ. The true value of the parameter θ0 supposed to be an interior point of parameter

space Θ.(C. R. Rao,1973) .

3. Proposed Models

In the further discussion we proposed various models for HIV transmission based

on various lag time distributions. As pointed out earlier these are based on the various

distributional assumptions for the lag time random variables U and V. Initially we

will discuss the form of likelihood under lag time distributions as an exponential

distributions and results are revisited as those of N.Gupte el al.,2007. However strictly

speaking the variables U and V can be regarded as discrete random variables hence

it is most appropriate to assume some discrete distributions for random variables U

and V, with this thought in mind it is decided to discuss the analysis by assuming U

and V to be geometric random variables. We will also discuss in this section the case

when shifted geometric distribution is used as a lag time distribution for r.v.s U and

V. For the maximisation of likelihood and estimation of parameters purpose we have

used the data on study made in South Africa as mentioned in N.Gupte el al.,2007.
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This study data consists of one thousand and forty mother - infant pairs in the study,

of which, 461 mothers breastfed their infants and 512 mothers chose an alternative

feeding mechanism. For 67 women the feeding pattern was not available, so we used

973 women in our analysis. The post partum visits are taken at t1= 3rdday , t2=

10thday , t3= 42ndday , t4= 90th day , t5= 180th day. Based on these facts we proceed

to take up modeling exercise and analysis for this study.

3.1. Model-I: Exponential distribution. The first proposed model is developed

on the basis of the following assumptions (i) U and V have an exponential distribution

with means µ1 and µ2 respectively (ii) hazard rateλ(t) to be constant λ per month

for the estimation of transmission rates.The likelihood L(θ|X,D) for this model using

equation (2.2) can be written as

pBFt1 (θ) = ω ∗ (1− η)

∫ t1

0

λ ∗ exp{−
∫ u

0

λds} ∗ {1− e
−(t1−u)

µ2 }du+(3.1)

ω ∗ η ∗ {1− e
−(t1)
µ1 }

pNBFt1
(θ) = (1− ω) ∗ η ∗ {1− e

−(t1)
µ1 }(3.2)

pBFtj ,tj+1
(θ) = ω ∗ (1− η) ∗

∫ tj

0

λ ∗ exp{−
∫ u

0

λds} ∗(3.3)

{e
−(tj−u)

µ2 − e
−(tj+1−u)

µ2 }du

+

∫ tj+1

tj

λ ∗ exp{−
∫ u

0

λds} ∗ {1− e
−(tj+1−u)

µ2 }du+

η ∗ ω ∗ {e
−(tj)

µ1 − e
−(tj+1)

µ1 }

pNBFtj ,tj+1
(θ) = (1− ω) ∗ η ∗ {e

−(tj)

µ1 − e
−(tj+1)

µ1 }(3.4)

pBFtk (θ) = ω ∗ (1− η) ∗
∫ tk

0

λ ∗ exp{−
∫ u

0

λds} ∗ {1− e
−(tk−u)

µ2 }du+(3.5)

1−
∫ tk

0

λ ∗ exp{−
∫ u

0

λds}du+ ωη{1− e
−(tk)

µ1 }

and

pNBFtk
(θ) = (1− ω) ∗ [η ∗ ({e

−(tk)

µ1 }) + (1− η)](3.6)

respectively. The likelihood function L(θ|X,D) was maximized numerically using

Wolfram Mathematica 10.0 to obtain the estimate θ̂. The estimates of the parameters

obtained are η̂ =0.1571138, λ̂ = 0.000087520, µ̂1=10.4 days, µ̂2=8.92 days. Using this

model we also estimated the expected proportion of HIV - positive infants at each

postpartum visit. Figure 1. compares the observed and the estimated proportion of

HIV transmissions at each postpartum visit.
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Further we obtained AIC and BIC for Model I (refer Table 1.).

Now since the time points are days which are discrete , we thought that the lag times

can be modeled by some discrete distribution. The analogue of exponential in discrete

case is geometric. Hence the next model is proposed which has lag time distribution

as geometric distribution.

3.2. Model-II: Geometric Distribution. In this case transmission rates were es-

timated on the basis of the following assumptions (i) U and V have an geometric

distribution with parameters p1 and p2 respectively.(ii) the hazard rate λ(t) to be

constant equal to λ per month. The likelihood L(θ|X,D) for this model can be

obtained using equation (2.2) as

pBFt1 (θ) = ω ∗ (1− η) ∗
∫ t1

0

λ ∗ exp{−
∫ u

0

λds} ∗ {1− (q2)
(t1−u)}du+(3.7)

ω ∗ η ∗ {1− (q1)
(t1)}

pNBFt1
(θ) = (1− ω) ∗ η ∗ {1− (q1)

(t1)}(3.8)
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pBFtj ,tj+1
(θ) = ω ∗ (1− η) ∗

∫ tj

0

λ ∗ exp{−
∫ u

0

λds} ∗(3.9)

{(q2)(tj−u) − (q2)
(tj+1−u)}du

+

∫ tj+1

tj

λexp{−
∫ u

0

λds} ∗ {1− (q2)
(tj+1−u)}du+

η ∗ ω ∗ {(q1)(tj) − (q1)
(tj+1)}

pNBFtj ,tj+1
(θ) = (1− ω) ∗ η ∗ {(q1)(tj) − (q1)

(tj+1)}(3.10)

pBFtk (θ) = ω ∗ (1− η) ∗
∫ tk

0

λ ∗ exp{−
∫ u

0

λds} ∗ {1− (q2)
(tk−u)}du+(3.11)

1−
∫ tk

0

λ ∗ exp{−
∫ u

0

λds}du+ ωη{1− (q1)
(tk)}

and

pNBFtk
(θ) = (1− ω) ∗ [η ∗ ((q1)

(tk)) + (1− η)](3.12)

respectively.

The likelihood function L(θ|X,D) was again maximized numerically using Wol-

fram Mathematica 10.0 to obtain the estimate θ̂. The estimates of the parameters

are η̂ =0.15721172, λ̂=0.11239378 , p̂1=0.09162033, p̂2=0.000087661034. Using this

model we estimated the estimated proportion of HIV - positive infants at each post

partum visit. Figure 2., compares observed and estimated proportion of infants pos-

itive for infection at different time points for Model II. Further the AIC, BIC for
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Model -II are evaluated (refer Table 1.). Now we proposed a third model, where we

assume the shifted geometric distribution as lag time distribution for r.v. U and V.

3.3. Model-III: Shifted Geometric Distribution. In this case transmission rates

were estimated on the basis of the following assumptions (i) U and V have shifted

geometric distribution with parameters (β, p1 )and (β, p2) respectively.(ii) the hazard

rate to be constant λ per month. The probability mass function of shifted geometric

distribution for variables U and V is given by

P [U = 1] = β(3.13)

P [U = k] = (1− β) ∗ p1 ∗ (1− p1)(k−2);

k = 2, 3, ..

0 < β < 1, 0 < p1 < 1

P [V = 1] = β(3.14)

P [V = k] = (1− β) ∗ p2 ∗ (1− p2)(k−2);

k = 2, 3, ...

0 < β < 1, 0 < p2 < 1

For this Model , the likelihood L(θ|X,D) for this model can be given as in equation

(2.2) with

pBFt1 (θ) = ω ∗ (1− η) ∗
∫ t1

0

λ ∗ exp{−
∫ u

0

λds} ∗(3.15)

{β + (1− β) ∗ (1− (q2)
(t1−u))}du+

ω ∗ η ∗ {β + (1− β) ∗ (1− (q1)
(t1))}

pNBFt1
(θ) = (1− ω) ∗ η ∗ (β + (1− β) ∗ (1− (q1)

(t1)))(3.16)

pBFtj ,tj+1
(θ) = ω ∗ (1− η) ∗

∫ tj

0

λ ∗ exp{−
∫ u

0

λds} ∗(3.17)

{(1− β) ∗ ((q2)
(tj−u) − (q2)

(tj+1−u))}du+∫ tj+1

tj

λ ∗ exp{−
∫ u

0

λds} ∗

{β + (1− β) ∗ {1− (q2)
(tj+1−u)}}du+

η ∗ ω ∗ (1− β) ∗ {(q1)(tj) − (q1)
(tj+1)}

pNBFtj ,tj+1
(θ) = (1− ω) ∗ η ∗ (1− β) ∗ {(q1)(tj) − (q1)

(tj+1)}(3.18)
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pBFtk (θ) = ω ∗ (1− η) ∗
∫ tk

0

λ ∗ exp{−
∫ u

0

λds} ∗(3.19)

(1− β) ∗ {(q2)(tk−u)}du+

1−
∫ tk

0

λ ∗ exp{−
∫ u

0

λds}du+ ω ∗ η ∗ (1− β){(q1)(tk)}

and

pNBFtk
(θ) = (1− ω) ∗ [η ∗ {(1− β) ∗ (q1)

(tk)}+ (1− η)](3.20)

respectively. The likelihood function L(θ|X,D) was maximized numerically using

Wolfram Mathematica 10.0 to obtain the estimate θ̂. The parameters estimate are

: η̂=0.15559921, λ̂=0.00001096, β̂=0.32229, p̂1=0.04725571, p̂2=0.003408526. Using

this model we estimated the expected proportion of HIV - positive infants at each

post partum visit. Figure 3. compares the observed and the expected proportion of

HIV transmissions at each postpartum visit. Further the AIC, BIC for Model -III are

evaluated (refer Table 1.). Now we proceed to make discussions abut results and the

comparative study of the models in view of average difference error in observed and

estimated proportion of infants as well as in terms of Akaike information criterion

(AIC) and Bayesian information criterion(BIC).
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4. Discussion

Our attempt towards modeling maternal infant HIV transmission by considering

different lag time distributions for the variables U and V gave fruitful results. N.

Gupte et al. already discussed about the same by taking exponential distribution

as lag time distribution. But we have made an attempt to justify the estimation

of parameters of interest, in terms of consistent estimator. Not only that we also

considered the discrete distributions as lag time distribution, which we thought as

suitable distributions for the given situation. In our set up we have assumed that

the transmission rate is constant, which may not be the case over the different time

periods. It is shown that under the following assumptions the likelihood admits

consistent and unique solution . Consistent in a sense that the solution converges in

probability to the true value θ0.

Assumption 1 :Given δ> 0 , it is possible to find an ε such that

{[pBFt1 (θ0)] ∗ log
[pBFt1 (θ0)]

[pBFt1 (θ)]
}+ {[pNBFt1

(θ0)] ∗ log
[pNBFt1

(θ0)]

[pNBFt1 (θ)]
}

+{
k−1∑
j=1

[pBFtj ,tj+1
(θ0)] ∗ log

[pBFtj ,tj+1
(θ0)]

[pBFtj ,tj+1
(θ)]
}+

{
k−1∑
j=1

[pNBFtj ,tj+1
(θ0)] ∗ log

[pNBFtj ,tj+1
(θ0)]

[pNBFtj ,tj+1
(θ)]
}

+{[pBFtk (θ0)] ∗ log
[pBFtk (θ0)]

[pBFtk (θ)]
}+ {[pNBFtk

(θ0)] ∗ log
[pNBFtk

(θ0)]

[pNBFtk
(θ)]
}} ≥ ε

where |θ-θ0 | is the distance between θ and θ0.

Assumption 2 :

pBFt1 (θ) 6= pBFt1 (β)

pNBFt1
(θ) 6= [pNBFt1

(β)]

pBFtj ,tj+1
(θ) 6= [pBFtj ,tj+1

(β)]; j = 1, 2, ...k − 1

pNBFtj ,tj+1
(θ) 6= [pNBFtj ,tj+1

(β)]; j = 1, 2, ...k − 1

pBFtk (θ) 6= [pBFtk (β)]

pNBFtk
(θ) 6= [pNBFtk

(β)]

whenθ 6= β

Assumption 3: The functions pBFt1 (θ), pNBFt1
(θ), pBFtj ,tj+1

(θ), pNBFtj ,tj+1
(θ), pBFtk (θ), pNBFtk

(θ)are

continuous in θ.

Assumption 4: The functions pBFt1 (θ), pNBFt1
(θ), pBFtj ,tj+1

(θ), pNBFtj ,tj+1
(θ), pBFtk (θ), pNBFtk

(θ)

admit first order partial derivatives
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Assumption 5 : The functions in assumption 4 are continuous at θ0

Assumption 6: The information matrix (irs) be non singular at θ0 where

irs =
1

pBFt1 (θ)

∂pBFt1 (θ)

∂θr

∂pBFt1 (θ)

∂θs
+

1

pNBFt1 (θ)

∂pNBFt1
(θ)

∂θr

∂pNBFt1
(θ)

∂θs
+

k−1∑
j=1

1

pBFtj ,tj+1
(θ)

∂pBFtj ,tj+1
(θ)

∂θr

∂pBFtj ,tj+1
(θ)

∂θs
+

k−1∑
j=1

1

pNBFtj ,tj+1
(θ)

∂pNBFtj ,tj+1
(θ)

∂θs

∂pNBFtj ,tj+1
(θ)

∂θs
+

1

pBFtk (θ)

∂pBFtk (θ)

∂θr

∂pBFtk (θ)

∂θs
+

1

pNBFtk
(θ)

∂pNBFtk
(θ)

∂θr

∂pNBFtk
(θ)

∂θs

Assumption 1 and 4 imply that an maximum likelihood estimator can be obtained as

a root of the equations ∂L(θ|X,D)
∂θr

=0, r=1,2,3,4 with probability 1 and is unique. As-

sumptions 1, 5, 6 imply that maximum likelihood estimator is a consistent solution of

the likelihood equation. These results are generalisations of Cramer - Huzurbazar the-

ory. It is verified that the Assumptions 1-6 are satisfied using Wolfram Mathematika

10.0 (details not shown) that shows that the maximum likelihood estimators (m.l.e)

obtained are consistent solution of the likelihood equation.We show as a sample case

these conditions are satisfied in case of exponential lag times as well as geometric lag

times. This ensures a unique solution to a likelihood and it is also a consistent and

asymptoticlly normal providing Best Asymptotically normal estimator ( BAN) for θ.

Note that this fact is not discussed in the case of exponential lag times by (N. Gupte

et al.,2007 ). Hence the above discussion is add on to the work done by these au-

thors and also provides justification for the analysis carried out by them. The Akaike

information criterion (AIC) is a measure of the relative quality of statistical models

for a given set of data. Given a collection of models for the data, AIC estimates the

quality of each model, relative to each of the other models. Hence, AIC provides a

means for model selection.

5. Comparative study of the Models

Average difference error in observed and estimated proportion of infants positive

for infection for each Model is evaluated. It is noticed that the average difference error

in observed and estimated proportion for Model I and Model II are close enough. It

also indicates as the models proposed ( Model I and Model II ) are performing as

same as in case of Model I given by N.Gupte et al. (2007). But it is interesting to

note that the selection intelligent choice of lag times for random variables U and V as

shifted geometric distribution serves as the model with the interesting results. It is

observed that the average difference error in observed and estimated proportion for

Model III is certainly less at every stage of testing of DNA/ PCR assay as compared

to Model I and Model II. From this fact Model III can be considered as one of the

best model for modeling Maternal Infant HIV transmission. It is also reflected in
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Table 1. Table showing AIC , BIC for Model-I,II,III.

Model AIC BIC AIC Corrected

Model-I 2378.2 2397.71 2378.24

Model-II 2376.5 2396.01 2376.04

Model-III 2345.28 2345.24 2369.67

in terms of AIC / BIC. We have computed the AIC , BIC and Corrected AIC for

all the models (refer Table 1.). It is observed that the model II performs better by

AIC criterion. However the difference between AIC and BIC are small for the models

hence further improvement if possible is recommended. But the values of AIC and

BIC for Model III is the least as compared to all other Models.On the basis of AIC

, Model III is the best for performance of the analysis. The results are encouraging

as also noticed in terms of observed and estimated proportion of infants positive for

infection.

6. Simulation Study

We have carried out the simulation study for Model-I ,by performing 1000 sim-

ulations each with 1000 observations by taking different values of the parameters of

the variables U and V. For the variable U we have considered mean values µ1 to be

9.9 , 10.0 , 10.1 and 10.2 and for variable V we have considered mean values µ2 to

be 7.9 , 8.0 , 8.1 , 8.2 . Using Wolfram Mathematica 10 the simulation is carried

out and the estimates of the parameter η is obtained along with empirical standard

deviation of then estimated parameterl.Further distribution Fit test is also carried

out and almost all cases the null hypothesis that the data is distributed according to

the Normal distribution is not rejected at the 5 percent level based on the Cramer -

Von Mises test. The results are encouraging. We have also carried out the simulation

study for Model-III ,by performing 1000 simulations each with 1000 observations by

taking different values of the parameters of the variables U and V. For the variable U

we have considered values p1 to be 0.04 , 0.03 , 0.02 and 0.01 and for variable V we

have considered values p2 to be 0.05 , 0.04 , 0.03 , 0.02 . Using Wolfram Mathematica

10 the simulation is carried out and the estimates of the parameter η is obtained along

with empirical standard deviation of the estimated parameter and it is tabulated in

Table 2.
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Table 2. Results of simulation study : Shifted Geometric distribution.

↓ Parameters → p1 = 0.04 p1 = 0.03 p1 = 0.02 p1 = 0.01

p2 = 0.05 η = 0.160(0.0005) η = 0.160(0.0005) η = 0.160(0.0005) η = 0.160(0.0005)

p2 = 0.04 η = 0.165(0.0007) η = 0.165(0.0007) η = 0.165(0.0007) η = 0.165(0.0007)

p2 = 0.03 η = 0.173(0.0010) η = 0.173(0.0001) η = 0.173(0.0010) η = 0.173(0.001)

p2 = 0.02 η = 0.190(0.001) η = 0.190(0.0015) η = 0.192(0.0015) η = 0.190(0.0015)
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