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1. INTRODUCTION

The term ‘neural network’ denotes a collection of interconnected, interacting neurons,

which can be biological or artificial. A system of connected nodes constitutes an arti-

ficial neural network. Arranging the nodes in different configurations yields different

artificial neural networks with various characteristic properties. Neural networks have

been proved to be much promising practical tool for parallel computation. Several au-

thors have studied the dynamics of neural networks [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] theoret-

ically as well as computationally. Many authors have established the almost periodic

solutions of cellular neural networks using discretization scheme [11, 12, 13, 14, 15].

Moreover, convergence of numerical methods for various delay differential equations

has also gained attention in recent few years [16].

Two relevant concepts in the recent neural network theory are the bidirectional

associative memories and the delay time. First, the bidirectional associative mem-

ories (BAM) have one input layer and one output layer. Information signals can

travel in both directions; from input to output and back from output to input. The

neurons in one layer are fully interconnected to the neurons in the second layer with

no interconnection among neurons in the same layer. The weight from first layer to

second layer is same as the weight from second layer to first layer. In [4] Kosko ex-

tended the Hopfield model by incorporating an additional layer for performing both

recurrent autoassociations and heteroassociations on the stored memories. Second,

we remark that the activation of neurons is given with a delay. Thus, the classical

mathematical models based on ordinary differential equations must be modified in

order to incorporate the delay behavior.

In this paper, we are concerned with the following bidirectional neural network

model with delay:

dxi(t)

dt
= −ai(t)xi(t) +

m
∑

j=1

bij(t)fj(yj(t− σij)) + Ii(t), (1.1a)

dyi(t)

dt
= −ci(t)yi(t) +

m
∑

j=1

dij(t)gj(xj(t− τij)) + Ji(t), (1.1b)

xi(t) = φi(t), t ∈ [−τi, 0]; τi = max
j

{τij}, (1.1c)

yi(t) = ψi(t), t ∈ [−σi, 0]; σi = max
j

{σij}, (1.1d)

for i = 1, 2, · · · ,m, and φi ∈ C([−τi, 0],R), ψi ∈ C([−σi, 0],R). System (1.1) consists

of two sets of m neurons (or units) arranged in two layers, namely, I−layer and

J−layer. On the I−layer, the set of m neurons having membrane potentials xi(.)

receive external inputs Ii(t); whereas on the J−layer, the other set of m neurons

with membrane potentials yi(.) receive external inputs Ji(t); bij and cij denote the
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synaptic connection weights; σij , τij denote the time delays in axonal transmission

of signals and neural processing. ai(.) and ci(.) denote the rates with which the ith

neurons from the I−layer and the J−layer, respectively, reset their potentials to their

resting states when disconnected from other neurons and external inputs; fj(.), gj(.)

denote nonlinear activation functions.

On the other hand, we recall that the study of differential equations with piecewise

constant argument (DEPCA) was initiated in [17, 18, 19] and later on, it has been

widely investigated by several researchers by reducing to discrete equations (see for

instance [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]). Indeed, DEPCA are hy-

brid equations with characteristics of both continuous systems and discrete equations.

The continuity of a solution in points combining two consecutive intervals implies the

existence of iterative relations for the solution at such points. Thus the equations

become similar in structure to those found in certain “sequentially continuous” mod-

els of the dynamic ones of the disease of the treaty by S. Busenberg and K.L. Cooke

[17]. Other applications of DEPCA are discussed in [26, 34, 35]. Moreover, the delay

differential equations with piecewise constant argument fortify several properties of

the continuous dynamical systems generated by delay differential equations [36] and

of the discrete dynamical systems generated by difference equations [37].

The novelty of this paper is to establish some approximating results for the solu-

tions of delayed bidirectional neural network model (1.1) via the solutions of corre-

sponding delay differential equations with piecewise constant arguments. A related

work with this purpose is [23], where some relations have been obtained between the

solutions of delay differential equations with continuous arguments and the solutions

of some retarded delay DEPCA, which were used in computing the numerical solu-

tion of ordinary and delay differential equations. More precisely, we consider that the

corresponding differential equations with piecewise constant argument is given by

dxhi (t)

dt
= −ai(t)x

h
i (t) +

m
∑

j=1

bij(t)fj(y
h
j (γh(t− σij))) + Ii(t), (1.2a)

dyhi (t)

dt
= −ci(t)y

h
i (t) +

m
∑

j=1

dij(t)gj(x
h
j (γh(t− τij))) + Ji(t), (1.2b)

xhi (ℓh) = φi(ℓh), ℓ = −k, · · · , 0, (1.2c)

yhi (ℓh) = ψi(ℓh), ℓ = −l, · · · , 0, (1.2d)

where h ∈ R
+ and the step function γh is defined as follows

γh(t− r) =

[

t

h
−
[ r

h

]

]

h. (1.2e)

The bracket [·] denotes the greatest integer function.

We introduce two main results given as Theorem 3.2 and Theorem 3.3. First, in

Section 2, using variation of constants formula for delay differential equations, it has
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been shown that for the equations (1.2), the solutions xhi (t), y
h
i (t) and the sequences

xhi (nh) and y
h
i (nh), n ∈ Z, approximating the solutions xi(t) and yi(t), of system (1.1)

are calculated, for major details see Theorem 2.2. Second, in Section 3, we establish

an approximation result: if the zero solution of (3.4) and the coefficients satisfy

some regularity assumptions (see (H1)-(H5)), then the difference of the solutions for

(1.1) and (1.2) are bounded by a function depending of h and such that vanishes

when h → 0 uniformly on R
+, see Theorem 3.3 and also converges exponentially to

zero. Moreover, in Section 4, appropriate examples are given to illustrate the theory,

depicting the approximated solution calculated via (1.2) versus actual solution along

with the error estimation.

2. SOLUTION OF (??) AS DISCRETIZATION OF (??) ON R
+

In this section we construct the solution of (1.2) in the sense of the following definition.

Definition 2.1. A solution of (1.2) is a family the 2m real functions {xh1 , . . . , x
h
m,

yh1 , . . . , y
h
m}, such that for each i = 1, 2, · · · ,m, the following assertions

(i) The functions xhi and yhi are continuous on R
+,

(ii) The derivatives xh
′

i , y
h′

i exist at each point t ∈ R
+ with possible exception of

the points kh with k ∈ N, where one sided derivatives with finite values exist,

(iii) The functions xhi and yhi satisfy the equations (1.2c)-(1.2d) on each interval

[kh, (k + 1)h) with k ∈ N,

are satisfied.

Now we assume that the the coefficients ai(t), bij(t), ci(t), dij(t), Ii(t), Ji(t) are

bounded continuous functions and the functions fj , gj are Lipschitz. These conditions

are required for the existence of a unique solution of our problem.

Theorem 2.2. The system (1.2) has a unique solution in the sense of the defini-

tion 2.1. Moreover, for each i = 1, 2, · · · ,m, and for t ∈ [nh, (n+ 1)h) the functions

xhi and yhi are in the form given by

xhi (t) = exp

(

−

∫ t

0

ai(u)du

)

φi(0)

+

n−1
∑

ξ=0

∫ (ξ+1)h

ξh

exp

(

−

∫ t

s

ai(u)du

)







m
∑

j=1

bij(s)fj(y
h
i (h(ξ − kij)))) + Ii(s)







ds

+

∫ t

nh

exp

(

−

∫ t

s

ai(u)du

)







m
∑

j=1

bij(s)fj(y
h
i (h(n− kij)))) + Ii(s)







ds, (2.1a)
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yhi (t) = exp

(

−

∫ t

0

ci(u)du

)

ψi(0)

+
n−1
∑

ξ=0

∫ (ξ+1)h

ξh

exp

(

−

∫ t

s

ci(u)du

)







m
∑

j=1

dij(s)gj(x
h
i (h(ξ − lij)))) + Ji(s)







ds

+

∫ t

nh

exp

(

−

∫ t

s

ci(u)du

)







m
∑

j=1

dij(s)gj(x
h
i (h(n− lij)))) + Ji(s)







ds, (2.1b)

where kij and lij are defined as follows

kij =
[σij
h

]

, lij =
[τij
h

]

(2.1c)

and the sequence
(

xhi (nh), y
h
i (nh)

)

satisfies the nonlinear difference equations

xhi ((n+ 1)h) = exp

(

−

∫ (n+1)h

nh

ai(u)du

)

xhi (nh)

+

∫ (n+1)h

nh

exp

(

−

∫ (n+1)h

s

ai(u)du

)







m
∑

j=1

bij(s)fj(y
h
j (h(n− kij))) + Ii(s)







ds, (2.2a)

yhi ((n+ 1)h) = exp

(

−

∫ (n+1)h

nh

ci(u)du

)

yhi (nh)

+

∫ (n+1)h

nh

exp

(

−

∫ (n+1)h

s

ci(u)du

)







m
∑

j=1

dij(s)gj(x
h
j (h(n− lij))) + Ji(s)







ds, (2.2b)

with the initial conditions xhi (nh) = φi(nh) and y
h
i (nh) = ψi(nh) for n = −lij , . . . ,−1, 0

and n = −kij , . . . ,−1, 0, respectively.

Proof. The proof is constructive and is based on variation of constants formula and

the continuity property of a DEPCAG solution (see 2.1-(i)). Indeed, we first deduce

the variation of constants formula on the intervals of the form [kh, (k + 1)h) with

k ∈ N, then by applying induction we extend the arguments to the interval [0, t] and

obtain (2.1).

Using the definition of γh given in (1.2e) and considering that t ∈ [kh, (k + 1)h)

with k ∈ N, we have that the equation (1.2) can be rewritten as follows

dxhi (t)

dt
= −ai(t)x

h
i (t) +

m
∑

j=1

bij(t)fj(y
h
j (h(k − kij))) + Ii(t), (2.3a)
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dyhi (t)

dt
= −ci(t)y

h
i (t) +

m
∑

j=1

dij(t)gj(x
h
j (h(k − lij))) + Ji(t), (2.3b)

xhi (ℓh) = φi(ℓh), ℓ = −l1, · · · , 0, (2.3c)

yhi (ℓh) = ψi(ℓh), ℓ = −l2, · · · , 0, (2.3d)

where kij and lij are defined on (2.1c). Then, by the variation of constants formula

for t ∈ [kh, (k + 1)h), we can write the solution of (2.3) as follows

xhi (t) = exp

(

−

∫ t

kh

ai(u)du

)

xhi (kh)

+

∫ t

kh

exp

(

−

∫ t

s

ai(u)du

)







m
∑

j=1

bij(s)fj(y
h
j (h(k − kij))) + Ii(s)







ds,(2.4a)

yhi (t) = exp

(

−

∫ t

kh

ci(u)du

)

yhi (kh)

+

∫ t

kh

exp

(

−

∫ t

s

ci(u)du

)







m
∑

j=1

dij(s)gj(x
h
j (h(k − lij))) + Ji(s)







ds.(2.4b)

Thus, we have obtained the representation of the solution on intervals of the form

[kh, (k+1)h) with k ∈ N. Now, by application the continuity property of a DEPCAG

solution and application of (2.4) with t = (k+1)h for k = 0, 1, . . . , [t/h] we can prove

that the sequence
(

xhi (nh), y
h
i (nh)

)

satisfies (2.2).

In order to prove (2.1) for t ∈ R
+, we start by noticing that

[0, t] =

n−1
⋃

ξ=0

[ξh, (ξ + 1)h)
⋃

[nh, t] with n =

[

t

h

]

. (2.5)

Then, we apply (2.4) iteratively on ξ = 0, . . . , n and we use the continuity property

of the functions xhi and yhi . Indeed, for ξ = 0 from (2.2), we obtain

xhi (h) = exp

(

−

∫ h

0

ai(u)du

)

xhi (0)

+

∫ h

0

exp

(

−

∫ h

s

ai(u)du

)







m
∑

j=1

bij(s)fj(y
h
i (−hkij))) + Ii(s)







ds,

yhi (h) = exp

(

−

∫ h

0

ci(u)du

)

yhi (0)

+

∫ h

0

exp

(

−

∫ h

s

ci(u)du

)







m
∑

j=1

dij(s)gj(x
h
i (−hlij)) + Ji(s)







ds.
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Now, for ξ = 1, by a new application of (2.4), we have that

xhi (2h) = exp

(

−

∫ 2h

h

ai(u)du

)

xhi (h)

+

∫ 2h

h

exp

(

−

∫ 2h

s

ai(u)du

)







m
∑

j=1

bij(s)fj(y
h
i (h(1− kij)))) + Ii(s)







ds

= exp

(

−

∫ 2h

h

ai(u)du

)[

exp

(

−

∫ h

0

ai(u)du

)

xhi (0)

+

∫ h

0

exp

(

−

∫ h

s

ai(u)du

)







m
∑

j=1

bij(s)fj(y
h
i (−hkij))) + Ii(s)







ds





+

∫ 2h

h

exp

(

−

∫ 2h

s

ai(u)du

)







m
∑

j=1

bij(s)fj(y
h
i (h(1− kij)))) + Ii(s)







ds

= exp

(

−

∫ 2h

0

ai(u)du

)

xhi (0)

+

∫ h

0

exp

(

−

∫ 2h

s

ai(u)du

)







m
∑

j=1

bij(s)fj(y
h
i (−hkij)))







ds

+

∫ 2h

h

exp

(

−

∫ 2h

s

ai(u)du

)







m
∑

j=1

bij(s)fj(y
h
i (h(1− kij))))







ds

+

∫ 2h

0

exp

(

−

∫ 2h

s

ai(u)du

)

Ii(s)ds

and analogously we can deduce the following relation

yhi (2h) = exp

(

−

∫ 2h

0

ci(u)du

)

yhi (0)

+

∫ h

0

exp

(

−

∫ 2h

s

ci(u)du

)







m
∑

j=1

dij(s)gj(x
h
i (−hlij)))







ds

+

∫ 2h

h

exp

(

−

∫ 2h

s

ci(u)du

)







m
∑

j=1

dij(s)gj(x
h
i (h(1− lij))))







ds

+

∫ 2h

0

exp

(

−

∫ 2h

s

ci(u)du

)

Ji(s)ds.

Then, based on the these calculations and proceeding similarly for ξ = 2, 3, . . . , n and
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using the fact that xhi (0) = φi(0) and y
h
i (0) = ψi(0), we can deduce that

xhi (nh) = exp

(

−

∫ nh

0

ai(u)du

)

φi(0)

+

n−1
∑

ξ=0

∫ (ξ+1)h

ξh

exp

(

−

∫ nh

s

ai(u)du

)

×







m
∑

j=1

bij(s)fj(y
h
i (h(ξ − kij)))) + Ii(s)







ds, (2.6a)

yhi (nh) = exp

(

−

∫ nh

0

ci(u)du

)

ψi(0)

+

n−1
∑

ξ=0

∫ (ξ+1)h

ξh

exp

(

−

∫ nh

s

ci(u)du

)

×







m
∑

j=1

dij(s)gj(x
h
i (h(ξ − lij))) + Ji(s)







ds. (2.6b)

We note that the sequence from the initial condition, the above sequence is well

defined. Now, an application of (2.4) on [nh, t] implies that, the solution of system

(1.2) can be written as

xhi (t) = exp

(

−

∫ t

nh

ai(u)du

)

xhi (nh)

+

∫ t

nh

exp

(

−

∫ t

s

ai(u)du

)







m
∑

j=1

bij(s)fj(y
h
i (h(n− kij)))) + Ii(s)







ds,(2.7a)

yhi (t) = exp

(

−

∫ t

nh

ci(u)du

)

yhi (nh)

+

∫ t

nh

exp

(

−

∫ t

s

ci(u)du

)







m
∑

j=1

dij(s)gj(x
h
i (h(n− lij))) + Ji(s)







ds, (2.7b)

or equivalently, by replacing (2.6) in (2.4), we have that the solution of system (1.2)

is given by (2.1).

Remark 2.3. If the solutions of the system of non linear delay differential equations

(1.2) and (4.1) are not unique, then there is no guarantee that the approximation

method will be valid.



BIDIRECTIONAL NEURAL NETWORKS MODEL 9

3. MAIN RESULTS

In this section, we prove that if the linear system of system (1.1) is exponentially

stable, then the solution of the semilinear system of delay differential equations can

be approximated by the solutions of (1.2) for large t(see Theorem 3.2). Moreover if

the system (1.1) is exponentially stable, then the distance between the solution and

the approximation tends to zero as h → 0 uniformly on R
+ and the approximated

solution of (1.2) converges exponentially to actual solution.

3.1. ASSUMPTIONS

In order to establish the results, for each i = 1, . . . ,m, we need to impose following

restrictions,

(H1) The functions ai and ci are continuous on R
+ and are bounded below by positive

constants, i.e. there exists a positive constant α such that α ≤ ai(t) and α ≤

ci(t) for all t ∈ R
+.

(H2) The functions fi and gi are Lipschitz, i.e. there exist the positive constants

Lf = maxi{Lf i
} and Lg = maxi{Lgi

} such that the estimates

|fi(y1)− fi(y2)| ≤ Lf |y1 − y2| and |gi(x1)− gi(x2)| ≤ Lg|x1 − x2|,

hold for all x1, x2, y1, y2 ∈ R.

(H3) The functions Ii and Ji are continuous on R
+.

(H4) The functions ϕi and ψi are continuous on [−θ, 0], where

θ = max
1≤i,j≤m

{

τij , σij

}

. (3.1)

(H5) The functions bij and cij are continuous on R
+.

3.2. A PRELIMINARY RESULT

Let us consider θ given by (3.1) and the following notation

z = (x1, . . . , xm, y1, . . . , ym), Φ := (φ1, . . . , φm, ψ1, . . . ψm),

f = (f1, . . . , fm, g1, . . . , gm), I = (I1, . . . , Im, J1, . . . , Jm),

A = diag(a1, . . . , am, c1, . . . , cm), B = [bij ]m,m, (3.2)

D = [dij ]m,m, E =

(

B 0

0 D

)

,
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F(t, z(t), z(t− θ)) = E(t)f(z(t− θ)) + I(t).

Then, the system (1.1) can be rewritten as

z′(t) = −A(t)z(t) + F(t, z(t), z(t− θ)) with z(t) = Φ̂(t) for t ∈ [−θ, 0]. (3.3)

If ϕ is a particular solution of (3.3), then w = z − ϕ is a solution of the translated

system

w′(t) = −A(t)w(t) + F(t,w(t),w(t− θ)) with w(t) = Φ(t) for t ∈ [−θ, 0], (3.4)

where F(t,w(t),w(t−θ)) = E(t)
[

f((w+ϕ)(t−θ))− f(ϕ(t−θ))
]

, with L as Lipschitz

constant for f(.). Now, the fact that ϕ exponentially stable is equivalent to the fact

that w = 0 exponentially stable.

Consider the following norms

‖z‖1 =

m
∑

i=1

(|xi|+ |yi|), ‖z‖0 = sup
t∈[−θ,0]

‖z(t)‖1, ‖E‖∞ = sup
t∈R+

m
∑

i,j=1

(|bij(t)|+ |dij(t)|).

(3.5)

Lemma 3.1. If the linear system

u′(t) = −A(t)u(t) (3.6)

is α-exponentially stable, i.e. for some α > 0 the estimate ‖u(t)‖ ≤ ‖u(0)‖e−αt holds

for t > 0, and f is a Lipschitz function with Lipschitz constant Lf such that

α0 := α− eαθ‖E‖∞Lf > 0, (3.7)

then (3.4) is α0−exponentially stable.

Proof. The solution of (3.4) is given by

w(t) = Ψ(t, 0)Φ(0) +

∫ t

0

Ψ(t, s)E(s)
[

f((w +ϕ)(s− θ))− f(ϕ(s− θ))
]

ds,

where Ψ(t, s) is the fundamental matrix solution corresponding to system (3.4). Now,

using the fact that ‖Ψ(t, s)‖ ≤ e−α(t−s) for t ≥ s, and taking norm both sides, we

obtain

‖w(t)‖ = ‖Ψ(t, 0)Φ(0)‖+

∫ t

0

‖Ψ(t, s)‖‖E(s)‖‖f((w +ϕ)(s− θ))− f(ϕ(s− θ))‖ds

≤ ‖Φ(0)‖e−αt + ‖E‖∞Lf

∫ t

0

‖Ψ(t, s)‖‖w(s− θ)‖ds
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≤ ‖Φ(0)‖e−αt + ‖E‖∞Lf

∫ t

0

e−α(t−s)‖w(s− θ)‖ds

or

m(t) ≤ m(0) + ‖E‖∞Lfe
αθ

∫ t

0

m(s)ds with m(t) = sup
s∈[−θ,t]

eαs‖w(s)‖.

Then, applying Gronwall integral lemma, we get

m(t) ≤ m(0) exp
(

‖E‖∞Lfe
αθt
)

.

Thus, we have

‖w(t)‖ ≤

(

sup
s∈[−θ,0]

eαs‖Φ(s)‖

)

e−α0t,= ‖eα(·)Φ(·)‖0e
−α0t, t ≥ 0,

and we get the result that (3.4) is α0−exponentially stable.

Theorem 3.2. Assume the hypotheses (H1)-(H5) hold and consider the nota-

tion (3.2) and α0 a positive constant defined as follows α0 = α− ‖E‖∞Le
αθ for L =

max{Lf , Lg} (see notation on (H2)). Denote by w = (wx1
, . . . , wxm

, wy1
, . . . , wym

)

the solution of (3.4) with the initial condition Φ. Then, there existM1 =M1(F, ‖Φ‖0, h)

> 0 and M2 =M2(F, ‖Φ‖0, h) > 0 (independent of s and α) defined by the following

relations

M1 = ‖Φ‖0 exp
(

α0(θ + h)
)

×







 sup
s≥2θ

∫ s−θ

γh(s−θ)

m
∑

i=1

|ai(µ)|dµ+

∫ s−θ

γh(s−θ)

m
∑

i,j=1

Lfj |bij(µ)| exp(α0θ)dµ







 , (3.8)

M2 = ‖Φ‖0 exp
(

α0(θ + h)
)

×







 sup
s≥2θ

∫ s−θ

γh(s−θ)

m
∑

i=1

|ci(µ)|dµ+

∫ s−θ

γh(s−θ)

m
∑

i,j=1

Lgj |dij(µ)| exp(α0θ)dµ







 , (3.9)

such that the following properties

|wxi
(s− θ)− wxi

(γh(s− θ))| ≤M1e
−α0s, s ≥ 2θ, (3.10)

|wyi
(s− θ)− wyi

(γh(s− θ))| ≤M2e
−α0s, s ≥ 2θ, (3.11)

lim
h→0

M1(F, ‖Φ‖0, h) = lim
h→0

M2(F, ‖Φ‖0, h) = 0, (3.12)

hold. In particular, M1 and M2 can be taken as

M1 = ‖Φ‖0

(

‖a‖∞ + L exp(α0θ)‖B‖∞

)

h and M2 = ‖Φ‖0

(

‖c‖∞ + L exp(α0θ)‖D‖∞

)

h,

whenever that the functions ai, bi, ci,j and di,j are bounded for all i, j ∈ {1, . . . ,m}.
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Proof. Let us prove (3.10). Considering the notation ϕ = {ϕx1
, . . . , ϕxm

, ϕy1
, . . . , ϕym

}

for a particular solution of (3.3). Then, by application of (3.4) and (H2), we can cal-

culate the following estimate
∣

∣

∣wxi
(s− θ)− wxi

(γh(s− θ))
∣

∣

∣

=

∣

∣

∣

∣

∣

∫ s−θ

γh(s−θ)

w′
xi
(µ)dµ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ s−θ

γh(s−θ)

{−(ai(µ)wxi
(µ)

+

m
∑

j=1

bij(µ)
[

fj((wyj
+ ϕyj

)(µ− θ))− fj(ϕyj
(µ− θ))

]







dµ

∣

∣

∣

∣

∣

∣

≤

∫ s−θ

γh(s−θ)

|ai(µ)||wxi
(µ)|dµ

+

m
∑

j=1

∫ s−θ

γh(s−θ)

|bij(µ)||fj((wyj
+ ϕyj

)(µ− θ))− fj(ϕyj
(µ− θ))|dτ

≤

∫ s−θ

γh(s−θ)

|ai(µ)||wxi
(µ)|dµ+

m
∑

j=1

∫ s−θ

γh(s−θ)

Lfj |bij(µ)||wyj
(µ− θ)|dµ.

(3.13)

Now, by assuming (H2), we note that, we can apply the Lemma 3.1 to deduce that

the solutions of the system (3.4) are α0-exponentially stable. Hence, we have that

|wxi
(t)| ≤ ‖Φ‖0e

−α0t and |wyi
(t)| ≤ ‖Φ‖0e

−α0t. (3.14)

Then, using (3.13) and (3.14), we obtain

|wxi
(s− θ)− wxi

(γh(s− θ))|

≤

∫ s−θ

γh(s−θ)

|ai(µ)|‖Φ‖0e
−α0µdµ+

m
∑

j=1

∫ s−θ

γh(s−θ)

Lfj |bij(µ)|‖Φ‖0e
−α0(µ−θ)dµ

≤ ‖Φ‖0





∫ s−θ

γh(s−θ)

m
∑

i=1

|ai(µ)|e
−α0µdµ+

m
∑

i,j=1

∫ s−θ

γh(s−θ)

Lfj |bij(µ)|e
−α0µeα0θdµ





≤ ‖Φ‖0e
−α0γh(s−θ)





∫ s−θ

γh(s−θ)

m
∑

i=1

|ai(µ)|dµ+

m
∑

i,j=1

∫ s−θ

γh(s−θ)

Lfj |bij(µ)|e
α0θdµ





≤ ‖Φ‖0e
−α0seα0(θ+h)





∫ s−θ

γh(s−θ)

m
∑

i=1

|ai(µ)|dµ+

∫ s−θ

γh(s−θ)

m
∑

i,j=1

Lfj |bij(µ)|e
α0θdµ



 ,

since h ≤ θ and

µ ≥ γh(s− θ) =
[ s

h

]

h−
[ θ

h

]

h = s− θ −
({ s

h

}

−
{ θ

h

})

h ≥ s− θ − h
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as s ≥ 2θ, where {·} denotes the fractional component. Thus, defining M1 by (3.8),

we deduce (3.10).

The proof of (3.11) with M2 given by (3.9) is similar.

Now, the proof of (3.12) follows by the hypotheses (H1) and (H5) and the fact

that the measure of the interval [γh(s− θ), s− θ] is convergent to zero as h→ 0.

3.3. THE MAIN APPROXIMATION RESULT

Now we prove our next result, which says that the error in approximation tends to

zero exponentially as t tends to infinity.

Theorem 3.3. Assume the hypotheses and notation of Lemma 3.2. Consider that,

for i = 1, . . . ,m, the functions wh
xi

and wh
yi

are a solution of the following system

dwh
xi
(t)

dt
= −ai(t)w

h
xi
(t) +

m
∑

j=1

bij(t)
[

fj

(

(wh
yj

◦ γh + ϕyj
)(t− θ)

)

− fj(ϕyj
(t− θ))

]

,

(3.15a)

dwh
yi
(t)

dt
= −ci(t)w

h
yi
(t) +

m
∑

j=1

dij(t)
[

gj

(

(wh
xj

◦ γh + ϕxj
)(t− θ)

)

− gj(ϕxj
(t− θ))

]

,

(3.15b)

wh
xi
(ℓh) = Φxi

(ℓh), ℓ = −k, · · · , 0, (3.15c)

wh
yi
(ℓh) = Φyi

(ℓh), ℓ = −l, · · · , 0. (3.15d)

Moreover consider α0 defined by (3.7) with Lf = L := max
{

Lf , Lg

}

, where Lf and

Lg are defied in (H2), and C defined as follows

C(t) = ‖w −wh‖0 + ‖E‖∞L(M1 +M2)t+ α−1
0 ‖E‖∞ L Ω(w, h, θ)(exp(2α0θ)− 1),

with M1 and M2 the positive constants defined on (3.8) and (3.9), and

Ω(w, h, θ) = sup
[−θ,θ]

‖w −w ◦ γh‖0. (3.16)

If the zero solution of (3.4) is α-exponentially stable and the parameters satisfy

α0 := α− ‖E‖∞Le
αθ > 0 and L exp(α0(θ + h0))‖E‖∞ < α0,

then for each h ∈ (0, h0) the estimate

|wxi
(t)− wh

xi
(t)|+ |wyi

(t)− wh
yi
(t)| ≤ Ce−ρt with ρ := (α0 − eα0(θ+h)‖E‖∞L) ∈ R

+,

holds.
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Proof. There exists a constant h0 > 0, such that eα0(h0+θ)‖E‖∞L < α0. Let us

consider the notation

Ewxi
,h(t) = wxi

(t)− wh
xi
(t), Ewyi

,h(t) = wyi
(t)− wh

yi
(t). (3.17)

Differentiating Ewxi
,h with respect to t, we get

E ′
wxi

,h(t) = w′
xi
(t)− wh

xi

′
(t)

=− ai(t)(wxi
(t)− wh

xi
(t))

+
m
∑

j=1

bij(t)
[

fj((wyj
+ ϕyj

)(t− θ))− fj(ϕyj
(t− θ))

]

−

m
∑

j=1

bij(t)
[

fj

(

(wh
xj

◦ γh + ϕxj
)(t− θ)

)

− fj(ϕyj
(t− θ))

]

=− ai(t)Ewxi
,h(t)

+

m
∑

j=1

bij(t)
[

fj

(

(wyj
+ ϕyj

)(t− θ)
)

− fj

(

(wh
yj

◦ γh + ϕyj
)(t− θ)

)]

. (3.18)

Integrating equation (3.18) from 0 to t, we obtain

Ewxi
,h(t) = exp

(

−

∫ t

0

ai(u)du
)

Ewxi
,h(0)

+
m
∑

j=1

∫ t

0

exp
(

−

∫ t

s

ai(u)du
)

bij(s)

×
[

fj

(

(wyj
+ ϕyj

)(s− θ)
)

− fj

(

(wh
yj

◦ γh + ϕyj
)(s− θ)

)]

ds.

Further taking modulo and using the bound of functions ai and the Lipschitz conti-

nuity of functions fj (see (H1) and (H2)), we get

|Ewxi
,h(t)| ≤ e−αt|Ewxi

,h(0)|

+
m
∑

j=1

∫ t

0

e−α(t−s)|bij(s)|Lf |wyj
(s− θ)− wh

yj
(γh(s− θ))|ds

=e−αt|Ewxi
,h(0)|+

m
∑

j=1

∫ t

0

e−α(t−s)|bij(s)|Lf |wyj
(s− θ)− wyj

(γh(s− θ))|ds

+

m
∑

j=1

∫ t

0

e−α(t−s)|bij(s)|Lf |wyj
(γh(s− θ))− wh

yj
(γh(s− θ))|ds

≤e−αt|Ewxi
,h(0)|+ Lf

m
∑

j=1

∫ 2θ

0

e−α(t−s)|bij(s)||wyj
(s− θ)− wyj

(γh(s− θ))|ds

+ Lf

m
∑

j=1

∫ t

2θ

e−α(t−s)|bij(s)||wyj
(s− θ)− wyj

(γh(s− θ))|ds
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+ Lf

m
∑

j=1

∫ t

0

e−α(t−s)|bij(s)||Ewyi
,h(γh(s− θ))|ds. (3.19)

Similarly using the bound of functions ci and the Lipschitz continuity of functions gj ,

we obtain

|Ewyi
,h(t)| ≤e

−αt|Ewyi
,h(0)|

+ Lg

m
∑

j=1

∫ 2θ

0

e−α(t−s)|dij(s)||wxj
(s− θ)− wxj

(γh(s− θ))|ds

+ Lg

m
∑

j=1

∫ t

2θ

e−α(t−s)|dij(s)||wxj
(s− θ)− wxj

(γh(s− θ))|ds

+ Lg

m
∑

j=1

∫ t

0

e−α(t−s)|dij(s)||Ewxi
,h(γh(s− θ))|ds. (3.20)

Now, considering L = max{Lf , Lg}, for s ≥ 2θ applying the estimates (3.10) and

(3.11) on Lemma 3.2, rearranging the terms of the inequalities (3.19) and (3.20) and

using the fact that α0 < α, we obtain

|Ewxi
,h(t)| ≤e

−α0t|Ewxi
,h(0)|

+ e−α0tL

m
∑

j=1

∫ 2θ

0

eα0s|bij(s)||wyj
(s− θ)− wyj

(γh(s− θ))|ds

+ LM1e
−α0t

m
∑

j=1

∫ t

2θ

|bij(s)|ds

+ Le−α0t

m
∑

j=1

∫ t

0

|bij(s)|e
α0(s−γh(s−θ))eα0γh(s−θ)

∣

∣

∣Eyj ,h(γh(s− θ))
∣

∣

∣ds

(3.21)

|Ewyi
,h(t)| ≤e

−α0t|Ewyi
,h(0)|

+ Le−α0t

m
∑

j=1

∫ 2θ

0

eα0s|dij(s)||wxj
(s− θ)− wxj

(γh(s− θ))|ds

+ LM2e
−α0t

m
∑

j=1

∫ t

2θ

|dij(s)|ds

+ Le−α0t

m
∑

j=1

∫ t

0

|dij(s)|e
α0(s−γh(s−θ))eα0γh(s−θ)

∣

∣

∣
Exj ,h(γh(s− θ))

∣

∣

∣
ds.

(3.22)

Note that the bounds (3.21)-(3.22) are possible by the fact that and M1 and M2

defined by (3.8) and (3.9) are independents of s. Now, considering the notation for
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‖E‖∞ (see (3.2) and (3.5)), multiplying (3.21) and (3.22) by eα0t, summing on i, and

adding the resulting inequalities, we get

eα0t

m
∑

i=1

(

|Ewxi
,h(t)|+ |Eyi,h(t)|

)

≤
m
∑

i=1

(

|Ewxi
,h(0)|+ |Eyi,h(0)|

)

+ L Ω(w, h, θ)‖E‖∞α
−1
0 (exp(2α0θ)− 1) + L(M1 +M2)‖E‖∞ t

+ L eα0(θ+h)‖E‖∞

∫ t

0

eα0γh(s−θ)
m
∑

i=1

(

|Ewxi
,h(γh(s− θ))|+ |Eyi,h(γh(s− θ))|

)

ds,

(3.23)

where Ω is given by (3.16) and s − γh(s − θ) ≤ θ + h. Further, the inequality (3.23)

with

V (t) = sup
s∈[−θ,t]

exp(α0s)
m
∑

i=1

(

|Ewxi
,h(s)|+ |Eyi,h(s)|

)

implies

V (t) ≤ Γ(t) +

∫ t

0

Leα0(θ+h)‖E‖∞V (s)ds, (3.24)

where

Γ(t) = V (0) + α−1
0 LΩ(w, h, θ)‖E‖∞(e2α0θ − 1) + L(M1 +M2)‖E‖∞t.

Now, using the Gronwall inequality, in (3.24) we deduce that

V (t) ≤ Γ(t) exp
(

∫ t

0

Leα0(θ+h)‖E‖∞ds
)

= Γ(t) exp
(

Leα0(θ+h)‖E‖∞t
)

, (3.25)

which implies the inequality (3.17).

Since it is assumed that the zero solution of (3.4) is asymptotically stable, it

implies that xi(φi)(t) → 0, yi(ψi)(t) → 0 α0−exponentially as t→ ∞.

Corollary 3.4. Under the hypotheses of Theorem 3.3 we have that xhi (φi)(t) →

0, yhi (ψi)(t) → 0 exponentially as t→ ∞.

Theorem 3.5. Let ϕ a particular solution α−asymptotically stable of CNN (1.1)

and x any other solution of CNN (1.1). Assume the conditions of Theorem 3.3. Then

zh → x − ϕ uniformly on R
+ and exponentially as t → ∞ or zh + ϕ → x and the

error can be estimated by (3.17) with y = x−ϕ as h→ 0.

In the constant coefficients situation, we have the following result.
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Corollary 3.6. For autonomous system corresponding to system (1.1), consider the

functions vhxi
and vhyi

are solution of following system;

dvhxi
(t)

dt
= −aiv

h
xi
(t) +

m
∑

j=1

bij

[

fj

(

(vhyj
◦ γh + ϕyj

)(t− θ)
)

− fj(ϕyj
(t− θ))

]

,

(3.26a)

dvhyi
(t)

dt
= −civ

h
yi
(t) +

m
∑

j=1

dij

[

gj

(

(vhxj
◦ γh + ϕxj

)(t− θ)
)

− gj(ϕxj
(t− θ))

]

,

(3.26b)

vhxi
(ℓh) = Φxi

(ℓh), ℓ = −k, · · · , 0, (3.26c)

vhyi
(ℓh) = Φyi

(ℓh), ℓ = −l, · · · , 0. (3.26d)

Similar results of Theorem 3.3 hold for the system (3.26) with M1 and M2 given as

M1 = ‖Φ‖0

[

m
∑

i=1

|ai|+
eα0θ

∑m
i,j=1 Lfi |bij |

α0θ

]

(3.27)

and

M2 = ‖Φ‖0

[

m
∑

i=1

|ci|+
eα0θ

∑m
i,j=1 Lgi |dij |

α0θ

]

. (3.28)

4. NUMERICAL EXAMPLES

In this section we present two numerical examples. However, before to present the

details we note that the sequences vhi and wh
i in Theorem 2.2 can be rewritten. Indeed,

we have that if vhi (n) = xhi (nh) and w
h
i (n) = yhi (nh), then the sequences satisfy the

following difference equations

vhi (n+ 1) = e−
∫ (n+1)h
nh

ai(u)duvhi (n)

+

∫ (n+1)h

nh

e−
∫ (n+1)h
s

ai(u)du
{

m
∑

j=1

bij(s)fj(w
h
j (r − kij))) + Ii(s)

}

ds, (4.1a)

wh
i (n+ 1) = e−

∫ (n+1)h
nh

ci(u)duwh
i (n)

+

∫ (n+1)h

nh

e−
∫ (n+1)h
s

ci(u)du
{

m
∑

j=1

dij(s)gj(v
h
j (r − lij)) + Ji(s)

}

ds, (4.1b)

with the initial condition vhi (n) = φi(nh), w
h
i (n) = ψi(nh). The problem (4.1) is a

discretization of the original system (1.1).
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4.1. CONSTANT COEFFICIENTS

Consider the following bidirectional neural network model of the form

dx(t)

dt
= −6x(t) + 0.5 tanh(y(t− 0.2)) + 20, (4.2a)

dy(t)

dt
= −5y(t) + 0.25 tanh(x(t− 0.1)) + 30. (4.2b)

The corresponding discrete time analogue is given as

xh(n+ 1) = e−
∫ (n+1)h
nh

6dux(n)

+

∫ (n+1)h

nh

e−
∫ (n+1)h
s

6du
{

0.5f(yh(n− k)) + 20
}

ds, (4.3a)

yh(n+ 1) = e−
∫ (n+1)h
nh

5duy(n)

+

∫ (n+1)h

nh

e−
∫ (n+1)h
s

5du
{

0.25f(xh(n− l)) + 30
}

ds, (4.3b)

for n ∈ Z
+, h > 0, k = [0.2/h], l = [0.1/h]. For h = 1, the Table 1 displays the

comparison between the actual solution and approximated solution of (4.3).
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Figure 1: Actual versus approximated solution for h = 1 in the case of

Example 1 given on Subsection 4.1, see (4.2), (4.3) and also Table 1.

The Table 2 and Figure 2 displays the solutions for h = 0.20. Figure 2 has been

plotted taking n = 60 values into consideration.
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Actual versus approximated solution

t x(t) y(t) xh(t) yh(t)

0 3.0000 -10.0000 3.0000 -10.0000

1 3.4117 5.9436 3.249380 5.941610

2 3.4167 6.0494 3.249998 6.049024

3 3.4167 6.0499 3.249999 6.049748

4 3.4167 6.0499 3.250000 6.049849

5 3.4167 6.0499 3.250000 6.049850

6 3.4173 6.0499 3.416252 6.049850

7 3.4202 6.0499 3.416665 6.049850

8 3.4167 6.0499 3.416666 6.049850

9 3.4153 6.0499 3.416666 6.049892

10 3.4167 6.0499 3.416666 6.049892

11 3.4170 6.0499 3.416666 6.049892

12 3.4193 6.0499 3.416666 6.049892

13 3.4167 6.0499 3.416666 6.049892

14 3.4159 6.0499 3.416666 6.049892

Table 1: Actual versus approximated solution for h = 1 in the case of Exam-

ple 1 given on Subsection 4.1, see (4.2), (4.3) and also Figure 1.

Table 3 given below illustrates the difference between the actual solution and

approximated solution for different values of h, i.e. h = 1 and h = 0.20, where

absolute error = |exact− approximate| for different values of n and h.

From Table 2, it can be observed that as value of n is increased, the approximated

solution is coming closer to the actual solution or we can say that the approximated

solution is converging to actual solution for large t. Thus we can make error estimate

for such case.

The equilibrium point for the system (4.2) is (x∗, y∗) = (3.4167, 6.0499). Trans-

lating the system by substituting x = 3.4167 + x̄ and y = 6.0499 + x̄, and dropping

bars for convenience, we get

x′(t) = −6x(t) + 0.5f̄(y(t− 0.2)),

y′(t) = −6y(t) + 0.5f̄(x(t− 0.2)),

where f̄(x(t))) = f(x̄(t) + 3.4167) − f(3.4167) and f̄(y(t))) = f(ȳ(t) + 6.0499) −

f(6.0499). Now for translated system for h = 0.20, we have L = 1, θ = 0.2, α =

5, ‖E‖∞ = 0.75. Then α0 = α − eαθ‖E‖∞ = 2.96128863 > 0 and thus ρ = α0 −

eα0(θ+h)‖E‖∞L = 0.5095 > 0. Hence parameters satisfy the conditions of Theorem

3.2 and 3.3 for the error estimation. Furthermore, we have ‖B‖∞ = 0.5, ‖D‖∞ =
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Actual versus Approximated solution

t x(t) y(t) xh(t) yh(t)

0 3.0000 -10.0000 3.0000 -10.0000

1 3.4116 5.9436 3.1747 0.1454

1.2 3.4152 6.0111 3.2273 3.8777

2.0 3.4167 6.0494 3.2273 3.8777

2.4 3.4167 6.0499 3.3098 5.2507

2.8 3.4167 6.0499 3.3098 5.2507

3.2 3.4173 6.0499 3.3844 5.7559

3.6 3.4202 6.0499 3.3844 5.7559

4.2 3.4167 6.0499 3.4069 5.9417

4.6 3.4162 6.0499 3.4069 5.9417

5.4 3.4175 6.0499 3.4137 6.0101

5.8 3.4167 6.0499 3.4137 6.0101

6.0 3.4173 6.0499 3.4137 6.0101

6.2 3.4203 6.0499 3.4158 6.0352

6.4 3.4166 6.0499 3.4158 6.0352

Table 2: Actual versus approximated solution for h = 0.20 in the case of

constant coefficients example given on Subsection 4.1, see (4.2), (4.3) and

also Figure 2.

0.25, ‖a‖∞ = 0.6, ‖c‖∞ = 0.5. Using (3.27) and (3.28) to estimate M1 and M2, we

have

M1 = 97.8470, M2 = 74.9235.

Now, for some large K1,K2 > 0, estimating ‖w − wh‖ and Ω(w, h, θ) by K1h and

K2h, we obtain

C(t) ≤ K1h+ 0.75(97.8470 + 74.9235)t+
1

2.9613
(0.75)K2h(e

2(0.2)(2.96128863.−1))

≤ K1h+ 0.5745K2h+ 129.5779t,

which give the uniform smallness, here K1,K2 are Lipschitz constants associated to

initial conditions for s ≥ 2θ. Thus using Theorem 3.3, the estimate |wxi
(t)−wh

xi
(t)|+

|wyi
(t)−wh

yi
(t)| ≤ Ce−ρt holds, where C and ρ are defined above. Since ρ > 0, from the

estimate, it can be concluded that the approximate solution converges exponentially

to the actual solution for large t.
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Figure 2: Actual versus approximated solution for h = 0.20 in the case of

Example 1 given on Subsection 4.1, see (4.2), (4.3) and also Table 2.

4.2. VARIABLE COEFFICIENTS

Consider the following non-autonomous bidirectional neural network model given by

dx(t)

dt
= −a(t)x(t) + b(t) tanh(y(t− σ)) + I(t), (4.4a)

dy(t)

dt
= −c(t)y(t) + d(t) tanh(x(t− τ)) + J(t), (4.4b)

where a(t) = 12 + 2 sin t, c(t) = 8 + cos t, b(t) = 6 cos t, d(t) = 5 sin t, I(t) = 5 sin t,

J(t) = 10 cos t, τ = 1, σ = 2.

The discrete-time analogue corresponding to (4.4) is given as

xh(n+ 1) = e−
∫ (n+1)h
nh

a(u)dux(n)

+

∫ (n+1)h

nh

e−
∫ (n+1)h
s

a(u)du
{

b(s)f(yh(n− k)) + I(s)
}

ds, (4.5a)

yh(n+ 1) = e−
∫ (n+1)h
nh

c(u)duy(n)

+

∫ (n+1)h

nh

e−
∫ (n+1)h
s

c(u)du
{

d(s)f(xh(n− l)) + J(s)
}

ds, (4.5b)

for n ∈ Z
+, h > 0, k = [σ/h], l = [τ/h]. The discrete-time analogue is studied for

h = 1 with the initial conditions given by (1, 1.5), s ∈ [−4, 0]. The Table 4 and

Figure 3 compares the values and convergence behaviour of the actual solution and

approximated solution for (4.4) and (4.5).
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t |Ewx,h(t)| |Ewy,h(t)|

0 0 0

1 0.1623 0.0020

2 0.1667 0.0004

3 0.1667 0.0002

4 0.1667 0.0001

5 0.1667 0.0001

6 0.0010 0.0001

7 0.0035 0.0001

8 0.0000 0.0001

9 0.0014 0.0000

10 0.0000 0.0000

10 0.0000 0.0000

11 0.0003 0.0000

12 0.0026 0.0000

13 0.0000 0.0000

For h = 1

t |Ewx,h(t)| |Ewy,h(t)|

0 0 0

1.0 0.2369 5.7982

1.2 0.1879 2.1334

2.0 0.1894 2.1717

2.4 0.1069 0.7992

2.8 0.1069 0.7992

3.2 0.0323 0.2940

3.6 0.0323 0.2940

4.2 0.0098 0.1082

4.6 0.0093 0.1082

5.4 0.0038 0.0398

5.8 0.003 0.0398

6.0 0.0036 0.0398

6.2 0.0045 0.0147

6.4 0.0008 0.0147

For h = 0.20

Table 3: Error between actual and approximated solution for h = 1 and

h = 0.20 for systems (4.2) and (4.3), see Figures 1,2 and 3 and Tables 1-2.

Table 5 indicates the difference between the actual solution and approximated

solution for h = 1, where absolute error = |exact− approximate| for different values

of n.

Now consider the case for b(t) = 0.6 cos t, d(t) = 0.5 sin t, τ = 0.1, σ = 0.2 with

similar initial conditions. The Table 6 and Figure 4 compares the values and conver-

gence behaviour of the actual solution and approximated solution for h = 0.10 for the

systems (4.4) and (4.5).

Table 7 indicates the difference between the actual solution and approximated

solution for h = 0.10, where absolute error = |exact − approximate| for different

values of n.

Furthermore, error estimation for this case is as follows. Using (3.3) and (3.4), let

w = (w1, w2)
T be the solution of the translated system given by

w′(t) = −A(t)w(t) + E(t)[f((w + φ)(t− θ))− f(φ(t− θ))],

where A(t) = diag(12 + 2 sin(t), 8 + cos(t)), E(t) = diag(6 cos(t), 5 sin(t)).

We have α = 7, ‖E‖∞ = 1.1, ‖a‖∞ = 14, ‖B‖∞ = 0.6, ‖c‖∞ = 9, ‖D‖∞ =

0.5, ‖φ‖0 = 2.5 and L = 1. Thus α0 = 2.5393 and ρ = 0.1830 > 0. Since ρ > 0,



BIDIRECTIONAL NEURAL NETWORKS MODEL 23

0 2 4 6 8 10 12 14 16
−1.5

−1

−0.5

0

0.5

1

1.5

time t

S
o
lu

ti
o
n

Actual solution versus Approximated solution

 

 

x(t)

y(t)

x
h
(t)

y
h
(t)

Figure 3: Actual versus approximated solution for h = 1 in the case of

Example 2 given on Subsection 4.2, see (4.4), (4.5) and also Table 4.

Actual versus Approximated solution

t x(t) y(t) xh(t) yh(t)

0 1.0000 1.5000 1.0000 1.5000

1 0.5328 1.0685 0.5324 1.0682

2 0.2003 -0.0777 0.2002 0.0851

3 -0.2883 -1.2955 -0.3369 -1.2539

4 -0.3458 -0.9236 -0.6448 -1.1131

5 -0.5815 0.4070 -0.4771 0.3938

6 -0.5415 1.1314 -0.5801 1.1503

7 0.3372 0.7585 -0.0670 0.7851

8 0.3299 0.1228 0.3436 -0.3538

9 -0.0860 -1.0380 -0.1464 -1.1948

10 -0.2993 -1.2505 -0.5233 -1.3597

11 -0.4572 0.0174 -0.4753 -0.0635

12 -0.6621 1.0183 -0.6473 1.0512

13 0.0945 0.9506 -0.2512 0.9761

14 0.4159 0.2928 0.3440 -0.0267

Table 4: Actual versus approximated solution for h = 1 in the case of Exam-

ple 2 given on Subsection 4.2, see (4.4), (4.5) and also Figure 3.
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t |Ewx,h(t)| |Ewy,h(t)|

0 0 0

1 0.0004 0.0003

2 0.0001 0.1628

3 0.0486 0.0416

4 0.2990 0.1895

5 0.1044 0.0132

6 0.4042 0.0266

7 0.0137 0.4766

8 0.0604 0.1568

9 0.2240 0.1092

10 0.0181 0.0809

Table 5: Error betewen actual and approximated solution for h = 1 for the

systems (4.4) and (4.5), see Figure 3 and Table 4.

Actual versus Approximated solution

t x(t) y(t) xh(t) yh(t)

0 1.0000 1.5000 1.0000 1.5000

1 0.3128 0.7410 0.3469 1.2695

1.1 0.3274 0.6569 0.1487 1.1750

1.2 0.3390 0.5653 0.1520 1.1750

1.3 0.3476 0.4665 0.1553 1.1749

1.4 0.3535 0.3612 0.1586 1.1747

1.5 0.3566 0.2500 0.1618 1.1745

1.6 0.3572 0.1337 0.1637 1.1740

1.7 0.3555 0.0133 0.1656 1.1734

1.8 0.3516 -0.1103 0.1675 1.7276

1.9 0.3456 -0.2590 0.1694 1.1720

2 0.3376 -0.3623 0.1779 1.1720

Table 6: Actual versus approximated solution for h = 1 in the case of Exam-

ple 2 given on Subsection 4.2, see (4.4), (4.5) and also Figure 4.

we can approximate solution of our system through estimation. Approximating M1

and M2 (for h = 0.1) as

M1 = ‖φ‖0(‖a‖∞ + Leα0θ‖B‖∞)h = 3.7493,

M2 = ‖φ‖0(‖c‖∞ + Leα0θ‖D‖∞)h = 2.4577.



BIDIRECTIONAL NEURAL NETWORKS MODEL 25

0 5 10 15 20 25 30 35 40
−2

0

2

4

6

8

10

12

14
x 10

4

time t

S
o

lu
ti
o

n

Comparison for h = 0.1

 

 

x(t)

y(t)

x
h
(t)

y
h
(t)

Figure 4: Actual versus approximated solution for h = 0.1 in the case of

Example 2 given on Subsection 4.2, see (4.4), (4.5) and also Table 6.

t |Ewx,h(t)| |Ewy,h(t)|

0 0 0

1 0.0341 0.5285

1.1 0.1787 0.5181

1.2 0.1870 0.6097

1.3 0.1923 0.7084

1.4 0.1949 0.8135

1.5 0.1948 0.9245

1.6 0.1935 1.0403

1.7 0.1899 1.1601

1.8 0.1841 1.6173

1.9 0.1762 0.913

2 0.1597 0.8097

Table 7: Error between actual and approximated solution for h = 0.1 for the

systems (4.4) and (4.5), see Figure 4 and Table 6.

In the similar manner as done in Example 4.1, estimating ‖w − wh‖ and Ω(w, h, θ)

by K1h and K2h (K1,K2 > 0), we obtain

C(t) ≤ K1h+ 3.4139t+ 0.7630K2h

≤ 0.1K1 + 0.0763K2 + 3.4139t for h = 0.1.
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Thus from Corollary 3.6, we have |wxi
(t) − wh

xi
(t)| + |wyi

(t) − wh
yi
(t)| ≤ Ce−ρt, or

we can say that approximated solution converges exponentially to actual solution for

large t.
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