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ABSTRACT: In this paper we describe an alternative elementary method of ap-

proximating invariant measures for random maps. Instead of computing Ulam’s ma-

trices associated with the Frobenious-Perron operator for random map we compute

matrices which approximate Ulam’s matrices.

Let T = {τ1(x), τ2(x), . . . , τK(x); p1, p2, . . . , pK} be a random map which posses a

unique absolutely continuous invariant measure µ̂ with probability density function

f̂ . With our elementary method it is possible to develop and implement algorithms

for the approximation of the invariant measure µ̂ with a given bound on the error

of the approximation. One of the main advantages of our method is that we do not

need to deal with the inverse of the component maps of the random maps. Our result

is a generalization of the result of Galatolo and Nisoli (see the paper [12] Galatolo,

S. and Nisoli, I, An elementary approch to rigorous approximation of Invariant

measures, SIAM J. Appl. Dynamical Systems, Vol. 13, N0. 2, pp 958–985, 2014) of

single piecewise expanding maps to results of random maps. We present a numerical

example.
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1. INTRODUCTION

The existence and properties of absolutely continuous invariant measures for random

maps reflect their long time behavior and play an important role in understanding

their chaotic nature [3, 10, 13]. Absolutely continuous measures which are invariant

under the random map T = {τ1(x), τ2(x), . . . , τK(x); p1, p2, . . . , pK} are fixed points

of an operator D on the space of measures (see Eq. (2.3)). Equivalently, a fixed point

of the Frobenius-Perron operator PT (see Eq. (2.2)) of a random map is the invari-

ant density f of an absolutely continuous invariant measure µ. Thus, the problem of

the computation of absolutely continuous invariant measures for the random map T

reduces to the problem of computing fixed point of the transfer operator D or comput-

ing fixed point of the Frobenius – Perron operator PT (see [23, 10, 13]). The transfer

operator equation or the the Frobenius–Perron equation for a random map is a more

complicated equation than the transfer operator equation or the Frobenius-Perron

equation (respectively) for a single map and it is difficult to solve these functional

equations except in some simple cases. The numerical approximation of (absolutely

continuous) invariant measures of dynamical systems (single maps or random maps)

is of practical importance in the application of ergodic theory and dynamical sys-

tems to various applied areas. A number of methods have, therefore, been developed

to approximate (absolutely continuous) invariant measures for dynamical systems.

Ulam’s method which was suggested by Ulam [28] is one of the simplest, most used

and best understood method. For a single piecewise C2, piecewise expanding maps

of interval satisfying |τ ′| > α > 2 (see [21]), Li [22] first proved the convergence of

Ulam’s approximation. Since then, Ulam’s method have been applied to one and

higher dimensional single transformations (see for example, [5, 6]). The computation

of invariant measures for random maps is not as simple as the computation of invari-

ant densities for single maps. In [10], Froyland extended Ulam’s method for a single

transformation to a method for random map with constant probabilities (see [24]).

Góra and Boyarsky (see [13]) proved the convergent of Ulam’s method for position

dependent random maps. For Markov switching position dependent random maps

we developed Ulam’s method in [16]. Recently, Froyland et al. have studied stability

and approximation of random invariant densities for Lasota–Yorke map cocycles (see

[11]). Almost all of the results in the literature on the approximation of invariant

measures provided proofs for the convergence of the corresponding methods. More-

over, asymptotic estimates on the rate of convergence are also provided on some of

the results mentioned above. However, results with explicit (rigorous) bound on the

error for position dependent random maps are very few.

In an Ulam’s method, first finite dimensional approximations of linear operators

are found for the transfer operator or the Frobenius–Perron operator, then eigenvec-



APPROXIMATION OF INVARIANT MEASURES 33

tors of corresponding matrix representation of fine dimensional approximation oper-

ators are found. The calculation of the (i, j)-th entry of these matrices involve the

calculation of portion of the pre-image (inverse image) of the interval partition set Ij

under the corresponding on the partition set Ii. For the error in an Ulam’s method,

the distance between the fixed point of the discretization approximation operator and

the finxed point of the real operator are found using the stability result in [19]. The

method requires some estimation which cannot be trivially done in a rigorous way

in a reasonable time. In this paper, we describe an approach which requires sim-

pler assumptions and estimations. Our method provides algorithms to approximate

invariant measures with a specific bound on the error, that is, we can keep our ap-

proximation as sharp as possible. One of the other advantages of our method is that

we do not need to use the inverse of corresponding transformations. Our approach

is a generalization of the approach of Galatolo and Nisoli in [12] of one dimensional

single dynamical systems to an approach for random maps.

The paper is organized in the following way. In Section 2, a present a review for

random maps, invariant measures, transfer operator, the Frobenius–Perron operator

and the existence of absolutely continuous invariant measures is presented. In Section

3, abstract results on the fixed points of operators are presented. An elementary

method for the approximation of invariant measures with error bounds for Ulam

method is presented in Section 4. The implementation of the elementary method is

presented in Section 5. Numerical examples are presented in Section 6.

2. RANDOM MAPS, THE FROBENIUS-PERRON OPERATOR AND

INVARIANT MEASURES

2.1. RANDOM MAPS WITH CONSTANT PROBABILITIES

Random maps with constant probabilities are an important special case of skew prod-

ucts. Let (X,B, λ) be a measure space and Ω = {1, 2, 3, . . . ,K}{0,1,2,...} = {ω =

{ωi}
∞
i=0 : ωi ∈ {1, 2, 3, . . . ,K}} be the set of set of all one sided infinite sequences .

Let τk : X → X, k = 1, 2, . . . ,K be nonsingular piecewise one-to-one transformations

and p1, p2, . . . , pK be constant probabilities such that
∑K
i=1 pi = 1. The topology on

Ω is the product of the discrete topology on {1, 2, 3, . . . , n} and the Borel probability

measure µp on Ω is defined as µp ({ω : ω0 = i0, ω1 = i1, . . . , ωn = in}) = pi0pi1 . . . pin .

Let σ : Ω → Ω be the left shift. Now consider the skew product S : Ω×X → Ω×X

defined by

S(ω, x) = (σ(ω), τω0
(x)) , ω ∈ Ω, x ∈ X.

Now,

S2(ω, x) =
(

σ2(ω), τω1
◦ τω0

(x)
)
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and for any integer N ≥ 1,

SN (ω, x) =
(

σN (ω), τωN−1
◦ τωN−2

◦ . . . ◦ τω1
◦ τω0

(x)
)

A random map

T = {τ1, τ2, . . . , τK ; p1, p2, . . . , pK},

with constant probabilities p1, p2, . . . , pK is defined as follows: for any x ∈ X,T (x) =

τk(x) with probability pk and for any non-negative integer N , TN (x) = τkN ◦ τkN−1
◦

. . . ◦ τk1(x) with probability ΠNj=1pkj . T
N (x) can be viewed as the second component

of the SN of the skew product S. It can be easily shown that a measure µ is T−

invariant if and only if the measure µp × µ is S−invariant. Pelikan [32] defined a

T−invariant measure µ as follows:

Definition 2.1. Let T be a random map on X and µ be a measure on X. The

measure µ is invariant under the random map T if

µ(E) =

K
∑

k=1

pkµ(τ
−1
k (E)), (2.1)

for any measurable set E ∈ B.

Lemma 2.2. Let µ be a measure on X. Let µp be the Borel probability measure on

Ω = {1, 2, 3, . . . ,K}{0,1,2,...}. Then µ is T−invariant if and only if the measure µp×µ

on B(Ω)× B is S invariant.

Proof. By definition of S and µp,

(µp × µ)(S−1(A×B)) =

K
∑

k=1

pkµp(A)µ(τ
−1
k (B))

= µp(A)

K
∑

k=1

pkµ(τ
−1
k (B))

If µ is T invariant, then

(µp × µ)(S−1(A×B)) = µp(A)µ(B).

Thus, µp × µ is S invariant. The proof of converse is easy.

Let f be the density of µ. Then dµ = f · dλ. Let A × B be a measurable subset of

Ω×X. Then

(µp × µ)(S−1(A×B)) =

K
∑

k=1

pkµp(A)µ(τ
−1
k (B))
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=

K
∑

k=1

pkµp(A)

∫

B

Pτkfdλ

= µp(A)
∑

k

pk

∫

B

Pτkfdλ.

Thus, the density on the second component is
∑

i piPτif . Hence the Perron-Frobenius

operator PT for the random map T is given by

PT f =
K
∑

k=1

pkPτkf, (2.2)

where Pτk is the Frobenius–Perron operator of the transformation τk. The operator

D on measures on (I,B) defined by

Dµ(A) =
K
∑

k=1

pkµ
(

τ−1
k (A)

)

, A ∈ B (2.3)

is known as the transfer operator of the random map T. It can be easily shown

that (i) PT : L1([0, 1]) → L1([0, 1]) is a linear operator; (ii) PT is non-negative, i.e.,

f ∈ L1([0, 1]) and f ≥ 0 =⇒ PT f ≥ 0; (iii) PT is a contraction, i.e., ‖ PT f ‖1≤‖ f ‖1,

for any f ∈ L1([0, 1]); (iv) PT satisfies the composition property, i.e., if T and R are

two position dependent random maps on [0, 1], then PT◦R = PT ◦ PR. In particular,

for any n ≥ 1, PnT = PTn ;

Lemma 2.3. PT f
∗ = f∗ if and only if µ = f∗λ is T invariant.

Proof. Assume that µ(A) =
∑K
k=1 pkµ(τ

−1
k (A)), for any A ∈ B. Then

∫

A

f∗dλ =

K
∑

k=1

pk

∫

τ
−1
k

(A)

f∗dλ

=
K
∑

k=1

pk

∫

A

Pτkf
∗dλ

=

∫

A

K
∑

k=1

pkPτkf
∗dλ

=

∫

A

PT f
∗dλ.

Therefore, PT f
∗ = f∗.

Conversely, assume that PT f
∗ = f∗ almost everywhere. Then

µ(A) =

∫

A

f∗dλ =

∫

A

PT f
∗dλ
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=

∫

A

K
∑

k=1

pkPτkf
∗dλ

=

K
∑

k=1

pk

∫

A

Pτkf
∗dλ

=

K
∑

k=1

pk

∫

τ
−1
k

(A)

f∗dλ

=
K
∑

k=1

pkµ(τ
−1
k (A))

2.2. EXISTENCE OF INVARIANT MEASURES FOR RANDOM

MAPS

Let T0(I) denote the class of transformations τ : I = [0, 1] → I that satisfy the

following conditions:

(i) τ is piecewise monotonic, i.e., there exists a partition J = {Ji = [xi−1, xi], i =

1, 2, . . . , q} of I such that τi = τ |Ji is C
1, and

|τ ′i(x)| ≥ α > 0, (2.4)

for any i and for all x ∈ (xi−1, xi);

(ii) g(x) = 1
|τ ′

i(x)|
is a function of bounded variation, where τ ′i(x) is the appropriate

one-sided derivative at the end points of J .

We say that τ ∈ T1(I) if τ ∈ T0(I) and α > 1 in condition (2.4), i.e., τ is piecewise

expanding.

Lemma 2.4. [32] Let T = {τ1, τ2, . . . , τK ; p1, p2, . . . , pK} be a random map, where

τk ∈ T0(I), with the common partition J = {J1, J2, . . . , Jq}, k = 1, 2, . . . ,K. If, for

all x ∈ [0, 1], the following Pelikan’s condition

K
∑

k=1

pk

|τ ′k(x)|
≤ γ < 1, (2.5)

is satisfied, then, for any f ∈ BV (I),

VIPT f ≤ AVIf +B ‖ f ‖1,where 0 < A < 1, and B > 0 (2.6)
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Theorem 2.5. Let T = {τ1, τ2, . . . , τK ; p1, p2, . . . , pK} be a random map, where

τk ∈ T0(I), with the common partition J = {J1, J2, . . . , Jq}, k = 1, 2, . . . ,K. If, for

all x ∈ [0, 1], the following Pelikan’s condition

K
∑

k=1

pk

|τ ′k(x)|
≤ γ < 1, (2.7)

is satisfied, then for all f ∈ L1 = L1([0, 1], λ) :

(i) The limit

lim
n→∞

1

n

n−1
∑

i=1

P iT (f) = f∗ exists in L1;

(ii) PT (f
∗) = f∗;

(iii) V[0,1](f
∗) ≤ C · ‖f‖1, for some constant C > 0, which is independent of

f ∈ L1.

3. ABSTRACT RESULTS ON THE FIXED POINTS OF OPERATORS

Let M(I) be the space of all measures on (I,B). The transfer operator D in (2.3) or

in (??) which is defined in Section 2 is a an operator D : M(I) → M(I). Let H be

an invariant normed subspace of M. Consider a restiction of D from H into H. For

simplicity, we denote the restricted operator again by D. Let ‖ · ‖H denotes the norm

on H. For δ ∈ R, let Dδ be a finite dimensional approximation of D and we assume

that we can compute the fixed points of Dδ. The parameter δ measures the accuracy

of the approximation (for example, the size of a grid). Let ν, νδ ∈ H be the fixed

point of D and Dδ respectively. In our approach of approximation ν, first, we want

to get as much information as possible for the operator Dδ and use these information

to approximate ν. Recall the following abstract result which was proved in [12]:

Theorem 3.1. Suppose that

1. ‖ Dδν −Dν ‖H<∞,

2. there exists a positive integer N̄ such that ‖ DN̄
δ (νδ − ν) ‖H<

1
2 ‖ νδ − ν ‖H,

3. for each i, there exists Ci such that for all g ∈ H, ‖ Di
δg ‖H< Ci ‖ g ‖H .

Then

‖ νδ − ν ‖H≤ 2 ‖ Dδν −Dν ‖H
∑

i∈[0,N̄−1]

Ci. (3.1)
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4. AN ELEMENTARY METHOD FOR ERROR BOUND

ESTIMATION OF ULAM’S METHOD FOR RANDOM MAPS

4.1. ULAM’S METHOD FOR RANDOM MAPS

In this subsection, we consider position dependent random map

T = {τ1, τ2, . . . , τK ; p1, p2, . . . , pK}

satisfying the following assumptions:

(B) T has a unique acim µ with density f∗.

Now, we describe Ulam’s method for T. Let n be a positive integer. Let P(n) =

{I1, I2, . . . , In} be a partition of the interval [0, 1] into n equal subintervals. We

assume that maxIi∈P(n) λ(Ii) goes to 0 as n→ ∞. Let Fn be the σ-algebra generated

by the partition P(n). For each 1 ≤ k ≤ K, create the matrix

M
(n)
k =

(

λ
(

τ−1
k (Ij) ∩ Ii

)

λ(Ii)

)

1≤i,j≤n

.

Let L(n) ⊂ L1([0, 1], λ) be a subspace of L1 consisting of functions which are constant

on elements of the partition P(n). We will represent functions in L(n) as vectors:

vector f = [f1, f2, . . . , fn] corresponds to the function f =
∑n
i=1 fiχIi . Let Q

(n) be

the isometric projection of L1 onto L(n):

Q(n)(f) =
n
∑

i=1

(

1

λ(Ii)

∫

Ii

fdλ

)

χIi =

[

1

λ(I1)

∫

I1

fdλ, . . . ,
1

λ(In)

∫

In

fdλ

]

.

It can be easily shown that Qnf = E(f |Fn), f ∈ L1. We define the operator P
(n)
T :

L(n) → L(n) by

P
(n)
T =

K
∑

k=1

pk

(

M
(n)
k

)C

, (4.1)

where C denotes the transpose of a matrix. Note that P
(n)
T is a finite dimensional

approximation to the operator PT . It can be shown that

P
(n)
T = Qn ◦ PT ◦Qn.

Equivalently, for f ∈ L1,

P
(n)
T f = E (PT (E (f |Fn)) |Fn) ,
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where Fn is the σ−algebra associated to the partition P(n). Ulam’s matrix for position

dependent random map with respect to the partition P(n) is

M
∗(n)

P(n) =
K
∑

k=1

(

M
(n)
k

)C ([

p
(n)
k,1 , p

(n)
k,2 , . . . , p

(n)
k,n

])C

.

Note that if the probabilities does not depend on position x, then the Ulam’s matrix

M
∗(n)

P(n) reduces to

M
∗(n)

P(n) =

K
∑

k=1

pk

(

M
(n)
k

)C

.

In this way the random map is approximated by the finite state Markov chain with

transition probabilities mij , 1 ≤ i, j ≤ n, where mij is the (i, j)th element of the

Ulam’s matrix M
∗(n)

P(n) .

4.2. ESTIMATION

We are interested in connecting Theorem 3.1 for explicit estimation for approximation

error in Ulam’s descretization method with L1 norm. We assume that the norm

‖ ν ‖BV can be estimated and there is an estimation for the norm ‖ P
(n)
T −PT ‖BV→L1 .

Thus, the left hand side of condition (1) in Theorem 3.1 reduces to

‖ P
(n)
T ν − PT ν ‖L1≤‖ P

(n)
T − PT ‖BV→L1‖ ν ‖BV .

Note that ‖ ν ‖BV is possible if PT satisfies condtions similar to (2.6). With these

assumptions we have from Theorem 3.1 that

‖ νδ − ν ‖BV≤ 2
∑

i∈[0,N−1]

Ci ‖ P
(n)
T − PT ‖BV→L1‖ ν ‖L1 .

Our main goal in this section is to determine N̄ in the Theorem 3.1. Recall that P
(n)
T

is the Ulam’s approximation of the Frobenius–Perron operator PT . Set

V0 = {f ∈ L1([0, 1]) :

∫

fdλ = 0}.

Note that ν − νδ ∈ V0. Therefore, if we prove ‖
(

P
(n)
T

)N̄

|V0 ‖L1→L1< 1
2 we imply

condition (2) in Theorem 3.1. We consider the set of functions in L(n) with integral

zero and for convenience we denote this set by V0. In order to determine N̄ in the

Theorem 3.1, we consider the Ulam matrix M
∗(n)

P(n) |V0 restricted to the set V0. Consider

the matrix norm of the Ulam’s matrix, ‖ M
∗(n)

P(n) |V0 ‖1= sup|x|1=1|M
∗(n)

P(n)(x)|. Let

I : Rn → L1 is the trivial identification of a vector in R
n with a piecewise constant
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function given by the choice of the basis. Then, we have the following (see Section

4.1 in [12]) :

‖ P
(n)
T ‖L1→L1

≤‖ M
∗(n)

P(n) ‖1;

‖ P
(n)
T |V0 ‖L1

≤‖ M
∗(n)

P(n) |I
−1(V0) ‖1;

‖
(

P
(n)
T

)N̄

|V0 ‖L1
=‖
(

M
∗(n)

P(n)

)N̄

|I−1(V0) ‖1 .

In this way, we can have an estimation of ‖
(

P
(n)
T

)N̄

|V0
‖L1→L1

by computing a

matrix M̂
∗(n)

P(n) approximating M
∗(n)

P(n) |I
−1(V0) and ‖

(

M̂
∗(n)

P(n)

)N̄

‖1 . Now, compute

‖
(

M̂
∗(n)

P(n)

)j

‖1 for each j > 0 iteratively form
(

M̂
∗(n)

P(n)

)j−1

until it finds some j for

which it can deduce that ‖
(

M
∗(n)

P(n)

)j

|V0 ‖1≤
1
2 . This j will the the output as N̄

required in Theorem 3.1.

4.2.1. ALGORITHM

1. Input the random map and the partition.

2. Compute the matrix M̂
∗(n)

P(n) approximating P
(n)
T |V0 and the the corresponding

approximated fixed point f̂n upto some required approximation ǫ1.

3. Compute ∆L, an estimate for ‖ P
(n)
T f − PT f ‖ upto some error ǫ2

4. Compute N̄ in Theorem 3.1 which is described above.

5. If all computations ends successfully, output f̂n.

We have the following lemma:

Lemma 4.1. I−1(f̂n) is an approximation the invariant measure upto an error ǫ

given by

ǫ ≤ ǫ1 + 2N̄(∆L+ ǫ2)

4.3. EXPLICIT ESTIMATION OF THE COEFFICIENTS OF THE

LASOTA – YORKE INEQUALITY FOR RANDOM MAPS

In this section we present explicit estimation of the co-efficient of the Lasota-Yorke

inequality for random maps with respect to the transfer operator D (see Eq. (2.3)

and Eq. (??)).

Consider the following semi-norm for measures on (I,B).

‖ µ ‖= sup
φ∈C1,|φ|∞=1

|µ(φ′)|. (4.2)
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Moreover, consider the space of measures, M′ = {µ :‖ µ ‖<∞}.

Theorem 4.2. If ‖ µ ‖< ∞, then µ is absolutely continuous with respect to the

Lebesgue measure.

Proof. See Lemma 1.1 in [23].

4.3.1. EXPLICIT ESTIMATION OF THE COEFFICIENTS FOR

RANDOM MAPS WITH CONSTANT PROBABILITIES

We consider random maps with constant probabilities.

Theorem 4.3. Let T = {τ1, τ2, . . . , τK ; p1, p2, . . . , pK} be an i.i.d. random map on

I = [0, 1], where τk, k = 1, 2, . . . ,K are piecewise C2 Lasota-Yorke maps on a common

partion 0 = d1, d2, . . . , dn = 1. If the random map T satisfies the Pelikan’s average

expanding condition (??) and µ is a measure on [0, 1], then

‖ Dµ ‖≤ λ ‖ µ ‖ +B′|µ|1, (4.3)

where

λ =

(

K
∑

k=1

2pk
inf τ ′k

)

, B′ =

(

K
∑

k=1

pk

(

2

min(di − di+1)
+ 2|

τ ′′k

(τ ′)
2 |∞

))

and |µ|1 is defined in (4.4).

Proof.

Dµ(φ′) =
∑

Z∈{(di,di+1)|i∈{1,2,...,n−1}}

Dµ(φ′χZ).

For each Z define φZ to be linear such that φZ = φ on the boundary of Z. Moreover,

define ψZ = φ−φZ on Z and extend it to [0, 1] by setting it to zero outside Z. In this

way, we obtain a continuous function. Moreover, for each x ∈ Z,

|φ′Z |∞ ≤
2|φ|∞

min(di − di+1)
.

Now,

Dµ(φ′) =
∑

Z∈{(di,di+1)|i∈{1,2,...,n−1}}

Dµ(φ′χZ)

=
∑

Z

Dµ(ψ′
ZχZ) +

∑

Z

Dµ(φ′ZχZ)

Thus,

|Dµ(φ′)| = |
K
∑

k=1

pk
∑

Z

(

µ
(

ψ′
Z ◦ τkχτ−1

k
(Z)

)

+ µ
(

φ′Z ◦ τkχτ−1
k

(Z)

))

|.



42 MD SHAFIQUL ISLAM

It can be easily shown that, on Z,

ψ′
Z ◦ τk =

(

ψZ ◦ τk
τ ′k

)

+
(ψZ ◦ τk) τ

′′
k

(τ ′k)
2 , k = 1, 2, . . . ,K.

Thus,

|Dµ(φ′)| ≤
K
∑

k=1

pk

(

|
∑

Z

µ

(

(

ψZ ◦ τk
τ ′k

)′

χτ−1
k

(Z)

)

|

+|
∑

Z

µ

(

(ψZ ◦ τk) τ
′′
k

(τ ′k)
2 χτ−1

k
(Z)

)

|+
2|φ|∞

min(di − di+1)
µ(1)

)

q ≤
K
∑

k=1

pk

(

|µ

(

(

ψZ ◦ τk
τ ′k

)′
)

|+ 2|φ|∞µ

(

|
τ ′′k

(τ ′)
2 |

)

+
2|φ|∞

min(di − di+1)
µ(1)

)

.

The function
∑

Z
ψZ◦τk
τ ′

k

is not C1, because its derivative has a finite number of points

of discontinuity. This function can be approximated by a C1 function ψǫ such that

|ψǫ−
∑

Z
ψZ◦τk
τ ′

k

| and µ
(

|ψǫ −
∑

Z
ψZ◦τk
τ ′

k

|
)

are as small as wanted. It is shown in [12]

(see also [23]) that

|µ

(

(

ψZ ◦ τk
τ ′k

)′
)

| ≤‖ µ ‖
2

inf τ ′k
|φ|∞, k = 1, 2, . . . ,K

Thus,

|Dµ(φ′)| ≤
K
∑

k=1

pk

(

‖ µ ‖
2

inf τ ′k
|φ|∞ + 2|φ|∞µ

(

|
τ ′′k

(τ ′k)
2 |

)

+
2|φ|∞

min(di − di+1)
µ(1)

)

.

Now,

‖ Dµ ‖ ≤
K
∑

k=1

pk

(

2

inf τ ′k
‖ µ ‖ +2µ

(

|
τ ′′k

(τ ′k)
2 |

)

+
2

min(di − di+1)
µ(1)

)

Define

|µ|1 = sup
|φ|∞=1

|µ(φ)|. (4.4)

Then,

‖ Dµ ‖ ≤
K
∑

k=1

pk

(

2

inf τ ′k
‖ µ ‖ +

(

2

min(di − di+1)
+ 2|

τ ′′k

(τ ′k)
2 |∞

)

|µ|1

)

=

(

K
∑

k=1

2pk
inf τ ′k

)

‖ µ ‖ +

(

K
∑

k=1

pk

(

2

min(di − di+1)
+ 2|

τ ′′k

(τ ′k)
2 |∞

))

|µ|1
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Let

λ =

(

K
∑

k=1

2pk
inf τ ′k

)

, B′ =

(

K
∑

k=1

pk

(

2

min(di − di+1)
+ 2|

τ ′′k

(τ ′k)
2 |∞

))

.

Then,

‖ Dµ ‖ ≤ λ ‖ µ ‖ +B′|µ|1.

It is not difficult to show that for any integer l ≥ 1,

‖ Dlµ ‖ ≤ λl ‖ µ ‖ +
1

1− λ
B′|µ|1.

Let B = B′

1−λ . Then

‖ Dlµ ‖ ≤ λl ‖ µ ‖ +B|µ|1. (4.5)

Lemma 4.4. If f is a fixed point of the Frobenius-Perron operator PT , then

‖ PT f − P
(n)
T ‖L1≤

2

n
‖ f ‖L1

Proof.

‖ PT f − P
(n)
T f ‖L1= ‖ P

(n)
T f − PT f ‖L1=‖ P

(n)
T f − E(PT f |Fn)

+ E(PT f |Fn)− PT f ‖L1

≤ ‖ P
(n)
T f − E(PT f |Fn) ‖L1 + ‖ E(PT f |Fn)− PT f ‖L1

= ‖ E (PT (E (f |Fn)) |Fn)− E(PT f |Fn) ‖L1

+ ‖ E(PT f |Fn)− PT f ‖L1

= ‖ E [PT (E (f |Fn)) |Fn] ‖L1 + ‖ E(PT f |Fn)− PT f ‖L1

≤ ‖ E(PT f |Fn)− PT f ‖L1 + ‖ E(PT f |Fn)− PT f ‖L1

=2 ‖ E(PT f |Fn)− PT f ‖L1 .

Note that
∑

i

|sup
Ii

(f)− inf
Ii
(f)| ≤‖ f ‖L1 .

Moreover,

inf
Ii
(f) ≤ E (f |Ii) ≤ sup

Ii

(f),

where Ii are varius intervals composing the sigma algebra F . Thus,

∫

Ii

|E (f |Fn)− f | ≤
1

n
|sup
Ii

(f)− inf
Ii
(f)|
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and hence

‖ E (f |Fn)− f ‖L1≤
1

n
‖ f ‖L1 .

Therefore,

‖ PT f − P
(n)
T ‖L1≤

2

n
‖ f ‖L1

Note that if f is a fixed point of PT , then ‖ PT f ‖L1≤‖ f ‖L1 and ‖ E (f |Fn) ‖L1≤‖

f ‖L1 . Note also that P
(n)
T is a composition of PT and E. Thus, it is not difficult to

show that each of the constants Ci in Theorem 3.1 is 1.

Theorem 4.5. If the random map T = {τ1, τ2, . . . , τK ; p1, p2, . . . , pK} satisfies the

Pelikan’s average expanding condition (??) and T has a unique invariant measure

µ, then it is possible to approximate the invariant measure at any precision with the

above algorithm.

Proof. The proof follows from the proof of Theorem 5.7 in [12]. For the convenient

of readers we repeat the proof. Both PT and P
(n)
T satisfies the same L-Y inequality

and ‖ PT −P
(n)
T ‖BV→L1→ 0 as δ → 0. By the result of Liverani (Proposition 3.1 and

Lemma 6.1) the spectral gap of PT combined with the stability of the spectral picture

implies that there are A∗, β ∈ R, β < 1, independent of n such that for n large enough,

P
(n)
T satisfies ‖

(

P
(n)
T

)l

|V ‖BV→BV≤ A∗βl. Since ‖ E (g|Fn) ≥ 2n ‖ P
(n)
T ‖BV→BV ,

this implies that

‖
(

P
(n)
T

)l

|V ‖L1→L1≤ 2n ‖
(

P
(n)
T

)l

‖BV→BV≤ 2nA∗βl.

Hence if l ≥
log( 1

4nA∗ )

log β , then ‖
(

P
(n)
T

)l

|V ‖L1→L1≤ 1
2 and the algorithm stop. More-

over, upto multiplying constants, the error will be O( logn
n

) (see the proof of Theorem

5.7 in [12]) and can be made as small as possible.

5. IMPLEMENTING THE ALGORITHM

5.1. COMPUTING THE ULAM APPROXIMATION

Let T = {τ1, τ2, . . . , τK ; p1, p2, . . . , pK} be a random map on a common partition

{J1, J2, . . . , Jn} of [0, 1] statisfying Pelikan’s condition (2.7) in Theorem 2.5. There-

ofore, there exists an acim µ∗ with a density f∗. Moreover, we assume that µ∗ is

unique. In the following we present the implimentation of our algorithm.
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Let N be a multiple of n and P(N) = {I1, I2, . . . , IN} be a partion of [0, 1]. Then

each of the component map τk, k = 1, 2, . . . ,K is monotonic on Ii, i = 1, 2, . . . , N.

Recall that the Ulam’s matrix (see Section 4.1) with respect to the partition P(N) is

M
∗(N)

P(N) =

K
∑

k=1

pk

(

M
(N)
k

)C

,

where
(

M
(N)
k

)C

is the matrix representation of the Frobenius-Perron operator of

τk, k = 1, 2, . . . ,K. The random map T = {τ1, τ2, . . . , τK ; p1, p2, . . . , pK} is approxi-

mated by the finite state Markov chain with transition probabilities mij , 1 ≤ i, j ≤ N,

where mij is an element of the Ulam’s matrix M
∗(N)

P(N) . Our algorithm does not cal-

culate the Ulam’s matrix directly. The main target of our algorithm is to compute

a rigorous approximation of the related Markov chain and a faster method to rigor-

ously approximate its steady state. With our rigorous algorithm we compute a matrix

M̂
∗(N)

P(N) which approximate the Ulam matrix M
∗(N)

P(N) . We use the following algorithm

to compute the matrix M̂
′∗(N)

P(N) which is preliminary to compute M̂
∗(N)

P(N) .

Algorithm for computing M̂
′∗(N)

P(N) : Let M̂
′∗(N)

P(N) =
(

m̂ij
′∗(N)

1≤i,j≤N

)

. In the following

we describe an algorithm for random maps T = {τ1, τ2, . . . , τK ; p1, p2, . . . , pK} with

constant probabilities p1, p2, . . . , pK .

step 1: Set m̂ij
′∗(N)

= 0 for i = 1, 2, . . . , N, j = 1, 2, . . . , N.

step 2: for j = 1, 2, . . . , N do

for i = 1, 2, . . . , N, partition Ii, i = 1, 2, . . . , N into m intervals Ii,l, l =

1, 2, . . . ,m.

for i from 1 to N do for k from 1 to K do

set sum = 0

for l from 1 to m do

compute τk(Ii,l).

if τk(Ii,l) ⊂ Ij then sum = sum+ λ(Ii,l)

if τk(Ii,l) ⊂ (Ij)
C then go to the next step.
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if τk(Ii,l)∩ Ij 6= ∅ and τk(Ii,l)∩ (Ij)
C 6= ∅ and λ(Ii,l) > ν then divide

Ii,l into m intervals

and follow the above steps

if τk(Ii,l) ∩ Ij 6= ∅ and τk(Ii,l) ∩ (Ij)
C 6= ∅ and λ(Ii,l) < ν then add

λ(Ii,l) to ǫk,ij , the

error corrosponding τk and Ii,l and go to the next step

end do.

end do.

sub[k]=sum.

end do.

m̂′∗(N)

ij,P(N) = p1sub[1] + p2sub[2] + · · · + pKsub[K] and errorij = p1ǫ1,ij +

p2ǫ2,ij · · ·+ pKǫK,ij

end do.

By applying the above algorithm, we obtain the matrix M̂
′∗(N)

P(N) . Let ǫ = maxi,j errorij .

Note that the matrix M̂
′∗(N)

P(N) is not a stochastic matrix. For the rest of the algorithm

we closely follow [12]. For each row, we split the difference of the absolute value of the

sum of the nonzero entiries and 1 equaly. In this way we obtain a stochastic matrix

M̂
∗(N)

P(N) . Let ǫ be the maximum of errors |M̂′∗(N)

ij,P(N) − M
∗(N)

ij,P(N) | and let nnzi be the

number of nonzero elements of the row. It is easy to see that for each row i the sum

of its entries differs from 1 by at most nnzi · ǫ. Thus, the stochastic matrix M̂
∗(N)

P(N)

satisfy

|M̂
∗(N)

ij,P(N) −M
∗(N)

ij,P(N) | < 2ǫ.

Let NNZ = maxi nnzi, then the matrix M̂
∗(N)

P(N) is such that

‖ M
∗(N)

P(N) − M̂
∗(N)

P(N) ‖1< 2 ·NNZ · ǫ.

The largest eigenvalue of M̂
∗(N)

P(N) is 1 because M̂
∗(N)

P(N) is a stochastic matrix. Theorem

3.1 allows us to have a rigorous estimate of the L1 distance between the eigenvectors
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of M
∗(N)

P(N) and M̂
∗(N)

P(N) . Note that, Remark 8.1 of [12] implies that

NNZ ≤
K
∑

k=1

sup|τ ′k|+ 4K.

In the following two sections (Sec. 5.2 and Sec. 5.3 below) we follow [12] very

closley. The derivations in these two sections are very similar to the drivations of

Section 8.3 and Section 8.4 in [12]. For the convenience of the reader we present the

derivations.

5.2. COMPUTING RIGOROUSLY THE STEADY STATE VECTOR

AND THE ERROR

In the following we use the power iteration method for the steady state of M̂
∗(N)

P(N) . Let

b0 be any initial condition. The power iteration method states that if bl+1 = bl ·M̂
∗(N)

P(N) ,

then bl converges to the steady state of M̂
∗(N)

P(N) .

For x ∈ R
N , define the norm ‖ x ‖ by ‖ x ‖=

∑N
i=1|xi|. Moreover, let △ =

{x ∈ R
N |xi ≥ 0, i = 1, 2, . . . , N, ‖ x ‖1= 1} be the nonnegative (N − 1)-dimensional

simplex. From the proof of the Perron-Fobenius theorem [?] it is well known that a

Markov matrix (aperiodic, irreducible) contracts the simplex △ of vectors v having

norm ‖ v ‖ is equal to 1. Let {v1, v2, . . . , vk} be a basis of the simplex. Then the

simples is given by the convex combination of the vectors of the base. Let Diam− be

the diameter in the distance induced by the norm ‖ · ‖1 . Then,

Diam(Al△) ≤ max
i,j

‖ Al(ei − ej) ‖1≤ max
i,j

‖ Al(e1 − ej) ‖1 +max
i,j

‖ Al(e1 − ei) ‖1

≤ 2max
i

‖ Al(e1 − ei) ‖1 .

Now, we fix an input threshold ǫnum. Then, we iterate the vectors {v1 − vj}
k
j=2

and look at their norm until we find an l such that Diam(Al△) < ǫnum. For any initial

condition b0 iterating it l times, we get a vector contained in Al(△) whose numerical

error is enclosed by ǫnum.

5.3. ESTIMATION OF THE RIGOROUS ERROR FOR THE

INVARIANT MEASURE

Now, we compute the number of iteration N̄ needed for the Ulam approximation P
(n)
T

to contract to 1
2 the space of average 0 vectors. Note that the vectors {e1 − ej}

k
j=1

are a base for the space of average 0 vectors. Now,

‖
(

P
(n)
T

)j

|V ‖1 ≤ ‖

(

(

M
∗(N)

P(N)

)j

−
(

M̂
∗(N)

P(N)

)j

+
(

M̂
∗(N)

P(N)

)

)j

|V ‖1



48 MD SHAFIQUL ISLAM

≤ ‖

(

(

M
∗(N)

P(N)

)j

−
(

M̂
∗(N)

P(N)

)j
)

|V ‖1 + ‖
((

M̂
∗(N)

P(N)

))j

|V ‖1 .

Moreover,

‖
(

M
∗(N)

P(N)

)j

−
(

M̂
∗(N)

P(N)

)j

|V ‖1≤

j
∑

i=1

‖
(

M
∗(N)

P(N)

)j−i

|V ‖1

· ‖ M
∗(N)

P(N) −M
∗(N)

P(N) |V ‖1 · ‖
(

M̂
∗(N)

P(N)

)i−1

|V ‖1

≤2 · j ·NNZ · ǫ,

because ‖
(

M
∗(N)

P(N)

)j

|V ‖1≤ 1 and ‖
(

M̂
∗(N)

P(N)

)jh

|V ‖1≤ 1 for every j and h. Thereo-

fore,

‖
(

M
∗(N)

P(N)

)j

|V ‖1≤ 2 · j ·NNZ · ǫ+ ‖
(

M̂
∗(N)

P(N)

)j

|V ‖1 .

Thus, if ǫ and j are small enough then we can estimate the number N̄ of iterates

needed for M
∗(N)

P(N) to contract the space V0 by the number of iterates needed by the

matrix M̂
∗(N)

P(N) .

Theorem 5.1. Let f, vN , v̂N be the fixed point of PT ,M
∗(N)

P(N) , M̂
∗(N)

P(N) respectively and

v be numerical approximation of v̂N , then

‖ f − v ‖1≤ 2N̄
2B

N
+ 4Nǫ ·NNZ · ǫ+ ǫnum.

Proof.

‖ f − v ‖1≤‖ f − vN ‖1 + ‖ vN − v̂N ‖1 + ‖ v̂N − v ‖1 .

Let Nǫ be number of iterates needed for M̂
∗(N)

P(N) to contract to 1
2 the space of average

zero vectors. Then by Theorem 3.1,

‖ vN − v̂N ‖1≤ 2Nǫ ‖ M
∗(N)

P(N) − M̂
∗(N)

P(N) ‖1‖ vN ‖1≤ 4Nǫ ·NNZ · ǫ.

Thus,

‖ f − v ‖1≤ 2N̄
2B

N
+ 4Nǫ ·NNZ · ǫ+ ǫnum.
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6. NUMERICAL EXPERIMENT

Example 6.1. Consider the random map T = {τ1(x), τ2(x); p1, p2}, where τ1, τ2 :

[0, 1] → [0, 1] are defined by

τ1(x) =



















17
5 x, 0 ≤ x < 5

17 ,
17
5 x− 1, 5

17 ≤ x < 10
17 ,

17
5 x− 2, 10

17 ≤ x < 15
17 ,

17
5 x− 3, 15

17 ≤ x ≤ 1,

τ2(x) =



















2x, 0 ≤ x < 5
17 ,

2x− 5
17 ,

5
17 ≤ x < 10

17 ,

2x− 20
17 ,

10
17 ≤ x < 15

17 ,
15
2 x− 225

34 ,
15
17 ≤ x ≤ 1,

p1 =
2

5
, p2 =

3

5

It is easy to show that the random map T satisfies Pelikan’s average expanding

condition (2.7). Thus, T has an acim µ̂ with density f̂ . It is easy to show that both

τ1 and τ2 has unique acim. Thus, the random map T = {τ1(x), τ2(x); p1, p2} also

has a unique acim (see Proposition 1 in [13]) and thus µ̂ is unique with density f̂ .

Here, λ = 2 ·
∑2
k=1

pk
inf τ ′

k

= 10
17 , B

′ =
(

∑K
k=1 pk

(

2
min(di−di+1)

+ 2| τ ′′

k

(τ ′)2
|∞
))

= 17

and B = B′

1−λ = 7. By choosing appropreiate N, ǫ, ǫnum one can find Nǫ, l and N̄ as

outputs. Using these inputs and outputs, one can estimate ‖ f̂ − v ‖1.

Figure 1: The graph of an approximate density v of the actual density f̂ of

the random map T in Example 6.1.
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