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ABSTRACT: A flexible manufacturing system is an efficient production line with

versatile machines, an automatic transport system and a sophisticated decision mak-

ing system. This paper proposes a formal modeling and verification analysis method-

ology, which consists in representing the flexible manufacturing system by means of a

modal logic formula. Then, using the concept of logic implication, and transforming

this logical implication relation into a set of clauses, a modal resolution qualitative

method for verification (satisfiability) as well as performance issues, for some queries

is applied.
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1. INTRODUCTION

A flexible manufacturing system is an efficient production line with versatile ma-

chines, an automatic transport system and a sophisticated decision making system.

Flexible manufacturing systems can be formed by subsystems that work concurrently.

In this paper a multirobotic system, an example of a flexible manufacturing system,

is presented. The multirobotic system consists of two robot arms which perform pick

and place operations accessing a common workspace at times to obtain or transfer

parts. It is assumed that the common workspace has a buffer with a limited space for
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products. the process represents the operation of the two robots serving two different

machining tools, with one robot arm transferring products from one machining tool

to the buffer, and the other robot arm transferring semiproducts from the buffer to

the other machining tool. This paper proposes a well defined syntax modeling and

verification analysis methodology which consists in representing the flexible manufac-

turing system as a modal logic formula. Other non-classical methodologies as Petri

nets and propositional logic have been employed too ([1] and [2]). The modal logic

approach introduces two new operators that enable abstract relations like necessarily

true and possibly true to be expressed directly, called alethic modalities, what is not

possible using first order logic. For example, the statement: 7 is a prime number, is

necessarily true always and everywhere, in contrast, the statement the head of state

of this country is a king is possibly true, because its truth changes from place to

place and from time to time. Other modalities that have been formalized in modal

logic include temporal modalities, or modalities of time, deontic modalities, epistemic

modalities, and doxastic modalities.

The main idea consists in modeling the flexible manufacturing system by means of

a modal logic formula. Then, using the concept of logic implication, and transforming

this logical implication relation into a set of clauses, a modal resolution qualitative

method for verification (satisfiability) as well as performance issues, for some queries

is applied. The paper is organized as follows. In section 2, a modal logic background

summary is given. In section 3, the modal resolution principle for unsatisfiability is

recalled. In section 4, the flexible manufacturing system is addressed. Finally, the

paper ends with some conclusions.

2. MODAL LOGIC BACKGROUND

This section presents a summary of modal logic theory. The reader interested in more

details is encouraged to see [3, 4].

Definition 1. A modal language L is an infinite collection of distinct symbols,

no one of which is properly contained in another, separated into the following cate-

gories: parentheses, connectives, possibility modality, necessity modality, proposition

variables Φ0 = {p1, p2, · · · } (called atoms), contradiction( falsity), true(tautology).

Definition 2. Well-formed formulas, or formulas for short, in modal logic are defined

recursively as follows:(i). An atom is a formula, ⊥ (false is a formula), T (true is a

formula) (ii). If F and G are formulas then, ∼ (F ), (F ∨G), (F ∧G), (F ↔ G), �F ,

⋄F , are formulas. ⋄A ≡∼ � ∼ A. Formulas are generated only by a finite number of

applications of (i) and (ii), therefore the set of welled formed formulas is enumerable
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infinite.

Remark 3. It is important to underline the unique readability of the formulas which

is secured by the assumption that the operators are one to one.

Definition 4. A Kripke frame (frame) F is a pair (W,R) in which W is a set of

worlds (time, states, etc), and R ⊆ W ×W is a binary relation over W .

Definition 5. AKripke model (model)M over frame F is a triple (F , π) = (W,R, π)

where π : Φ0 → 2W the set of worlds where each element of Φ0 is true is an assignment

or interpretation.

Definition 6. Given any model M, a world wεW , the notion of true at w is defined

as follows:

• M, w |= pn ⇔ wεπ(pn), n = 1, 2, · · · ;

• M, w |=∼ F ⇔ w 2 F ;

• M, w |= F ∧G ⇔ w |= F and w |= G;

• M, w |= F ∨G ⇔ w |= F or w |= G;

• M, w |= F → G ⇔ if w |= F then w |= G;

• M, w |= F ≡ G ⇔ w |= F iff w |= G;

• M, w |= ⋄F ⇔ there exists uεW such that (w, u)εR,M, u |= F ;

• M, w |= �F ⇔ for all uεW such that (w, u)εR,M, u |= F .

Definition 7. A formula F is consistent (satisfiable, true at w) in a model M in a

world wεW iff M, w |= F , then we say that M is a model for F . If this happens for

all worlds wεW then we say it is true.

Definition 8. A formula F is inconsistent (unsatisfiable) in a model M iff M, w 2 F

for every world wεW , then we say that M is a countermodel for F .

Definition 9. A formula F is valid in a class of models CM if and only if it is true

for all models in the class. This will be denoted by |=CM F .

Definition 10. A formula F is valid iff it is valid for every class of models CM.

This will be denoted by |= F .

Definition 11. A formula G is a logical implication of formulas F1, F2, . . . , Fn if

and only if for every model M, that makes F1, F2, . . . , Fn true, G is also true in M.
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The following characterization of logical implication plays a very important role

as will be shown in the rest of the paper.

Theorem 12. Given formulas F1, F2, . . . , Fn, G, G is a logical implication of F1, F2,

. . ., Fn if and only if the formula ((F1 ∧ F2 ∧ . . . ,∧Fn) → G) is valid in a class of

models if and only if the formula (F1 ∧ F2 ∧ . . . ∧ Fn∧ ∼ (G)) is unsatisfiable.

Proof. Setting the class of models equal to all the models that make F1∧F2∧. . . ,∧Fn

true. The first iff follows directly by the definition of validity in a class of models,

and logical implication. For the second one, since F1 ∧ F2 ∧ . . . ,∧Fn → G is valid in

a class of models, every model that makes F1 ∧ F2 ∧ . . . ,∧Fn true does not satisfy

∼ (G), therefore (F1 ∧F2 ∧ . . .∧Fn∧ ∼ (G)) can not be satisfied. Reversing this last

argument we obtain the last implication.

Next, given a class of models CM, we define the syntactic mechanisms capable of

generating the formulas valid on CM.

Axioms:

(1) All instances of propositional logic tautologies.

(2) �(F → G) → �F → �G.

Rules of inference: (1) Modus ponens

F, F → G

G

(2) Necessitation
F

�G

We write ⊢ F if F can be deduced from the axioms and the inference rules.

Theorem 13. (Completeness [3]) A formula F is valid iff it is provable i.e., |=

F ⇔⊢ F

Definition 14. A formula F in modal logic is said to be in disjunctive normal form

normal (DNF) if and only if is a disjunction (perhaps with zero disjunct) of the form

F == L1 ∨L2 ∨ · · ·Ln ∨�D1 ∨�D2 ∨ · · ·�Dm ∨⋄H1 ∨⋄H2 ∨ · · · ⋄Hj, where each Li

is an atom or its negation, each Di is a DNF, and each Hi is a CNF (next defined). A

formula G is said to be in conjunctive normal form (CNF) if it is a conjunction of Fi

DNF i.e., G = F1∧F2∧· · ·∧Fn which will be denoted by the set G = {F1, F2, . . . , Fn}

Definition 15. A formula in DNF is called a clause. A clause with only one element

is called a unit clause. A clause with zero disjunct is empty and it will be denoted by

the ⊥ symbol. Since the empty clause has no literal that can be satisfied by a model,

the empty clause is always false.
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Definition 16. The modal degree of a formula F denoted by d(F ) is recursively

defined as follows:

• if F is a literal then its degree is zero;

• d(F △G) = max(d(F ), d(G)), where △ is ∧ or ∨;

• d(∼ F )) = d(F );

• d(∇F ) = d(F ) + 1, where ∇ stands for � or ⋄.

Given a formula F , the following inductive procedure transforms F into a CNF

in such a way that the original formula is equal to its CNF form therefore satisfying

validity. (1) Using axioms 1 and 2, the definition ∼ �F ≡ ⋄ ∼ F and the inference

rules, eliminate all propositional other than ∧,∨,∼ and move negations inside so that

they are immediately before propositional variables, (2) If d(F ) = 0 then apply the

propositional procedure [5] , (3) If F = �F1 with F1 in CNF, apply the theorem

�(F ∧ G) ≡ �F ∧ �G to distribute the � operator (this is proved with the aid of

axiom 2). (4) If F = ⋄F1 with F1 in CNF, then do not do anything. (5) Otherwise,

we have a combination of different formulas which can be handled using the preceding

rules.

Therefore, we have proved the following result.

Theorem 17. Let S be a set of clauses that represents a formula F in its CNF.

Then F is unsatisfiable if and only if S is unsatisfiable.

3. THE MODAL LOGIC RESOLUTION PRINCIPLE

We shall next present the resolution principle inspired by the propositional logic

resolution principle introduced by Robinson (see [5], the references quoted therein,

and [6]). It can be applied directly to any set S of clauses to test the unsatisfiability

of S. Resolution is a decidable, sound and complete proof system i.e., a formula in

clausal form is unsatisfiable if and only if there exists an algorithm reporting that it is

unsatisfiable. Therefore it provides a consistent methodology free of contradictions.

It is composed of rules for computing resolvents, simplification rules and rules of

inference. The first ones compute resolvents, simplified by the simplification rules,

and then inferred by the rules of inference.

Definition 18. [6] Let Σ(A,B) → C , and Γ(A) → C be two relations on clauses

defined by the following formal system:
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Axioms:

(1). Σ(p,∼ p) →⊥.

(2). Σ(⊥, A) →⊥.

Σ rules:

∨− rule :
Σ(A,B) → C

Σ(A ∨D1, B ∨D2) → C ∨D1 ∨D2

� ⋄ −rule :
Σ(A,B) → C

Σ(�A, ⋄(B,E)) → ⋄(B,C,E)

��− rule :
Σ(A,B) → C

Σ(�A,�B) → �C

Γ rules:

⋄ − rule 1 :
Σ(A,B) → C

Γ(⋄(A,B, F )) → ⋄(A,B,C, F )

⋄ − rule 2 :
Γ(A) → B

Γ(⋄(A,F )) → ⋄(B,A, F )

∨− rule :
Γ(A) → B

Γ(A ∨ C) → B ∨ C

�− rule :
Γ(A) → B

Γ(�A) → �B

where A,B,C,D,D1, D2, denote general clauses, E,F denote sets (conjunctions) of

clauses, and (A < E) denotes the result of appending the clauses A to the set E.

Simplification rules:

The relation ’A can be simplified in B’ denoted A ≃ B is the least congruence relation

containing: (S1) ⋄ ⊥≃⊥, (S2) ⊥ ∨D ≃ D, (S3) ⊥, E ≃⊥, (S4) A ∨ A ∨D ≃ A ∨D.

The simplified formula obtained is called the normal form of the original formula and

is the one to be considered when computing resolvents.

Inference rules:

(R1).
C

D
if Γ(C) → D

(R2).
C1 C2

D
if Σ(C1, C2) → D,

where C,C1, C2, D are general clauses.

A deduction of a clause D from a set S of clauses can be seen as a tree whose root

is D, whose leaves are clauses of S, and every internal node C has sons A and B



A FLEXIBLE MANUFACTURING SYSTEM 71

(respectively A) iff the rule R2 (respectively Rl) can be applied with premises A

and B (respectively A) and conclusion C. The size of a deduction is the number of

nodes of this tree. We say that D is a-consequence of S iff there is a deduction of D

from S denoted by S ⊢ D. These definitions and notations are extended to sets of

consequences: if S′ is a set of clauses, S ⊢ S
′

iff S ⊢ D for every DεS
′

. A deduction

of ⊥ from S is a refutation of S.

Theorem 19. [6] The resolution proof system is decidable.

The main two results of this subsection: the completeness theorem for the resolu-

tion proof system, and that proofs in the resolution proof system are actually proofs

in our modal logic axiomatic system are next presented.

Theorem 20. [6] A set S of clauses is unsatisfiable if and only if there is a deduction

of the empty clause ⊥ from S.

Theorem 21. If there exists a deduction D from S in the resolution proof system

then there is a deduction D from S in our modal logic axiomatic system.

Proof. Let us proceed by induction on the size of the deduction. Base case: the

deduction is an axiom i.e., it is either Σ(p,∼ p) →⊥ or Σ(⊥, A) →⊥ which in our

modal logic system correspond to p∧ ∼ p →⊥ and ⊥ ∧A →⊥ which are propositional

logic tautologies. Next, let us assume that the conclusion holds for every deduction

of size less than or equal to k − 1. Then, we have a deduction of Sk−1 from S in our

modal logic system and a one length deduction in the resolution proof system of Sk

from Sk−1 which turns out to be also a deduction in our modal logic system (due to

the induction hypothesis). Therefore concatenating both we get a deduction of Sk

from S.

Remark 22. Indeed it is straightforward to show that one length deductions in the

resolution proof system are proofs in our modal logic system, since they are the result

of applying the Σ and Γ rules, see [6].

4. FLEXIBLE MANUFACTURING SYSTEM

A flexible manufacturing system is an efficient production line with versatile machines,

an automatic transport system and a sophisticated decision making system. Flexible

manufacturing systems can be formed by subsystems that work concurrently. The

multirobotic system consists of two robot arms which perform pick and place opera-

tions accessing a common workspace at times to obtain or transfer parts. In order to



72 Z.R. KONIGSBERG

avoid collision, there is a priority protocol control unit that guarantees access to the

common workspace to only one of the two robot arms. In the case that the priority

protocol control unit breakdowns the whole system is reset to its starting point. It is

assumed that the common workspace has a buffer with a limited space for products.

the process represents the operation of the two robots serving two different machin-

ing tools, with one robot arm transferring products from one machining tool to the

buffer, and the other robot arm transferring semiproducts from the buffer to the other

machining tool.

The multirobotic system behavior as described as follows: (1) Propositional vari-

ables (i = 1, 2): RiSP Robot i are at the starting point, RiWAWP Robot i waits

for access to the common workspace, RiPWP Robot i performs in the working place,

PP priority protocol, RiFPPI Robot i follows protocol priority instruction, PBi

buffers; (2) Rules of Inference: (a) and (b) (i = 1, 2) if RiSP then RiWAWP , (c) if

R1WAWP and PB1 and not ⋄R2WAWP then R1PWP and PB2, (d) if R2WAWP

and PB2 and not ⋄R1WAWP then R2PWP and PB1, (e) and (f) (i = 1, 2) if

RiPWP then RiSP , (g) if R1WAWP and PB1 and ⋄R2WAWP and PB2 and PP

then R1FPPI and R2FPPI, (h) if R2WAWP and PB2 and ⋄R1WAWP and PB1

and PP then R1FPPI and R2FPPI, (i) if R1WAWP and PB1 and ⋄R2WAWP

and PB2 and not PP then R1SP and R2SP , (J) if R2WAWP and PB2 and

⋄R1WAWP and PB1 and not PP then R1SP and R2SP , (k) if R1WAWP and

PB1 and ⋄R2WAWP and not PB2 then R1PWP and PB2 and R2WAWP , (l) if

R2WAWP and PB2 and ⋄R1WAWP and not PB1 then R2PWP and PB1 and

R1WAWP , (m) if R1FPPI and R2FPPI then R1PWP and R2SP , (n) and (o) if

RiWAWP then ⋄R1WAWP .

Remark 23. The main idea consists of: the flexible manufacturing system is ex-

pressed by a modal logic formula, some query is expressed as an additional formula.

The query is assumed to be a logical implication of the flexible manufacturing formula

(see theorem 12). Then, transforming this logical implication relation into a set of

clauses by using the techniques given in Section 3, its validity can be checked. It is

important to point out that other type of behaviors can be incorporated in to the model

by the modeler, making it as close to reality as needed.

The formula that models the multirobotic system turns out to be:

[(R1SP ) → (R1WAWP )] ∧ [(R2SP ) → (R2WAWP )] (1)

∧[(R1WAWP ) ∧ (PB1)∧ ∼ ⋄R2WAWP → (R1PWP ) ∧ (PB2)] ∧ [(R2WAWP ) ∧

(PB2)∧ ∼ ⋄R1WAWP → (R2PWP )∧(PB1)]∧[(R1PWP ) → R1SP ]∧[(R2PWP ) →

R2SP ]∧[(R1WAWP )∧(PB1)∧⋄R2WAWP ∧(PB2)∧PP → (R1FPI)∧(R2FPI)]∧

[(R2WAWP ) ∧ (PB2) ∧ ⋄R1WAWP ∧ (PB1) ∧ PP → (R1FPI) ∧ (R2FPI)] ∧
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[(R1WAWP ) ∧ (PB1) ∧ ⋄R2WAWP ∧ (PB2)∧ ∼ PP → (R1SP ) ∧ (R2SP )] ∧

[(R2WAWP ) ∧ (PB2) ∧ ⋄R1WAWP ∧ (PB1)∧ ∼ PP → (R1SP ) ∧ (R2SP )] ∧

[(R1WAWP )∧(PB1)∧⋄R2WAWP ∧(∼ PB2) → (R1PWP )∧PB2∧(R2WAWP )]∧

[(R2WAWP )∧(PB2)∧⋄R1WAWP ∧(∼ PB1) → (R2PWP )∧PB1∧(R1WAWP )]∧

[(R1FPI) ∧ (R2FPI) → (R1PWP ) ∧ (R2SP ] ∧ [(R1WAWP → ⋄R1WAWP ] ∧

[(R2WAWP → ⋄R2WAWP ]

We are interested in verifying, the following statement:

Claim:

R1WAWP ∧ (PB1) ∧ ⋄R2WAWP ∧ (PB2) ∧ PP → R2SP ∧R1WAWP.

The set of clauses is given by:

S ={(∼ (R1SP ) ∨ (R1WAWP )), (∼ (R2SP ) ∨ (R2WAWP )),

(∼ (R1WAWP )∨ ∼ (PB1) ∨ ⋄R2WAWP ∨ (R1PWP )),

(∼ (R1WAWP )∨ ∼ (PB1) ∨ ⋄R2WAWP ∨ PB2),

(∼ (R2WAWP )∨ ∼ (PB2) ∨ ⋄R1WAWP ∨ (R2PWP ))),

(∼ (R2WAWP )∨ ∼ (PB2) ∨ ⋄R1WAWP ∨ PB1),

(∼ (R1PWP ) ∨ (R1SP )),

(∼ (R2PWP ) ∨ (R2SP )),

(∼ (R1WAWP )∨ ∼ (PB1) ∨� ∼ R2WAWP∨ ∼ (PB2)∨ ∼ PP ∨ (R1FPPI)),

(∼ (R1WAWP )∨ ∼ (PB1) ∨� ∼ R2WAWP∨ ∼ (PB2)∨ ∼ PP ∨ (R2FPPI)),

(∼ (R2WAWP )∨ ∼ (PB2) ∨� ∼ R1WAWP∨ ∼ (PB1)∨ ∼ PP ∨ (R2FPPI)),

(∼ (R2WAWP )∨ ∼ (PB2) ∨� ∼ R1WAWP∨ ∼ (PB1)∨ ∼ PP ∨ (R1FPPI)),

(∼ (R1WAWP )∨ ∼ (PB1) ∨� ∼ R2WAWP∨ ∼ (PB2) ∨ PP ∨ (R1SP )),

(∼ (R1WAWP )∨ ∼ (PB1) ∨� ∼ R2WAWP∨ ∼ (PB2) ∨ PP ∨ (R2SP )),

(∼ (R2WAWP )∨ ∼ (PB2) ∨� ∼ R1WAWP∨ ∼ (PB1) ∨ PP ∨ (R2SP )),

(∼ (R2WAWP )∨ ∼ (PB2) ∨� ∼ R1WAWP∨ ∼ (PB1) ∨ PP ∨ (R1SP )),

(∼ (R1WAWP )∨ ∼ (PB1) ∨� ∼ R2WAWP ∨ (PB2) ∨ (R1PWP )),

(∼ (R1WAWP )∨ ∼ (PB1) ∨� ∼ R2WAWP ∨ (PB2) ∨ PB2),

(∼ (R1WAWP )∨ ∼ (PB1) ∨� ∼ R2WAWP ∨ (PB2) ∨R2WAWP ),

(∼ (R2WAWP )∨ ∼ (PB2) ∨� ∼ R1WAWP ∨ (PB1) ∨ (R2PWP )),

(∼ (R2WAWP )∨ ∼ (PB2) ∨� ∼ R1WAWP ∨ (PB1) ∨ PB1),

(∼ (R2WAWP )∨ ∼ (PB2) ∨� ∼ R1WAWP ∨ (PB1) ∨R1WAWP ),

(∼ (R1FPPI))∨ ∼ (R2FPPI) ∨ (R1PWP )),

(∼ (R1FPPI))∨ ∼ (R2FPPI) ∨ (R2SP )),
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(∼ R1WAWP ∨ ⋄R1WAWP ),

(∼ R2WAWP ∨ ⋄R2WAWP ),

(R1WAWP ), (PB1), (⋄R2WAWP ), (PB2), (PP ), (∼ R1WAWP∨ ∼ (R2SP )).

Then a resolution refutation proof is as follows:

(a) (∼ (R1WAWP )∨ ∼ (PB1) ∨� ∼ R2WAWP∨ ∼ (PB2)∨

∼ PP ∨ (R1FPPI))(R1WAWP )(PB1)(⋄R2WAWP )(PB2)(PP ) → R1FPPI;

(b) (∼ (R1WAWP )∨ ∼ (PB1) ∨� ∼ R2WAWP∨ ∼ (PB2)∨

∼ PP ∨ (R2FPPI))(R1WAWP )(PB1)(⋄R2WAWP )(PB2)(PP ) → R2FPPI;

(c) (∼ (R1FPPI))∨ ∼ (R2FPPI) ∨ (R2SP ))(R1FPPI)(R2FPPI) → R2SP ;

(d) (∼ R1WAWP∨ ∼ (R2SP ))(R2SP ) → (∼ R1WAWP );

(e) (∼ R1WAWP )(R1WAWP ) →⊥.

Therefore we have proved that the claim is true, this result is consistent with

reality.

5. CONCLUSIONS

The main contribution of the paper consists in the study of the flexible manufacturing

system by means of a formal reasoning deductive methodology based on modal logic

theory. The modal logic approach introduces new operators that enable abstract

relations like necessarily true and possibly true to be expressed directly. The results

obtained are consistent with how the flexible manufacturing system performs.
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