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ABSTRACT: We study a class of monotone delayed marked point processes that

model stochastic networks (under attacks), status of queueing systems during vaca-

tion modes, responses to cancer treatments (such as chemotherapy and radiation),

hostile ambushes in economics and warfare. We are interested in the behavior of such

a process about a fixed threshold. It presents an analytic challenge, because of the

arbitrary nature of random marks. We target the first passage time, pre-first pas-

sage time, the status of the associated continuous time parameter process between

these two epochs, and the status of the process upon these two epochs. A joint func-

tional of these stochastic quantities is investigated in the transient mode. Analytically

tractable formulas are obtained and demonstrated on special cases of marked Poisson

processes.
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1. INTRODUCTION

Consider a piecewise constant process Nt (valued in R) on a filtered probability space

(Ω,F , (Ft) , P ) , with independent and stationary increments such that {tn} is a point

process on R+ of stopping times relative to (Ft) and Nt is constant between tn−1 and
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tn, n = 1, 2, . . . . If Nt is monotone nondecreasing, often of interest is to determine

(probabilistically) the crossing a fixed threshold M by Nt at some time tn and the

value Ntn at the crossing. To continue, let us introduce some more notation. Define

ν = min {n = 0, 1, . . . : Ntn ≥ M} .

Then, Nt crossesM at some moment tν , referred to as the first passage time. Note that

because the paths of Nt are not continuous, the value Ntν is likely to exceed M rather

than take M at the crossing, even if Nt and M are integer-valued. Consequently, Ntν

is called the first excess of M .

In the past work, Dshalalow et. al [1-3, 10-24] studied transforms of various classes

of such processes in connection with stochastic games, queueing, stochastic networks,

and finance, targeting functionals like EeiφNtν e−θtν and their embellishments. They

were called ıtime insensitive functionals, because the associated reference values were

not related to real time parameter t. In some way, this is a common shortcoming

of embedded processes compared to those with continuous time parameter. There

were efforts made to revive lost information on the behavior of Nt around the first

passage time. In all of them, Dshalalow and his co-authors [15,16,24] studied Nt

observed over a sequence {τm} (being independent of filtration (Ft)). For that matter,

the interpolation of Nt (pertaining to time sensitivity) was referred to the interval

(τρ−1, τρ], where

ρ = min {m = 0, 1, . . . : Nτm ≥ M} .

It is understood that the real crossing of M at tν takes place at an earlier time

than τρ, but in various applications, data collection is impossible in real time. This

class of problems makes associated modeling more realistic, but there are still many

applications where real time information is possible or when changes of Nt between

tn−1 and tn can be neglected. Note that even if there are no changes between tn−1

and tn, it is still of great importance to find the distribution of Nt when t is from

(tν−1, tν ]. We thus are interested in the following time sensitive functional.

Φ := Eei(δNt+φNtν−1
+ξNtν )e−ϑtν−1−θtν1(tν−1,tν ] (t) .

This is a joint transform of pre-first passage time tν−1, the first passage time tν , pre-

excess value Ntν−1
, the excess value Ntν , and the value of Nt continuously observed

between tν−1 and tν , the most significant reference points. Again even though Nt

is not supposed to alter between these two moments, the time t-sensitivity would

be a significant refinement of Φ compared to a more limited EeiφNtν e−θtν . (We will

refer it to real time sensitivity as opposed to a delayed time sensitivity of associated

functionals related to the interval (τρ−1, τρ].)

While the process Nt can be real- or integer-valued, in the present paper, we focus

on the latter. Firstly, we are eager to explore and demonstrate benefits of discrete
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operational calculus related to fluctuations of Nt. Secondly, the integer-valued nature

of Nt can be easily refined with an arbitrarily small multiple factor coming close to

the usual continuous topology. (Yet a real-valued version of Nt may still be worth

considering.)

Motivation. The stochastic modeling considered in this work is driven by prob-

lems arising from real-life events such as cyber security, cancer treatment, stock mar-

kets, finance, and queuing systems. Below, we expand more on these applications.

(i) Cyberattacks

High-profile cyberattacks all over the world have amplified fears and led to heavy

monetary, computer system, and information losses. For instance, in 2004, a

German College student Sven Jaschan, released a computer virus that disabled

Delta Airline’s computer system, resulting in many flight cancellations and over

$500 million dollars in losses. In yet another high-profile attack, during the 2008

presidential election, Chinese an Russian Hackers hacked into Barack Obama

and John McCain’s campaign computers systems gaining access to sensitive

data. The computers were subsequently confiscated by the FBI.

Cyberattacks have become capable of far more than stealing consumer informa-

tion or embarrassing politicians and business executives. Whether conducted

by lone intruders or nation-states, they can compromise the safety of medical

food and water systems, disrupt transportation, and destabilize nuclear power

plants. Such attacks can undermine democratic institutions or encourage vio-

lence by spreading false information. The cyber threat has become existential.

(Cf., The Wall Street Journal, July 12, 2017.)

Very recently we witnessed an escapade of cyberattacks on multiple infrastruc-

ture and industry throughout the world, such as Faux Ransomware (cf. The

Wall Street Journal, June 30, 2017) and the infamous breach in Equifax credit

institution compromising more than 145 millions personal files. Among many

other places affected by Fauz Ransomwarethe attack, was Princeton Community

Hospital in West Virginia, USA. Here the attack froze the hospital’s electronic

medical record system leaving doctors unable to review patient’s medical history

or transmit laboratory and pharmacy orders. Officials were unable to restore

services, and found there was no way to pay a ransom for the return of their

system. The cyberattack almost left Princeton Community Hospital without

even paper templates, which were stored on a computer file, to be printed. Sur-

geons at the Heritage Valley Hospital in Beaver, Pennsylvania, canceled elective

surgeries for two days.

These kinds of economic, social, and privacy violations raise important stochastic

analysis questions concerning cyberattacks proofing and worst case scenarios.
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Once some systems fail, how long would it take before the attack spreads to the

entire network or the attack spreads to a point of no return? What level of risk

is posed by failures of individual components based on network connectivity?

These and many other questions can be answered by modeling an underlying

computer network as a marked point process where the points are the attack

times and the marks the number of downed computers, whereas a given threshold

is a minimal number of nodes by whose crossing the network becomes totally

compromised. Whereas our modeling does not prevent those attacks, nor is it a

firewall in any sense, it aims at containing damages by predicting the time and

caliber of casualties and thereby allowing a surviving part of the network to be

separated from an infected subnetwork that is to be quarantined.

(ii) Cancer Treatment

When diagnosed with cancer, a patient is often prescribed an aggressive treat-

ment such as radiation or chemo therapy. In quite a few cases, an underlying

cancer does not respond well to either chemo or radiation, and this is a bad news

for a patient, not only because he may run out of options, but also because much

time is wasted that could have been used for alternative treatments. Knowing

this, one key challenge is to decide ahead of the time whether the cancer is go-

ing to be treatable shortly after the therapy starts. One approach is to model

the response to the therapy by a marked point process. The idea is to predict

the cancer progression (or regression) ahead of the time and if needed give the

patient another treatment before patient’s condition deteriorates.

(iii) Finance

In option trading, it is of interest to predict the time to sell an underlying

stock before the corresponding call option expires. The latter makes sense when

the stock continues to appreciate, so that predicting the time and the stock

price upon crossing a fixed threshold would be a good reason to use fluctuation

analysis.

(iv) Queueing

In queuing theory an often studied-to scenario is when a server waits or vacates

until the queue accumulates to a certain level (cf., N-Policy), and until then,

service is suspended. Once threshold N is crossed by the contents of the waiting

room, the server resumes his service. This situation can be treated using fluctu-

ation theory and further interpolated if there is a need to work on a continuous

time parameter process. (Cf. Al-Matar and Dshalalow [3].)

Significance of Time Sensitive Analysis. In some of the above cases we can

use time insensitive analysis such as [10,11]. However, the real time interpolation
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allows one to employ stochastic control making it a very useful embellishment. For

example, suppose the main processNt gives the status of a patient measured in integer

units and h (k) is a weight function of k units of such measurement. If the underlying

indicator is of the white blood cell count, say k, h (k) is the hemoglobin level (that

can be determined by using regression analysis). Then,

Q[0, t] = E

∫ t

y=0

(Ny)dy

gives the mean hemoglobin level in interval [0, t].

We can represent Q[0, t] as follows, by using Fubini’s theorem:

Q[0, t] =
∑

k≥0

E

[∫ t

y=0

1{k}(Ny)h(Ny)dy

]

=
∑

k≥0

h(k)

∫ t

y=0

P{Ny = k}dy. (1)

Now we assume that we know the stationary distribution of Nt

πk = limt→∞ P {Nt = k} = limt→∞
1

t

∫ t

y=0

P{Ny = k}dy, k = 0, 1, . . . (2)

Applying (1.1) to (1.2) and using the monotone convergence theorem we have

Q = lim
t→∞

Q[0, t]

t
=
∑

k≥0

h(k)πk

the mean hemoglobin level per unit time calculated over the time [0,∞).

Related Literature. The main contents of the present article falls into the area

of fluctuation theory of stochastic processes originally stemming from random walk

analysis. The literature on fluctuations is very rich. A very interesting survey paper

is by Bingham [6] and a seminal work on fluctuations belongs to Takács [34] and it

relates to fluctuations of recurrent and semi-Markov processes. The main keywords

(some synonymous) associated with fluctuations are first passage time, first exit time,

first excess level, and level crossing and are examimed in [4,5,7-11,14,21,26,27,31-

33,35,36]. These papers focus on determining probability distributions of the first
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passage (exit/crossing) time and the process value upon crossing a critical threshold

or manifold or departing from a compact set. As previously mentioned, just a hand-

ful of work (to the best of our knowledge, mainly by the first co-author), belongs to

time sensitive analysis [1-3,12,15,16,24]. Fluctuation analysis is a powerful method

that finds applications in stochastic games [2,15,16,18-20], stochastic networks [22,23],

finance [13,14,28-30,35], queueing [2,3], physics and astronomy [25,32], earthquakes

[33], and general stochastic processes [1], in particular, with independent and sta-

tionary increments [5,7,8,10,24,26,36]. As far as analytical tools, the Laplace-Carson

transform is being used for real-valued processes [15,16,24] and discrete operational

calculus for integer-valued processes [10,13,14,17,18, 22,23] (developed by the first

co-author).

Brief Overview. The paper is laid out as follows. Section 2 deals with a more

rigorous description of the underlying marked random process, reference stopping

times, and a related functional. Section 3 introduces the notion of piecewise constant

interpolation of a marked random measure and proves several preliminary lemmas

and a proposition. Section 4 deals with a stochastic expansion of an underlying

joined functional in series that allows us to obtain a fully tractable expression of

that functional. Section 5 aims to demonstrate analytic tractability by an important

special case of a marked Poisson process.

2. FORMALISM

Let (Ω,F , P ) be a probability space and

A =
∞
∑

k=0

Xkεtk (εa is the point mass at a) (3)

a marked randommeasure, with position dependent marking, that is,Xk⊗(tk − tk−1) :

Ω → N× R+ being independent and all but X0 ⊗ t0 identically distributed. The un-

derlying support counting measure
∑∞

k=0 εtk is a delayed renewal process. One of

the key questions that arise in applications for processes like A is the behavior of A

around some threshold, say M . We assume that the marks Xk’s are nonnegative,

that tn → ∞, and, without loss of generality, the sequence of sums An defined as

An = X0 + . . .+Xn, n = 0, 1, . . . ,

runs to ∞ a.s. as n → ∞. Thus the total of the marks An will a.s. cross M at

some point tn. Obviously, such an An will be equal to or greater than M . The

integer-valued r.v.

ν = inf {n = 0, 1, . . . : An ≥ M} (4)
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is called the exit index. The r.v. Aν is the excess level over M and tν is the first

passage time (a standard terminology from fluctuation theory).

In various past work (cf. Dshalalow [10,11]), the fluctuations of A around M were

thoroughly investigated and the joint distribution of the key components Aν , tν ,and

ν, along with Aν−1, tν−1, were found. Many other tools were implemented to refine

the results. In some of them the authors observed A over a third-party point process

T = {τ0, τ1, . . .} [22,23] to get an additional information on A and include some

auxiliary thresholds lower than M that A was to cross prior to crossing M [20].

Here we attempt to refine the results by introducing the continuous time parameter

process

Nt = A [0, t] , t ≥ 0, (5)

that gives us more information about A which we plan to obtain around the key

reference points tν−1 and tν . More significantly, as we will see it, the presence of Nt

makes A time sensitive (as it relates to real time t) allowing us to implement control.

We want to focus on interval (tν−1, tν ] just before the crossing of M at tν takes place.

It thus stands for reason to investigate the joint functional

EzNtuAν−1vAνe−ϑ0tν−1−ϑtν1(tν−1,tν ] (t) ,

‖z‖ ≤ 1, ‖u‖ ≤ 1, ‖v‖ ≤ 1, Reϑ0 ≥ 0,Reϑ ≥ 0, (6)

of process Nt observed in interval (tν−1, tν ]. In this particular case, we assume that

the marks are also integer-valued that as mentioned, works in various applications

and can accurately approximate a continuous topology when using a small multiplier.

Whereas the tools we use here do not pertain to discrete-valued r.v.’s Xk only, there

are benefits of discrete operational calculus (that goes with the discrete marks) we

are going to employ that yield analytically more tractable formulas compared to their

continuous counterparts.

3. TIME-SENSITIVE ANALYSIS PRELIMINARIES

To work on functional (1.4) we begin with the following assertions.

Lemma 1. Suppose (A, T ) and (U,∆) are random vectors on probability space

(Ω,F , P ) each valued in (N0,R+) and with a joint probability distribution PA⊗V⊗T⊗∆

on the product space

(N0 × R+ × N0 × R+,P (N0)⊗ B+ ⊗ P (N0)⊗ B+) ,

where B+ =B(R+) is the Borel σ-algebra. Then the following formula holds.
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Γ (u, ξ, v, ϑ; θ) :=

∫

t≥0

e−θtEuAe−ξT vUe−ϑ∆1t∈(T,T+∆]dt

=
1

θ

[

EuAvUe−(ξ+θ)T e−ϑ∆ − EuAvUe−(ξ+θ)T e−(ϑ+θ)∆
]

,

|u| ≤ 1, |v| ≤ 1, Reξ ≥ 0,Reϑ ≥ 0,Reθ ≥ 0.

(L1)

Corollary 2. In the event that (A, T ) are independent of (U,∆), the functional Γ

of Lemma 1 reduces to

Γ (u, ξ, v, ϑ; θ) =
1

θ
EuAe−(ξ+θ)T

[

EvUe−ϑ∆ − EvUe−(ϑ+θ)∆
]

.

(C2)

Proof. Unfolding the expectation we have the following chain of equations.
∫

t≥0

e−θtEuAe−ξT vUe−ϑ∆1t∈(T,T+∆]dt

=

∞
∑

k=0

uk

∞
∑

j=0

vj
∫ ∞

t=0

e−θt

∫

s≥0

e−ξs

∫

δ≥0

e−ϑδ1t∈(s,s+δ]dPA⊗U⊗T⊗∆ (k, j, s, δ) dt

=
∞
∑

k=0

uk

∞
∑

j=0

vj
∫

s≥0

e−(ξ+θ)s

∫

δ≥0

e−ϑδ

∫ s+δ

t=s

e−θ(t−s)dtdPA⊗U⊗T⊗∆ (k, j, s, δ)

due to the translation invariance of the Borel-Lebesgue measure and by the change of

variables

=
1

θ

∞
∑

k=0

uk

∞
∑

j=0

vj
∫

s≥0

e−(ξ+θ)s

∫

δ≥0

[

e−ϑδ − e−(ϑ+θ)δ
]

dPA⊗U⊗T⊗∆ (k, j, s, δ)

=
1

θ

[

EuAvUe−(ξ+θ)T e−ϑ∆ − EuAvUe−(ξ+θ)T e−(ϑ+θ)∆
]

that proves formula (L1). If (A, T ) and (U,∆) are independent, we easily arrive

at formula (C2) stated in Corollary 1.

In the context of section 2, with A being a delayed marked renewal process, we

introduce the following notation.

An = X0 + . . .+Xn,∆n = tn − tn−1, n = 0, 1, . . . , t−1 = 0 (7)
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γ0 (u, ϑ) = EuX0e−ϑt0 , γ (u, ϑ) = EuXie−ϑ∆i , i = 1, 2, . . . (8)

As per (2.3), A [0, t] = Nt =
∑∞

k=0 1[0,t] (tk) is the counting process associated with

the point process
∑∞

k=0 εtk .

In light of the figure below,

consider the functional

Fn (t) = EzNtuAn−1vAne−ϑ0tn−1−ϑtn1{tn−1≤t<tn}, n = 1, 2, . . . (9)

unfolded as

Fn (z) = E(zu)An−1vAn−1+Xne−(ϑ0+ϑ)tn−1−ϑ(tn−tn−1)1{tn−1≤t<tn}

= E (uvz)
An−1 e−(ϑ0+ϑ)tn−1vXne−ϑ∆n1{tn−1≤t<tn}, n = 1, 2 . . . (10)

Due to the independence of (An−1, tn−1) and (Xn,∆n) [(A, T ) and (U,∆) in the

context of Lemma 1], applying Corollary 2 to the Laplace transform of Fn we have

F ∗
n (θ) =

∫ ∞

t=0

e−θtFn (t) dt

=

∫

t≥0

e−θtE(uvz)An−1e−(ϑ0+ϑ)tn−1vXne−ϑ∆n1t∈(tn−1,tn]dt

=
1

θ
Γn−1(uvz, ϑ0 + ϑ+ θ)[γ (v, ϑ)− γ (v, ϑ+ θ)]

where

Γn−1(uvz, ϑ0 + ϑ+ θ) = γ0 (uvz, ϑ0 + ϑ+ θ) γn−1 (uvz, ϑ0 + ϑ+ θ) for n ≥ 1. (11)

Summing up Fn for all n = 1, 2, . . . , with (3.5) in mind, we formally arrive at the

expression
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∞
∑

n=1

F ∗
n (θ)

=
1

θ
γ0 (uvz, ϑ0 + ϑ+ θ) [γ (v, ϑ)− γ (v, ϑ+ θ)]

1

1− γ (uvz, ϑ0 + ϑ+θ)
. (12)

In Proposition A.1 (see the Appendix), we show that ‖γ (uvz, ϑ0 + ϑ+ θ)‖ < 1.

Proposition 3. Let F0 (t)=EzNtvA0e−ϑt01[0,t0] (t). Then

F ∗
0 (θ) =

1

θ
[γ0 (v, ϑ)− γ0 (v, ϑ+ θ)] .

Proof. From the figure below

we readily deduce that

F0 (t) = Evu0e−ϑt01[0,t0] (t) .

The statement follows from Corollary 2 with T = 0, U = u0, and ∆ = ∆0 = t0.

With Proposition 3, we can adhere F ∗
0 to the series

∑∞
n=1 F

∗
n of formula (3.6):

∞
∑

n=0

F ∗
n (θ) =

1

θ
[γ0 (v, ϑ)− γ0 (v, ϑ+ θ)]

+
1

θ
γ0 (uvz, ϑ0 + ϑ+ θ) [γ (v, ϑ)− γ (v, ϑ+ θ)]

1

1− γ (uvz, ϑ0 + ϑ+θ)
. (13)

Formula (3.7) will be used in section 4.

4. FIRST PASSAGE TIME OF A AND ITS RAMIFICATIONS

Now we return to the formalism of section 2 about random measure A, the associated

continuous time parameter jump process Nt = A [0, t] , the exit index ν, and the first

passage time tν . Of equal interest are Aν , the first excess value of {An} of threshold
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M upon tν . We also target tν−1 (pre-first passage time) and Aν−1 (pre-first excess

value). Because Xk’s are nonnegative, Aν−1 < M .

As previously noted, not only do we want to screen Nt from tν−1 to tν (providing

us with a refined information about A between the two key reference points), but even

more importantly, we want to connect underlying fluctuation parameters with real

time. So, we target the joint distribution of the introduced r.v.’s under the following

transform

Φν (t) = EzNtuAν−1vAνe−ϑ0tν−1−ϑtν1(tν−1,tν ] (t) ,

‖z‖ ≤ 1, ‖u‖ ≤ 1, ‖v‖ ≤ 1,Reϑ0 ≥ 0,Reϑ ≥ 0. (14)

We notice that Φν cannot be treated directly by applying Lemma 1 or Corollary

2, simply because we do not know the distribution of (Aν − Aν−1, tν − tν−1), nor is

the latter independent of (Aν−1, tν−1). The method of dealing with functional Φν will

include several steps. In step 1, we introduce the auxiliary sequence {ν (p)} of exit

indices relative to the sequence {0, 1, . . .} of thresholds to be crossed by An, of which

ν = ν (M − 1). Namely, let

ν (p) = inf {n = 0, 1, . . . : An > p} , p = 0, 1, . . .

Given a fixed p, we have

Φν(p) (t) = EzNtuAν(p)−1vAν(p)e−ϑ0tν(p)−1−ϑtν(p)1(tν(p)−1,tν(p)] (t) .

In step 2, we apply to Φν(p) transformation Dp defined as

Dp{f(p)} (x) :=

∞
∑

p=0

xpf(p)(1− x), ||x|| < 1,

where f is a real-valued function with the domain N0 = {0, 1, . . .}. The inverse of Dp

is the so-called D-operator defined in Dshalalow [17] as

Dk
xϕ(x, y) =

{

limx→0
1
k!

∂k

∂xk

[

1
1−x

ϕ(x, y)
]

, k ≥ 0

0, k < 0

(ϕ is analytic at zero in variable x).

From Φν(p) (t) =
∑∞

n=0 Φν(p) (t)1{v(p)=n}, we have

Φ (t, x) := Dp

[

Φν(p) (t)
]

(x) =

∞
∑

n=0

Φν(p) (t)Dp1{ν(p)=n} (x)

=

∞
∑

n=0

Φν(p)=n (t)Dp1{ν(p)=n} (x) ,
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with Φν(p)=n (t) = EzNtuAn−1vAne−ϑ0tn−1−ϑtn1{tn−1≤t<tn} = Fn (t). From 1{v(p)=n} =

1{An−1≤p}1{An>p},

Dp1{v(p)=n} (x) = (1− x)
∞
∑

p=0

xp1{An−1≤p}1{An>p}

= (1− x)

An−1
∑

p=An−1

xp = xAn−1 − xAn

that yields

Φ (t, x) =

∞
∑

n=0

Fn (t)
(

xAn−1 − xAn
)

=

∞
∑

n=0

Fn (ux, v, z, ϑ0, ϑ, t)− Fn (u, vx, z, ϑ0, ϑ, t) , where A−1 = 0.

Finally, applying the Laplace transform to Φ (t, x), in notation

Φ∗ (θ, x) =

∫ ∞

t=0

e−θtΦ (t, x) dt,

we have

θΦ∗ (θ, x) =
∞
∑

n=0

[F ∗
n (ux, v, z, ϑ0, ϑ, t)− F ∗

n (u, vx, z, ϑ0, ϑ, t)].

We can copy the results for
∑∞

n=1 F
∗
n from (3.6). As far as F ∗

0 , we have to proceed

with caution, since xAn−1 − xAn = 1− xX0 , if n = 0. Thus in this case we have,

F ∗
0 (v, ϑ, t)− F ∗

0 (vx, ϑ, t)

=
1

θ
[γ0 (v, ϑ)− γ0 (v, ϑ+ θ)]−

1

θ
[γ0 (vx, ϑ)− γ0 (vx, ϑ+ θ)] . (15)

Furthermore,

∞
∑

n=1

F ∗
n (ux, v, z, ϑ0, ϑ, t)− F ∗

n (u, vx, z, ϑ0, ϑ, t)

=
1

θ
γ0 (uvzx, ϑ0 + ϑ+ θ) [γ (v, ϑ)− γ (v, ϑ+ θ)]

1

1− γ (uvzx, ϑ0 + ϑ+ θ)

−
1

θ
γ0 (uvzx, ϑ0 + ϑ+ θ) [γ (vx, ϑ)− γ (vx, ϑ+ θ)]

1

1− γ (uvzx, ϑ0 + ϑ+ θ)

=
1

θ
γ0 (uvxz, ϑ0 + ϑ+ θ)

1

1− γ (uvzx, ϑ0 + ϑ+ θ)
[γ (v, ϑ)

−γ (vx, ϑ) + γ (vx, ϑ+ θ)− γ (v, ϑ+ θ)] . (16)
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Hence combining (4.2) and (4.3), summing up over all n ≥ 0 yields:

θΦ∗ (θ, x) = γ0 (v, ϑ)− γ0 (v, ϑ+ θ)− γ0 (vx, ϑ) + γ0 (vx, ϑ+ θ)

+γ0 (uvxz, ϑ0 + ϑ+ θ)
1

1− γ (uvzx, ϑ0 + ϑ+ θ)
[γ (v, ϑ)

−γ (vx, ϑ) + γ (vx, ϑ+ θ)− γ (v, ϑ+ θ)] . (17)

Applying the D-operator to Φ∗ of (4.4) we get

θΦ∗ (θ) = DM−1
x θΦ∗ (θ, x) . (18)

Φν (t) = EzNtuAν−1vAνe−ϑ0tν−1−ϑtν1(tν−1,tν ] (t) can be extracted from (4.4-4.5) by

applying the inverse Laplace transform (subject to our discussion in section 5).

Without a “delay” of A, γ0 = 1 and thus (4.4) is simplified to

θΦ∗ (θ, x) =

1

1− γ (uvzx, ϑ0 + ϑ+ θ)
[γ (v, ϑ)− γ (vx, ϑ) + γ (vx, ϑ+ θ)− γ (v, ϑ+ θ)] . (19)

Finally, applying the D-operator to Φ∗ version (4.6) we get

θΦ∗
ν (θ) = DM−1

x

1

1− γ (uvzx, ϑ0 + ϑ+ θ)
[γ (v, ϑ)

−γ (vx, ϑ) + γ (vx, ϑ+ θ)− γ (v, ϑ+ θ)] . (20)

5. SPECIAL CASE: MARKED POISSON PROCESS WITH POSITION

INDEPENDENT MARKING

To illustrate tractability of the results obtained in (4.6-4.7), let A=
∑∞

n=1Xnεtn be

a marked Poisson measure with position independent marking and support counting

measure
∑∞

n=1 εtn of intensity λ. We assume that the marks X1, X2, . . . ∈ [Geo1 (p)]

are independent and identically distributed (iid), thus with the common pgf

a (z) =
pz

1− qz
, (21)

and that interrenewal times∆n = tn − tn−1, n = 1, 2, 3, ... (assuming no delay and

t0 = 0) are iidwith the common LST

γ (θ) = Ee−∆1θ =
λ

λ+ θ
, Reθ ≥ 0. (22)

So, due to position independent marking,

γ (u, θ) = EuX1e−∆1ϑ = a (u) γ (ϑ) =
pu

1− qu

λ

λ+ θ
. (23)
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We will work on formula (4.7) substituting there (5.3) for γ. Furthermore, from

1− γ (uvzx, ϑ0 + ϑ+ θ) = 1−
λ

λ+ ϑ0 + ϑ+ θ

puvzx

1− quvzx
,

after some algebra,

1

1− γ (uvzx, ϑ0 + ϑ+ θ)
=

A−Bx

A− Cx
=

[

B

C
+

A (C −B)

C (A− Cx)

]

A = λ+ ϑ0 + ϑ+ θ

B = (qvuz)(λ+ ϑ0 + ϑ+ θ)

C = (qvuz)(λ+ ϑ0 + ϑ+ θ) + λpvuz = B + λpvuz

Then we have

γ(v, ϑ)− γ(vx, ϑ) + γ(vx, ϑ+ θ)− γ(v, ϑ+ θ)

= G

(

1

1− qv
−

1

1− qvx

)

, qv 6= 1, qvx 6= 1,

where

G =
λpθ

q (ϑ+ λ) (ϑ+ λ+ θ)

Then, using Dshalalow [17],

θΦ∗
ν (θ) = DM−1

x

[

G

(

B

C
+

A (C −B)

C (A− Cx)

)(

1

1− qv
−

1

1− qvx

)

]

=
BG

C (1− qv)
−

BG

C

1− (qv)
M

1− qv
+

G (C −B)

C (1− qv)

1−
(

C
A

)M

1− C
A

−
G (C −B)

C (1− qv)






1−
(

C
A

)M

1− C
A

− (qv)
M

1−
(

C
Aqv

)M

1− C
Aqv







=
G

C (1− qv)






(qv)

M
B + (C −B) (qv)

M
1−

(

C
Aqv

)M

1− C
Aqv






.

or returning to the original expressions

Φ∗
ν (θ) =

λp

q (ϑ+ λ) (ϑ+ λ+ θ) (1− qv) [q (λ+ ϑ0 + ϑ+ θ) + λp]

×






q (qv)

M
(λ+ ϑ0 + ϑ+ θ) + λp (qv)

M
1−

(

qvuz(λ+ϑ0+ϑ+θ)+λpvuz

(λ+ϑ0+ϑ+θ)qv

)M

1− qvuz(λ+ϑ0+ϑ+θ)+λpvuz

(λ+ϑ0+ϑ+θ)qv






.

(24)
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We are interested in various marginal versions of functional

Φν (t) = EzNtuAν−1vAνe−ϑ0tν−1−ϑtν1(tν−1,tν ] (t) .

For brevity we will write

Φν (t) = Φν (t; z, u, v, ϑ0, ϑ) ,

which can be derived by taking the Laplace inverse of Φ∗
ν (θ) = Φ∗

ν (θ; z, u, v, ϑ0, ϑ).

(i) First, consider the marginal functional Φν (t; z, 1, 1, 0, 0) = EzNt1(tν−1,tν ] (t) of

the Poisson counting process Nt. Here,

Φ∗
ν (θ; z, 1, 1, 0, 0)

=
λ

q(λ)(λ+ θ)[q(λ+ θ) + λp]






qM+1 (λ+ θ) + λpqM

1−
(

qz(λ+θ)+λpz

(λ+θ)q

)M

1− qz(λ+θ)+λpz

(λ+θ)q







that can be reduced to

Φ∗
ν (θ; z, 1, 1, 0, 0) =

((λ+ θ)q)
M−1

+ λp
∑M−1

k=1 ((λ+ θ)q)
k−1

zM−k(λ+ qθ)M−1−k

(λ+ θ)
M

,

after some algebra, and then further to

Φ∗
ν (θ; z, 1, 1, 0, 0) =

qM−1

λ+ θ
+ λp

M−1
∑

k=1

M−1−k
∑

i=0

(

M − 1− k

i

)

zM−k

qk+i−1 (λp)
M−1−k−i

(

1

λ+ θ

)M+1−k−i

.

Thus, denoting L−1
θ for the Laplace inverse operator in variable θ we have

Φν (t; z, 1, 1, 0, 0) = EzNt1(tν−1,tν ] (t) (t) = L−1
θ {Φ∗

ν (θ; z, 1, 1, 0, 0)} (t)

= L−1
θ

{

qM−1

λ+ θ

}

(t) + λp

M−1
∑

k=1

M−1−k
∑

i=0

(

M − 1− k

i

)

zM−k

qk+i−1 (λp)
M−1−k−i

L−1
θ

{

(

1

λ+ θ

)M+1−k−i
}

(t)

= qM−1e−λt +

M−1
∑

k=1

M−1−k
∑

i=0

(

M − 1− k

i

)

zM−kqk+i−1 (λp)
M−k−i

e−λt tM−k−i

(M − k − i)!
. (25)

In particular, for M = 1,M = 2,and M = 3 we get:

M = 1 : Φν (t; z, 1, 1, 0, 0) = e−λt (26)
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M = 2 : Φν (t; z, 1, 1, 0, 0) = qe−λt + λpzte−λt = (q + λpzt)e−λt (27)

M = 3 : Φν (t; z, 1, 1, 0, 0) = q2e−λt + λpqzt(1 + z)e−λt +
(λpzt)2

2
e−λt. (28)

We confirm the results for EzNt1(tν−1,tν ] (t) obtained from (5.5) for M = 1, 2, and

3 using direct probability arguments.

When M = 1, the first passage time occurs in the event that X1 ≥ 1. Thus for

M = 1and z = 1,

Φν (t; 1, 1, 1, 0, 0) = E1(tν−1,tν ] (t) = P{tν−1 ≤ t ≤ tν }P {X1 ≥ 1}

= P{0 ≤ t ≤ t1 } · 1 = e−λt (29)

which agrees with (5.6).

When M = 2, the first passage time could occur in the event that X1 ≥ 2 (interval

[0, t1]) or in the event that X1 = 1 and X2 ≥ 1 (interval [t1, t2]). Thus, when M =

2and z = 1,

Φν (t; 1, 1, 1, 0, 0) = E1(tν−1,tν ] (t) = P{tν−1 ≤ t ≤ tν }

= P{0 ≤ t ≤ t1 }P {X1 ≥ 2}+ P{t1 ≤ t ≤ t2}P {X1 = 1 }P {X2 ≥ 1}

= P{Nt = 0}P {X1 ≥ 2}+ P{Nt = 1}P {X1 = 1 }P {X2 ≥ 1}

= qe−λt + λpte−λt, (30)

which agrees with (5.7).

Similarly, when M = 3, thefirst passage time occurs when X1 ≥ 3, orX1 = 1and

X2 > 1 , or when X1 = 1, X2 = 1, and X3 ≥ 1 in their respective intervals. Therefore,

when M = 3 and z = 1,

Φν (t; 1, 1, 1, 0, 0) =E1(tν−1,tν ] (t) = P{tν−1 ≤ t ≤ tν }

=P{0 ≤ t ≤ t1 }P {X1 ≥ 3}

+ P{t1 ≤ t ≤ t2} [P {X1 = 1}P {X2 ≥ 2}+ P {X1 = 2}P {X2 ≥ 1}]

+ P{t2 ≤ t ≤ t3 }P {X1 = 1}P {X2 = 1}P {X3 ≥ 1}

=P{Nt = 0}P {X1 ≥ 3}

+ P{Nt = 1} [P {X1 = 1}P {X2 ≥ 2}+ P {X1 = 2}P {X2 ≥ 1}]

+ P{Nt = 2}P {X1 = 1}P {X2 = 1}P {X3 ≥ 1}

=q2e−λt + 2pqλte−λt +
(λpt)

2

2

e−λt (31)

which agrees with (5.8).

(ii) Now, considering the marginal functional Φν (t; 1, 1, 1, 0, ϑ) = Ee−ϑtν1(tν−1,tν ] (t)

of tν , the first passage time (i.e., when the first threshold crossing occurs), we have
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Φ∗
ν (θ; 1, 1, 1, 0, ϑ) =

λ

q(ϑ+ λ)(ϑ+ λ+ θ)[q(ϑ+ λ+ θ) + λp]










qM+1(ϑ+ λ+ θ) + λpqM
1−

(

q(ϑ+λ+θ)+λp

(ϑ+λ+θ)q

)M

1− q(ϑ+λ+θ)+λp

(ϑ+λ+θ)q











reducing it to

Φ∗
ν (θ; 1, 1, 1, 0, ϑ) =

λqM−1

(ϑ+ λ)(ϑ+ λ+ θ)
[

1 + λp

M−1
∑

k=1

qk−M

(ϑ+λ+ θ)M−k
(q(ϑ+ λ+ θ) + λp)

M−k−1

]

and then to

Φ∗
ν (θ; 1, 1, 1, 0, ϑ) =

λqM−1

(ϑ+ λ)(ϑ+ λ+ θ)
+λ2p

M−1
∑

k=1

M−1−k
∑

i=0

(

M − 1− k

i

)

qk+i−1

ϑ+ λ

(λp)
M−k−1−i

(

1

ϑ+ λ+ θ

)M−k+1−i

.

Thus,

Φν (t; 1, 1, 1, 0, ϑ) = L−1
θ {Φ∗

ν (θ; 1, 1, 1, 0, ϑ)} (t)

= L−1
θ

{

λqM−1

(ϑ+ λ)(ϑ+ λ+ θ)

}

(t)

+ λ2p

M−1
∑

k=1

M−1−k
∑

i=0

(

M − 1− k

i

)

qk+i−1

(ϑ+ λ)
(λp)

M−k−1−i

L−1
θ

{

(

1

ϑ+ λ+ θ

)M−k+1−i
}

(t).

Hence,

Φν (t; 1, 1, 1, 0, ϑ) = Ee−ϑtν1(tν−1,tν ] (t) .

=
λqM−1

ϑ+ λ
e−(ϑ+λ)t + λ2p

M−1
∑

k=1

M−1−k
∑

i=0

(

M − 1− k

i

)

qk+i−1

ϑ+ λ

(λp)
M−k−1−i

e−(ϑ+λ)t tM−k−i

(M − k − i)!
.

Specifically for

M = 1 :, Φν (t; 1, 1, 1, 0, ϑ) =
λ

ϑ+ λ
e−(ϑ+λ)t
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M = 2 : Φν (t; 1, 1, 1, 0, ϑ) =
λq

ϑ+ λ
e−(ϑ+λ)t + λ2pt

1

ϑ+ λ
e−(ϑ+λ)t

=
λ

ϑ+ λ
(q + λpt) e−(ϑ+λ)t,

which agree with (5.9) and (5.10), respectively, when ϑ = 1.

Furthermore, for general M , applying the inverse Laplace transform in variable ϑ

d

dx
[P {tν ≤ x, t ∈ (tν−1, tν ]}]

= L−1
ϑ {Φν (t; 1, 1, 1, 0, ϑ)} (x)

= λqM−1e−λx1(t,∞) (x) + λ2p

M−1
∑

k=1

M−1−k
∑

i=0

(

M − 1− k

i

)

qk+i−1 (λp)
M−k−1−i

tM−k−i

(M − k − i)!
e−λx1(t,∞) (x) .

(iii) Thirdly, for the marginal functional Φν (θ; 1, 1, v, 0, 0) = EvAν1(tν−1,tν ] (t) of

the first excess level Aν , setting z = 1, u = 1, ϑ0 = 0, ϑ = 0 in Φ∗
ν (θ; z, u, v, ϑ0, ϑ) we

arrive at:

Φ∗
ν (θ; 1, 1, v, 0, 0) =

pvMqM−1

(λ+ θ)(1− qv)
+ vMλp2

M−1
∑

k=1

M−1−k
∑

i=0

(

M − 1− k

i

)

qk+i−1

1− qv

(λp)
M−k−1−i

(

1

λ+ θ

)M−k+1−i

after a similar algebraic routine. Thus,

L−1
θ {Φ∗

ν (θ; 1, 1, v, 0, 0)} (t)

= L−1
θ

{

pvMqM−1

(λ+ θ)(1− qv)

}

(t)

+ vMλp2
M−1
∑

k=1

M−1−k
∑

i=0

(

M − 1− k

i

)

qk+i−1

(1− qv)
(λp)

M−k−1−i

L−1
θ

{

(

1

λ+ θ

)M−k+1−i
}

(t).

Hence,

Φν (t; 1, 1, v, 0, 0) = EvAν1(tν−1,tν ] (t) .

pvMqM−1

1− qv
e−λt + vMλp2

M−1
∑

k=1

M−1−k
∑

i=0

(

M − 1− k

i

)

qk+i−1

(1− qv)
(λp)

M−k−1−i

e−λt t
M−k−i

(M − k − i)!
.
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Notice that expanding EvAν1(tν−1,tν ] (t) in Taylor series in v we have

EvAν1(tν−1,tν ] (t)

=
∞
∑

n=0

(

pvMqM−1e−λt + vMλp2
M−1
∑

k=1

M−1−k
∑

i=0

(

M − 1− k

i

)

qk+i−1 (λp)
M−k−1−i

e−λt t
M−k−i

(M − k − i)!

)

(qv)
n

=
∞
∑

n=M

(

pqn+M−1e−λt + λp2
M−1
∑

k=1

M−1−k
∑

i=0

(

M − 1− k

i

)

qn+k+i−1 (λp)
M−k−1−i

e−λt t
M−k−i

(M − k − i)!

)

vn.

Therefore,

P {Aν = n, t ∈ (tν−1, tν ]}

=

[

λp2
M−1
∑

k=1

M−1−k
∑

i=0

(

M − 1− k

i

)

qn+k+i−1 (λp)
M−k−1−i

e−λt t
M−k−i

(M − k − i)!

+ pqn+M−1e−λt

]

1{M,M+1,...} (n) , n = 0, 1, . . .

which agrees with the fact that Aν ≥ M a.s.

Specifically, for M = 1,

Φν (t; 1, 1, v, 0, 0) =
pv

1− qv
e−λt

and for M = 2,

Φν (t; 1, 1, v, 0, 0) =
pqv2

1− qv
e−λt + λp2v2t

1

1− qv
e−λt = (q+λpt) e−λt v2p

1− qv

which agree with (5.9) and (5.10) respectively when v = 1 .
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APPENDIX

Proposition A.1. The series

∞
∑

n=1

F ∗
n (θ) =

∞
∑

n=1

∫ ∞

t=0

e−θtEzNtuAn−1vAne−ϑ0tn−1−ϑtn1{tn−1≤t<tn}dt

converges to

∞
∑

n=1

F ∗
n (θ) =

1

θ
γ0 (uvz, ϑ0 + ϑ+ θ) [γ (v, ϑ)− γ (v, ϑ+ θ)]

1

1− γ (uvz, ϑ0 + ϑ+θ)

and ‖γ (uvz, ϑ0 + ϑ+ θ)‖ < 1. (A.1.1)

Proof. The first part of the proposition is due to the above steps that ended in formula

(3.6). The inequality (A.1.1) is due to the following arguments.
∥

∥γ(uvz, ϑ0 + ϑ+ θ)
∥

∥ =
∥

∥E (uvz)
X1 e−(ϑ0+ϑ+θ)∆1

∥

∥

=
∥

∥

∞
∑

k=0

(uvz)
k

∫ ∞

t=0

e−(ϑ0+ϑ+θ)tPX1⊗∆1
(k, dt)

∥

∥

≤
∞
∑

k=0

∥

∥ (uvz)
∥

∥

k
∫ ∞

t=0

∥

∥e−(ϑ0+ϑ+θ)t
∥

∥PX1⊗∆1
(k, dt)

=

∞
∑

k=0

∥

∥ (uvz)
∥

∥

k
∫ ∞

t=0

e−Re(ϑ0+ϑ+θ)tPX1⊗∆1
(k, dt)

=

∫ ∞

t=0

e−Re(ϑ0+ϑ+θ)tPX1⊗∆1
(0, dt) +

∞
∑

k=1

∥

∥ (uvz)
∥

∥

k
∫ ∞

t=0

e−Re(ϑ0+ϑ+θ)tPX1⊗∆1
(k, dt)
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<

∫ 1

t=0

PX1⊗∆1
(0, dt) + e−Re(ϑ0+ϑ+θ)

∫ ∞

t=1

PX1⊗∆1
(0, dt)

+
∥

∥ (uvz)
∥

∥

∞
∑

k=1

∫ 1

t=0

PX1⊗∆1
(k, dt) +

∥

∥ (uvz)
∥

∥

∞
∑

k=1

e−Re(ϑ0+ϑ+θ)

∫ ∞

t=1

PX1⊗∆1
(k, dt) ,

since
∥

∥ (uvz)
∥

∥ >
∥

∥ (uvz)
∥

∥

k
for
∥

∥ (uvz)
∥

∥ < 1 and k > 1.

Let,

a :=

∫ 1

t=0

PXi⊗∆i
(0, dt)

b :=

∫ ∞

t=1

PXi⊗∆i
(0, dt)

c :=
∞
∑

k=1

∫ 1

t=0

PXi⊗∆i
(k, dt)

d :=
∞
∑

k=1

e−Re(ϑ0+ϑ+θ)

∫ ∞

t=1

PXi⊗∆i
(k, dt) .

Then clearly, a+ b+ c+ d = 1 and thus,

a+ e−Re(ϑ0+ϑ+θ)b +
∥

∥ (uvz)
∥

∥ c+
∥

∥ (uvz)
∥

∥e−Re(ϑ0+ϑ+θ)d < 1

since
∥

∥ (uvz)
∥

∥ < 1 and because Re (ϑ0 + ϑ+ θ) ≥ 0 is a requirement for the existence

of the LST, e−Re(ϑ0+ϑ+θ) ≤ 1.
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