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1. INTRODUCTION

In this paper we discuss some computational, modelling and approximation issues

related to one class of sigmoid functions.

Sigmoid functions find numerous applications in various fields related to life sci-

ences, chemistry, physics, artificial intelligence, fuzzy set theory, insurance mathemat-

ics, debugging and test theory.
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In fields such as signal processing, machine learning, artificial neural networks,

sigmoid functions are also known as “activation” and “squashing” functions.

In this work we concentrate on several practically important classes of sigmoid

functions. Two of them are the cut (or ramp) functions and the step function.

Cut functions are continuous but they are not smooth (differentiable) at the two

endpoints of the interval where they increase.

Step functions can be viewed as limiting case of cut functions; they are not con-

tinuous but they are Hausdorff continuous (H-continuous) [1], [2].

Section 2 contains preliminary definitions and motivations.

In Section 3 we study the uniform and Hausdorff approximation of the cut func-

tions by hyper–log–logistic function.

Curiously, the uniform distance between a cut function and the hyper–log–logistic

function of best uniform approximation is an function of the scale parameter β and

does not depending on the width of the underlying interval ∆, resp. on the slope k.

By contrast, it turns out that the Hausdorff distance (H-distance) depends on the

slope and tends to zero when increasing the slope.

Numerical examples are presented throughout the paper using the computer alge-

bra system MATHEMATICA.

2. PRELIMINARIES

Sigmoid functions. In this work we consider sigmoid functions of a single variable

defined on the real line, that is functions s of the form s : R −→ R. Sigmoid functions

can be defined as bounded monotone non-decreasing functions on R. One usually

makes use of normalized sigmoid functions defined as monotone non-decreasing func-

tions s(t), t ∈ R, such that lim s(t)t→−∞ = 0 and lim s(t)t→∞ = 1. In the fields of neu-

ral networks and machine learning sigmoid-like functions of many variables are used,

familiar under the name activation functions. (In some applications the sigmoid func-

tions are normalised so that the lower asymptote is assumed −1: lim s(t)t→−∞ = −1.)

Cut (ramp) functions. Let ∆ = [γ− δ, γ+ δ] be an interval on the real line R with

centre γ ∈ R and radius δ ∈ R. A cut function (on ∆) is defined as follows:

Definition 1. The cut function cγ,δ on ∆ is defined for t ∈ R by

cγ,δ(t) =























0, if t < ∆,

t− γ + δ

2δ
, if t ∈ ∆,

1, if ∆ < t.

(1)
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Note that the slope of function cγ,δ(t) on the interval ∆ is 1/(2δ) (the slope is

constant in the whole interval ∆). Two special cases are of interest for our discussion

in the sequel.

Special case 1. For γ = 0 we obtain a cut function on the interval ∆ = [−δ, δ]:

c0,δ(t) =























0, if t < −δ,

t+ δ

2δ
, if −δ ≤ t ≤ δ,

1, if δ < t.

(2)

Special case 2. For γ = δ we obtain the cut function on ∆ = [0, 2δ]:

cδ,δ(t) =























0, if t < 0,

t

2δ
, if 0 ≤ t ≤ 2δ,

1, if 2δ < t.

(3)

Step functions. The step function (with “jump” at γ ∈ R) can be defined by

hγ(t) = cγ,0(t) =















0, if t < γ,

[0, 1], if t = γ,

1, if t > γ,

(4)

which is an interval-valued function (or just interval function) [1], [2]. In the literature

various point values, such as 0, 1/2 or 1, are prescribed to the step function (4) at the

point γ; we prefer the interval value [0, 1]. When the jump is at the origin, that is

γ = 0, then the step function is known as the Heaviside step function; its “interval”

formulation is:

h0(t) = c0,0(t) =















0, if t < 0,

[0, 1], if t = 0,

1, if t > 0.

(5)

The step function can be perceived as a limiting case of the cut function. Namely,

for δ → 0, the cut function cδ,δ tends in “Hausdorff sense” to the step function.

Here “Hausdorff sense” means Hausdorff distance, briefly H-distance. The H-distance

ρ(f, g) between two interval functions f, g on Ω ⊆ R, is the distance between their

completed graphs F (f) and F (g) considered as closed subsets of Ω×R [5], [6]. More

precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||}, (6)
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wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max |t|, |x|.

The logistic function was introduced by P.-F. Verhulst [7]–[9], who applied it

to human population dynamics. Verhulst derived his logistic equation to describe the

mechanism of the self-limiting growth of a biological population. The logistic function

finds applications in an wide range of fields, including artificial neural networks, bi-

ology, ecology, population dynamics, chemistry, demography, economics, geoscience,

mathematical psychology, probability, sociology, political science and bio–statistics.

Definition 2. Define the logistic (Verhulst) function v on R as [7]

vγ,k(t) =
1

1 + e−4k(t−γ)
. (7)

Note that the logistic function (7) has an inflection at its “centre” (γ, 1/2) and its

slope at γ is equal to k.

In [4] we prove the following propositions

Proposition 3. The function vγ,k(t) defined by (7) with k = 1/(2δ): i) is the logistic

function of best uniform one-sided approximation to function cγ,δ(t) in the interval

[γ,∞) (as well as in the interval (−∞, γ]); ii) approximates the cut function cγ,δ(t)

in uniform metric with an error

ρ = ρ(c, v) =
1

1 + e2
= 0.11920292.... (8)

Proposition 4. For the H-distance h(k) between the function vγ,k(t) and cγ,δ(t) the

following holds for k > 5:

1

4k + 1
< h(k) <

ln(4k + 1)

4k + 1
. (9)

3. APPROXIMATION OF THE CUT FUNCTION BY

HYPER–LOG–LOGISTIC FUNCTIONS

In 1968 Blumberg [10] introduced a modified Verhulst logistic equation, the so called

hyper–log–logistic equation:

dN(t)

dt
= kNα(1−N)γ (10)

where k is the rate constant and α and γ are shape parameters.

The equation (10) is consistent with the Verhulst logistic model when α = γ = 1.
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A number of equations have been proposed to account for the shape of these

growth curves (Turner and al. [11], Tsoularis [12]).

We will consider the following modification of the hyper–log–logistic equation (10)

(see for instance [12]:

dN(t)

dt
= kN1− 1

β (1−N)1+
1

β (11)

where β is a shape parameter.

For β → ∞ the equation (2) reduces to Verhulst equation.

The equation (11) provides a parametric interpolation formula between the pre-

dictions of the logistic equation (β → ∞) and second order kinetics (β = 1).

Definition 5. Define the hyper-log–logistic function N on R as:

Nγ,β,k(t) = 1−
1

1 +
(

1 + 4k(t−γ)
β

)β
. (12)

Note that the logistic function (12) has an inflection at its “centre” (γ, 1/2) and

its slope at γ is equal to k.

Proposition 6. The function Nγ,β,k(t) defined by (12) with k = 1/(2δ):

i) is the hyper–log–logistic function of best uniform one-sided approximation to func-

tion cγ,δ(t) in the interval [γ,∞) (as well as in the interval (−∞, γ]);

ii) approximates the cut function cγ,δ(t) in uniform metric with an error

ρ1 = ρ1(c,N) = 1−
1

1 +
(

1− 2
β

)β
. (13)

Proof. Consider functions (1) and (12) with same centres γ = δ, that is functions

cδ,δ and Nδ,β,k.

In addition chose c and N to have same slopes at their coinciding centres, that is

assume k = 1/(2δ), cf. Fig. 1–Fig. 2.

Then, noticing that the largest uniform distance between the cut and hyper–log–

logistic functions is achieved at the endpoints of the underlying interval [0, 2δ], we

have:

ρ1 = Nδ,β,k(0)− cδ,δ = 1−
1

1 +
(

1− 4kδ
β

)β
= 1−

1

1 +
(

1− 2
β

)β
= A(β). (14)

This completes the proof of the proposition.
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Figure 1: The cut and hyper–log–logistic functions for γ = δ = 1, k = 1/2,

β = 5.

Figure 2: The cut and hyper–log–logistic functions for γ = δ = 1, k = 1/2,

β = 15.
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β A(β) from (14)

3 0.0357143

5 0.0721496

10 0.0969629

15 0.104658

100 0.117091

1000 0.118993

10000 0.119182

100000 0.119201

1000000 0.119203

Table 1: The function A(β) computed by (14) for various β

Some computational examples using relation (14) for various β are presented in

Table 1.

We note that the uniform distance (13) is an function of the scale parameter β

and does not depending on the width of the underlying interval ∆, resp. on the slope

k.

This should not surprise us. We already mentioned that the equation (10) is

consistent with the Verhulst logistic model when (β → ∞).

Evidently

lim
β→∞

A(β) = 1−
1

1 + e−2
=

1

1 + e2
= 0.11920292....

and we have the result from Proposition 3.

The next proposition shows that this is not the case whenever H-distance is used.

Proposition 7. The function N0,β,k(t) with k = 1/(2δ) is the hyper–log–logistic

function of best Hausdorff one-sided approximation to function c0,δ(t) in the interval

[0,∞] (resp. in the interval [−∞, 0]).

The function N0,β,k(t), k = 1/(2δ), approximates function c0,δ(t) in H-distance

with an error h = h(c,N) that satisfies the relation:

ln
1− h

h
= −β ln

(

1−
2

β
(1 + 2kh)

)

. (15)
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Figure 3: The cut and hyper–log–logistic functions for k = 1, δ = 1
2k , β = 25,

H-distance h = 0.0804196.

Proof. Using δ = 1/(2k) we can write δ + h = (1 + 2hk)/(2k), resp.:

N(−δ − h) = 1−
1

1 +
(

1− 2
β
(1 + 2kh)

)β
. (16)

The H-distance h using square unit ball (with a side h) satisfies the relation

N(−δ − h) = h, (17)

which implies (15).

This completes the proof of the proposition.

Relation (15) shows that the H-distance h depends on the slope k and scale pa-

rameter β, h = h(k, β).

The numerical results are plotted in Fig. 3 (for the case k = 1, δ = 1
2k , β = 25, H-

distance h = 0.0804196) and Fig. 4 (for the case k = 1.5, δ = 1
2k , β = 10, H-distance

h = 0.0623606).

The next result gives additional information on this dependence.

Let

p = −1 +
1

1 +
(

1− 2
β

)β
; q = 1 +

4k
(

1− 2
β

)β−1

(

1 +
(

1− 2
β

)β
)2 ;

r = −2.1q/p; (p < 0; q > 0; r > 0).
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Figure 4: The cut and hyper–log–logistic functions for k = 1.5, δ = 1
2k ,

β = 10, H-distance h = 0.0623606.

Figure 5: The functions F (d) and G(d) for k = 10, β = 6.
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Proposition 8. For the H-distance h = h(k, β) between the cut and the hyper–log–

logistic functions the following holds for r > e2.1:

h1 =
1

r
< h(k, β) <

ln r

r
= h2. (18)

Proof. From (17) we have

1− h =
1

1 +
(

1− 2
β
(1 + 2kh)

)β

Let us examine the function

F (h) =
1

1 +
(

1− 2
β
(1 + 2kh)

)β
− 1 + h.

From F ′(h) > 0 we conclude that function F is strictly monotone increasing.

Consider function

G(h) = p+ qh.

using the Taylor expansion G(h)− F (h) = O(h2).

Hence G(h) approximates F (h) with h → 0 as O(h2) (see, Fig.5).

In addition G′(h) > 0, hence function G is monotone increasing.

Further, for r > e2.1

G

(

1

r

)

< 0, G

(

ln r

r

)

> 0.

This completes the proof of the proposition.

Some computational examples using nonlinear equation (17) and two–sided bounds

(18) for various k and β are presented in Table 2.

From the above table, it can be seen that the estimates for the value of the best

H–distance (see (18)) are quite precise.

For other results, see [3]-[4], [13]–[21].

4. CONCLUSIONS

In this paper we study the uniform and Hausdorff approximation of the cut functions

by hyper–log–logistic function. We demonstrate that the best uniform approximation

between a cut function and the respective logistic function is an function of the scale

parameter β and does not depending on the slope k. On the other side we show
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k β h1 h from (17) h2

10 6 0.00704963 0.020959 0.0349294

12 6 0.00605996 0.0187194 0.0309425

14 8 0.00603839 0.019563 0.0308539

8 10 0.0102551 0.0295792 0.046968

6 12 0.0132971 0.036255 0.0574461

8 20 0.0116352 0.0338921 0.05182

4 30 0.0197223 0.05013 0.0774298

4 60 0.0204527 0.0520565 0.0795537

Table 2: The h–distance computed by (17) and two–sided bounds computed

by (18)

that the Hausdorff distance (H-distance) depends on the slope k and tends to zero

whenever k → ∞.

For basic results on H-continuous functions and their application to problems in

abstract areas such as Real Analysis, Approximation Theory, Set-valued Analysis and

Fuzzy Sets and Systems we recommend [1], [3], [26], [27].

Logistic functions are also used in artificial neural networks [22]–[31]. Any neural

net element computes a linear combination of its input signals, and uses a logistic

function to produce the result; often called “activation” function.

Constructive approximation by superposition of sigmoidal functions and the rela-

tion with neural networks and radial basis functions approximations is discussed in

[27].

A recurrent neurodynamic model of the neuron with a broad class of activation

functions, including sigmoidal, stepwise, bounded linear and other ones is proposed

in [33].

The explored feature family can find application in the field of debugging and test

theory [36]–[37].

We hope that the results will be of interest to specialists working in the field of

constructive approximation [22]–[35].
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