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ABSTRACT: In this paper we consider a new class of cumulative distribution

functions belonging to the important class of functions arising from the theory of

impulse techniques, neural networks and debugging theory.

By this new family of cumulative functions we study the Hausdorff approximation

of the impulse function σ∗∗(t).

Numerical examples, illustrating our results using the programming environment

CAS MATHEMATICA are presented.
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1. INTRODUCTION

Based on some extensions of the Chen and Poisson–exponential cumulative distribu-

tion functions [1]–[12], in [13] we studied the following cumulative distribution func-

tion belonging to the important class of functions arising from the theory of impulse

techniques, debugging theory, population dynamics and cell growth models:
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where β, λ > 0 and m is an even number.

In this paper we consider the following new cumulative function with application

to the theory of impulse techniques:
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where β, λ, α > 0 and m is an even number.

The typical example of an impulse function from antenna feeder technique has the

following shape (see, Fig. 1):

σ∗∗(t) =







1, t ∈ [−∞,−1) ∪ (1,+∞)

0, t ∈ [−1, 1].

(5)

In this paper we study the Hausdorff approximation of the impulse function σ∗∗(t)

(see Definition 1) by the family (3)–(4).

Furthermore, we propose a software module (intellectual property) within the

programming environment CAS Mathematica for the analysis. The models have been

tested with real-world data.

2. HAUSDORFF APPROXIMATION OF

THE IMPULSE FUNCTION σ
∗∗(T )

Definition 1. [14] The Hausdorff distance (the H–distance) ρ(f, g) between two

interval functions f, g on Ω ⊆ R, is the distance between their completed graphs F (f)
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Figure 1: The signal of σ∗∗(t) – type.

and F (g) considered as closed subsets of Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||},

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB, xB) in R
2 is ||A−B|| =

max(|tA − tB |, |xA − xB|).

The one–sided Hausdorff distance d between the impulse function σ∗∗(t) and the

function ((3)–(4)) satisfies the relation

M(t0 − d) = d. (6)

The following theorem gives upper and lower bounds for d

Theorem 2. Let
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For the one–sided Hausdorff distance d between σ∗∗(t) and the function ( (3)–(4)) for

r > e1.05 ≈ 1.36079

the following inequalities hold:

dl =
1

r
< d <

ln r

r
= dr. (7)
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Figure 2: The functions F (d) and G(d) for β = 20;λ = 0.7;m = 12;α = 1.5.

Proof. Let us examine the function:

F (d) = M(t0 − d)− d. (8)

From F ′(d) < 0 we conclude that the function F is decreasing.

Consider the function

G(d) = p+ qd. (9)

From the Taylor expansion we obtain G(d)− F (d) = O(d2).

Hence G(d) approximates F (d) with d → 0 as O(d2) (see Fig. 2).

In addition G′(d) < 0.

Further, for r > e1.05 we have G(dl) > 0 and G(dr) < 0.

This completes the proof of the theorem.

The family of functions M(t) is visualized on Fig. 3

The model ((3)–(4)) for β = 20, λ = 0.7, m = 12, α = 1.5 t0 = 0.763706 is

visualized on Fig. 4. From the nonlinear equation (6) and inequalities (7) we have:

d = 0.092167, dl = 0.0646642, dr = 0.177086.

The model ((3)–(4)) for β = 30, λ = 0.5, m = 30, α = 1.5 t0 = 0.887758 is

visualized on Fig. 5. From the nonlinear equation (6) and inequalities (7) we have:

d = 0.0548628, dl = 0.031846, dr = 0.109768.

For some comparisons between models N (Eq. (1)) and M (Eq. (3)) see Table 1.

The applied comparisons show that the ”saturation” using the M–model is faster.
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Figure 3: The family of functions M(t) for α = 1 (green); α = 1.5 (blue);

α = 2 (dashed); α = 2.5 (red); (β = 2, m = 8 and λ = 0.1 are fixed).

Figure 4: The model ((3)–(4)) for β = 20, λ = 0.7, m = 12, α = 1.5

t0 = 0.763706; H–distance d = 0.092167, dl = 0.0646642, dr = 0.177086.

Model β λ m α Hausdorff Distance - d

N 20 0.7 12 1 0.106819

N 30 0.5 30 1 0.0663519

M 20 0.7 12 1.5 0.092167

M 30 0.5 30 1.5 0.0548628

Table 1. Some comparisons between models N and M .

From the above examples, it can be seen that the proven estimates (see Theorem 2)

for the value of the Hausdorff approximation are reliable when assessing the important

characteristic - ”saturation”.
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Figure 5: The model ((3)–(4)) for β = 30, λ = 0.5, m = 30, α = 1.5

t0 = 0.887758; H–distance d = 0.0548628, dl = 0.031846, dr = 0.109768.

3. SOFTWARE MODULE FOR ANALYSIS

WITHIN CAS MATHEMATICA

We propose a software module (intellectual property) within the programming envi-

ronment CAS Mathematica for the analysis of the considered family M(t) of cumula-

tive functions.

The module offers the following possibilities:

• generation of the impulse function under user defined values of the parameters

λ, m, β and α;

• calculation of the H-distance d between the function σ∗∗(t) and the function

M(t);

• generation of the emitting chart of antenna factor;

• software tools for animation and visualization.

After the substitution

t = kl cos θ + a,

where k = 2π
λ
; λ is the wave length; a is the phase difference; θ is the azimuthal angle

and l is the distance between the emitters (l = λ
2 is fixed), the function M(t) (or

emitting chart of an antenna factor) can be rewritten in the form

M(θ) =

(

eλe
−β(π cos θ+a)m

− eλ

1− eλ

)α

. (10)

Typical emitting chart is visualized on Fig. 6.
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Figure 6: Typical emitting chart (M(θ)) for β = 0.015; a = 0.1; λ = 0.15;

m = 4.

4. OPEN PROBLEMS AND CONCLUSIONS

Of course, the question of the practical realization of the activation functions which

are generated as emitting charts remains open.

The mathematical apparatus proposed in the article can be successfully used for

imitation and simulation of such charts.

We will explicitly say that the results have independent significance in the study

of issues related to impulse techniques [15].

Hausdorff approximation of some impulse functions and some modeling aspects in

the field of antenna–feeder technique can be found in [16]–[29].

We hope that the results will be useful for a lot of specialists in this scientific area.
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