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ABSTRACT: In literature, several transformations exists to obtain a new cumu-

lative distribution function (cdf) using other(s) well-known cdf(s).

In this paper we study the important ”saturation” characteristic for the generalized

2–component Weibull c.d.f. in the Hausdorff sense.

We will conduct a sensitive analysis of this family of cumulative functions.

The results have independent significance in the study of issues related to life

time analysis, insurance mathematics, biochemical kinetics, population dynamics and

debugging theory.

Numerical examples, illustrating our results are presented using programming en-

vironment Mathematica.
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1. INTRODUCTION

The Weibull distribution [1]–[3] and Bur XII–Weibull c.d.f are of interest from the

theoretical and applied aspects.
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They find applications in insurance mathematics, population dynamics and de-

bugging theory [4]–[5], [17].

For some approximation and modeling aspects, see [6].

In literature, several transformations exists to obtain a new cumulative distribu-

tion function (cdf) using other(s) well-known cdf(s) [7]– [13], [18]–[31].

Many researches have used the quadratic rank transmuted map (QRTM) to de-

velop new life time distribution.

Another popular transformations by using a (cdf) F (t) are [11] (with applications

in data analysis):

G1(t) =
1

e− 1

(

eF (t) − 1
)

(1)

and [13]:

G2(t) = e
1− 1

F (t) . (2)

Kumar et al. [14] proposed the cdf distribution by the use of any two cdf F1(t)

and F2(t) of baseline continuous distribution(s) with common spectrum, by the trans-

formation:

G3(t) =
F1(t) + F2(t)

1 + F1(t)
. (3)

The transformation (3) has great applications in lifetime analysis.

A new c.d.f. based on m existing ones is the following [15]:

G4(t) =

m
∑

k=1

Fk(t)

m− 1 +

m
∏

k=1

(Fk(t))
δk

. (4)

The GM–transformation yields the following cdf

G5(t) =
mF (t)

m− 1 + F q(t)
, q ∈ {0, 1, . . . ,m}. (5)

In this paper we study the important ”saturation” characteristic for the modified

Weibull cumulative distribution function (based on transformations (1), (2) and (5)

in the Hausdorff sense (see definition 1)).

The results have independent significance in the study of issues related to lifetime

analysis, population dynamics and debugging theory.

Definition 1. [16] The one–sided Hausdorff distance −→ρ (f, g) between two interval

functions f, g on Ω ⊆ R, is the one–sided Hausdorff distance between their completed

graphs F(f) and F(g) considered as closed subsets of Ω× R. More precisely,

−→ρ (f, g) = sup
B∈F(g)

inf
A∈F(f)

||A−B||,

where || · || is a norm in R
2.
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We recall that completed graph of f is the closure of the graph of f as a subset

of Ω × R. If the graph of an interval function f equals F(f), then the f is called S-

continuous. The Hausdorff distance ρ(f, g) = max{−→ρ (f, g),−→ρ (g, f)} defines a metric

in the set of the S-continuous interval functions.

2. THE TRANSFORMATION (2) WITH CORRECTION OF

WEIBULL CDF – TYPE

Let

F (t) = 1− e−(
t

λ)
k

is the Weibull c.d.f. with parameters (k, λ).

Based on the transformation G2(t) (2) we have:

G2(t) = e

1−
1

1− e−(
t

λ)
k

. (6)

Let

t0 = λ

(

ln
1 + ln 2

ln 2

)
1
k

; G2(t0) =
1

2
.

The one–sided Hausdorff distance d between the shifted Heaviside function and

the c.d.f. function - (6) satisfies the relation

G2(t0 + d) = 1− d. (7)

The following theorem gives upper and lower bounds for d

Theorem. Let

p = −
1

2
,

q = −1 +
k ln 2(1 + ln 2)

2λ

(

ln
1 + ln 2

ln 2

)

k−1
k

,

r = 2.1q.

For the one–sided Hausdorff distance d the following inequalities hold for:

r > e1.05
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Figure 1: The functions F (d) and G(d) for k = 1.1;λ = 0.5.

dl =
1

r
< d <

ln r

r
= dr. (8)

Proof. Let us examine the function:

F (d) = G2(t0 + d)− 1 + d. (9)

The function F is increasing.

Consider the function

G(d) = p+ qd. (10)

From Taylor expansion we obtain G(d)− F (d) = O(d2).

Hence G(d) approximates F (d) with d → 0 as O(d2) (see Fig. 1).

In addition G′(d) > 0.

Further, for r > e1.05 we have G(dl) < 0 and G(dr) > 0.

This completes the proof of the theorem.

The model (6) for λ = 0.5; k = 1.1 and λ = 0.5, k = 2.2, respectively is visualized

on Fig. 2.
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Figure 2: a) The model (6) for λ = 0.5; k = 1.1, t0 = 0.451164 The H–

distance d = 0.258289, dl = 0.209061, dr = 0.327207; b) The model (6)

for λ = 0.5; k = 2.2, t0 = 0.0474955 The H–distance d = 0.0383095, dl =

0.0188403, dr = 0.074829.

3. THE TRANSFORMATION (1) WITH CORRECTION OF

WEIBULL CDF – TYPE

Based on the transformation G1(t) (1) with correction of Weibull cdf – type we have:

G1(t) =
1

e− 1

(

e1−e
−( t

λ )
k

− 1

)

. (11)

The one–sided Hausdorff distance d between the Heaviside function and the c.d.f.

function - (11) satisfies the relation

G1(d) = 1− d. (12)

The model (11) for λ = 0.05; k = 0.9 and λ = 0.01, k = 0.9, respectively is

visualized on Fig. 3.

Some computational examples using nonlinear equation (12) are presented in Table

1.
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k λ d computed by (12)

0.9 0.1 0.209935

0.9 0.05 0.133845

0.9 0.01 0.0417732

0.7 0.05 0.158851

1.1 0.03 0.0803209

1.5 0.03 0.0647972

2.1 0.01 0.0201538

4 0.01 0.0147033

Table 1: Bounds for d computed by nonlinear equation (12) for various k and

λ.

4. THE TRANSFORMATION (5) WITH CORRECTION OF

WEIBULL CDF – TYPE

Based on the transformation G5(t) (5) for m = 2 with correction of Weibull cdf –

type we have:

G5(t) =
2
(

1− e−(
t

λ)
k
)

1 +
(

1− e−(
t

λ )
k
)2 . (13)

The one–sided Hausdorff distance d between the Heaviside function and the c.d.f.

function - (13) satisfies the relation

G5(d) = 1− d. (14)

The model (13) for λ = 0.05; k = 0.9; m = 2 and q = 2 is visualized on Fig. 4.

A comparison between models (13) and (11) is also shown in Fig. 4.

The applied comparisons show that ”saturation” using the model (13) is faster.

We hope that the results will be useful for specialists in this scientific area.
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Figure 3: a) The model (11) for λ = 0.05; k = 0.9, The H–distance d =

0.133845; b) The model (11) for λ = 0.01, k = 0.9, The H–distance d =

0.0417732.

Figure 4: The model (13)- (thick) for λ = 0.05; k = 0.9; m = 2 and q = 2;

The H–distance d = 0.0611484; b) The model (11) - (dashed) for λ = 0.05,

k = 0.9; The H–distance d = 0.133845.
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