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ABSTRACT: In this paper we study the Hausdorff approximation of the shifted

Heaviside step function ht0(t) by sigmoidal function based on the Lee–Chang–Pham–

Song cumulative function and find an expression for the error of the best approxima-

tion. We give real examples with small on–line data provided by IBM entry software

package using the model. The potentiality of the software reliability models is an-

alyzed. Lee–Chang–Pham–Song’s idea of including the characteristic t∗ (the time

when debugging starts after modifying the code causing syntax errors) in the study

of models in debugging theory can be successfully expanded. For instance, for the

Goel (1980) software reliability model.
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1. INTRODUCTION

Detailed description of all elements in the area of debugging theory may be found in

the following books [5]–[6] and [4].
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In the books [7]–[8], we pay particular attention to both deterministic approaches

and probability models for debugging theories. Some of the existing cumulative dis-

tributions (Gompertz–Makeham, Yamada-exponential, Yamada–Rayleigh, Yamada–

Wei–bull, transmuted inverse exponential, transmuted Log-Logistic, Ku–maraswamy–

Dagum and Kumaraswamy Quasi Lindley) are considered in the light of modern de-

bugging and test theories.

Some software reliability models, can be found in [9]–[39].

In this note we study the Hausdorff approximation of the shifted Heaviside step

function ht0(t) by sigmoidal function based on the Lee–Chang–Pham–Song cumulative

function [1] and find an expression for the error of the best approximation.

We propose a software modules (intellectual properties) within the programming

environment CAS Mathematica for the analysis.

The models have been tested with real-world data.

2. PRELIMINARIES

Definition 1. [1] The Lee–Chang–Pham–Song software reliability model considering

the syntax error in uncertainty environments is given as follows

m(t) = N

(

1−
β

β + a(t− t∗)b

)α

(1)

where t∗ is the time when debugging starts after modifying the code causing syntax

errors, a is a scale parameter, b is the shape parameter, α, β > 0

0
Syntax error

−→ t∗
Testing time

−→ t

Definition 2. [2] The Hausdorff distance (the H–distance) ρ(f, g) between two

interval functions f, g on Ω ⊆ R, is the distance between their completed graphs F (f)

and F (g) considered as closed subsets of Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||},

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB, xB) in R
2 is ||A−B|| =

max(|tA − tB |, |xA − xB|).

Definition 3. The shifted Heaviside function is defined by

ht0(t) =















0, if t < t0,

[0, 1], if t = t0

1, if t > t0

(2)
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3. MAIN RESULTS

3.1. A NOTE ON THE LEE–CHANG–PHAM–SONG SOFTWARE

RELIABILITY MODEL

Without loosing of generality, for N = 1 and t∗ = 0 we consider the following family:

M∗(t) =

(

1−
β

β + atb

)α

, (3)

with

t0 =





β

a

(

1
2

)
1

α

1−
(

1
2

)
1

α





1

b

; M∗(t0) =
1

2
. (4)

The one–sided Hausdorff distance d between the Heaviside step function ht0(t)

and the sigmoid ((3)–(4)) satisfies the relation

M∗(t0 + d) = 1− d. (5)

The following theorem gives upper and lower bounds for d.

Theorem. Let

p = −
1

2

q = 1 +
abα

β

(

β

a

)
b−1

b

(

1

2

)
α−1

α

(

1−

(

1

2

)
1

α

)2




(

1
2

)
1

α

1−
(

1
2

)
1

α





b−1

b

.

For the one–sided Hausdorff distance d between ht0 and the sigmoid ((3)–(4)) the

following inequalities hold for:

2.1q > e1.05

dl =
1

2.1q
< d <

ln(2.1q)

2.1q
= dr. (6)

Proof. Let us examine the functions:

F (d) = M∗(t0 + d)− 1 + d. (7)

G(d) = p+ qd. (8)

From Taylor expansion we obtain G(d)− F (d) = O(d2).

Hence G(d) approximates F (d) with d → 0 as O(d2) (see Figure 1).

In addition G′(d) > 0.

Further, for 2.1q > e1.05 we have G(dl) < 0 and G(dr) > 0.
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Figure 1: The functions F (d) and G(d).

Figure 2: The model ((3)–(4)) for β = 0.01, α = 2.95, a = 6.9, b = 1.8

t0 = 0.0553865; H–distance d = 0.105906, dl = 0.0431416, dr = 0.135606.

This completes the proof of the theorem.

The model ((3)–(4)) for β = 0.01, α = 2.95, a = 6.9, b = 1.8 t0 = 0.0553865 is

visualized on Figure 2.

From nonlinear equation (5) and inequalities (6) we find d = 0.105906, dl =

0.0431416 and dr = 0.135606.

The model ((3)–(4)) for β = 0.005, α = 35, a = 7, b = 1.5 t0 = 0.0196195 is

visualized on Figure 3.

From (5) and (6) we have d = 0.0726818, dl = 0.0193112 and dr = 0.0762226.
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Figure 3: The model ((3)–(4)) for β = 0.005, α = 35, a = 7, b = 1.5

t0 = 0.0196195; H–distance d = 0.0726818, dl = 0.0193112, dr = 0.0762226.

3.2. NUMERICAL EXAMPLE

We examine the following data. (The small on–line data entry software package test

data, available since 1980 in Japan [3], is shown in Table 1. For more details, see [4]).

For t∗ = 0.05 the fitted model (1)

m(t) = N

(

1−
β

β + a(t− 0.05)b

)α

based on the data of Table 1 for the estimated parameters:

N = 71; β = 247.4; α = 0.413126; a = 0.00413126; b = 3.42921

is plotted on Figure 4.

Remarks. Specifically, we will note that the reliability of the software model func-

tions is checked by an additional six criteria, the consideration of which go beyond

this article.

For example, for the predictive power (PP) criterion [4]

PP =

n
∑

i=1

(

m(ti)− yi

yi

)2

measures the distance of model actual data from the estimates against the actual

data, we find PP = 0.633296.

Based on the methodology proposed in the present note, for given t∗ > 0, the

reader may formulate the corresponding approximation problems for the model m(t)

(1) on his/her own.

In conclusion, we will note that the determination of compulsory in area of the

Software Reliability Theory components, such as confidence intervals and confidence
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Testing time (day) Failures Cumulative failures

1 2 2

2 1 3

3 1 4

4 1 5

5 2 7

6 2 9

7 2 11

8 1 12

9 7 19

10 2 21

11 1 22

12 2 24

13 2 26

14 4 30

15 1 31

16 6 37

17 1 38

18 3 41

19 1 42

20 3 45

21 1 46

Table 1: On–line IBM entry software package [3]

bounds, should also be accompanied by a serious analysis of the value of the best

Hausdorff approximation - the subject of study in the present paper.

We propose a software modules (intellectual properties) within programming en-

vironment CAS Mathematica for the analysis.

An example for the usage of dynamical and graphical representation is plotted on

Figure 5.

We hope that the results will be useful for specialists in this scientific area.

The results have independent significance in the study of issues related to lifetime

analysis, population dynamics and impulse technics [40]– [50].
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Figure 4: The model m(t)

4. APPENDIX

Lee–Chang–Pham–Song’s idea of including the characteristic t∗ in the study of models

in debugging theory can be successfully expanded.

For instance, the Goel (1980) software reliability model considering the syntax

error in uncertainty environments is given as follows

M1(t) = N
(

1− e−b(t−t∗)c
)

(9)

where t∗ is the time when debugging starts after modifying the code causing syntax

errors

0
Syntax error

−→ t∗
Testing time

−→ t

For t∗ = 0.5 the fitted model (9)

M1(t) = N
(

1− e−b(t−0.5)c
)

based on the data (see, Figure 6) for the estimated parameters:

N = 136; b = 0.234025; c = 0.789945

is plotted on Figure 7.

For the predictive power criterion we have PP = 0.19843.

Behavior of the software reliability factor R [7] is plotted on Figure 8.
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Figure 5: An example for the usage of dynamical and graphical representation

for the model m(t)
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Figure 6: Data Set: Real–Time Command and Control Data (see, for example

[4])
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Figure 7: a) The model M1(t); b) The ”saturation” in Hausdorff since

Figure 8: The software reliability factor R
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