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1. INTRODUCTION

Fractional calculus is a generalization of classical differentiation and integration to

arbitrary order. In recent years, fractional calculus has been a fruitful field of research

in science and engineering. Meanwhile, applications of fractional differential equations

(FDEs) to physics, biology and engineering are a recent focus of interests [9, 10].

Recently, the theory of FDEs has been studied and some basic results are obtained

including stability theory [3, 22, 23, 27]. The question of stability is of main interest

in physical and biological systems. The analysis on stability of FDEs is more complex

than that of classical differential equations, since fractional derivatives are nonlocal

and have weakly singular kernels.
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The earliest study on stability of FDEs started in [15] where the author studied

the case of linear FDEs with Caputo derivative and the same fractional order α, where

0 < α < 1. The stability problem reduces to the eigenvalue problem of system matrix.

Corresponding to the stability result in [15], Qian et al. [20] recently studied the case

of linear FDEs with Riemann-Liouville derivative and the same fractional order α,

for 0 < α < 1. Then, in [14, 17, 18] the same conclusions as [15] have been derived

for the case 1 < α < 2.

A sufficient condition on Lyapunov global asymptotical stability for the linear

systems with multi-order Caputo derivative was presented in [6] . Many researchers

have shown interests in the stability of linear systems and various methods which

emerged in succession. For example, frequency domain methods [2, 8, 21, 24, 25],

Linear Matrix Inequalities (LMI) methods were presented in [17, 18]. By contrast,

the development of stability of nonlinear FDEs is a bit slow. The structural stability

of the system with Riemann-Liouville derivative has been presented in [7]. In [4]

authors investigated the system of nonautonomous FDEs involving Caputo derivative

and derived the result on continuous dependence of solution on initial conditions.

The stability in the sense of Lyapunov has also been studied [16] by using Gronwall

lemma and Schwartz inequality. Some researchers weakened the criterion of stability,

such as [11] where the LP -stability properties of nonlinear FDEs were investigated.

In [12, 13], the Mittag-Leffler stability and the fractional Lyapunov of the second

method were proposed. Deng [5] derived a sufficient stability condition of nonlinear

FDEs.

The paper is organized as follows. In Section 2, we present some basic materials

on fractional calculus. Some stability results of the system D
RL

α

0,t
x(t) = Ax(t) +

b(t) are presented in Section 3. In Section 4, the stability of fractional differential

systems D
RL

α

0,t
x(t) = Ax(t) + f(t, x(t)) are analyzed. F-asymptotic stability of the

system D
RL

α

0,t
x(t) = Ax(t)+B(t)x(t) and a note on the stability theorem given in [20]

is presented in Section 5. In Section 6, we present a numerical example, in which we

compute different orbits of the given systems by means of numerical simulations, to

reveal validity of our analytical results. In Section 7, we conclude the paper.

2. PRELIMINARIES

Two types of fractional derivatives of Riemann-Liouville and Caputo derivatives,

have been often used in fractional differential systems. We briefly introduce these two

definitions.

Definition 2.1. The Riemann-Liouville integral Jα
t0,t

with fractional order α ∈ R+
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of function x(t) is defined as:

Jα
t0,t

x(t) := D−α
t0,t

x(t) :=
1

Γ(α)

∫ t

t0

(t− τ)α−1x(τ)dτ

where Γ(.) is the Eulers gamma function, for α = 0 we set J0
t0,t

:= Id, the identity

operator.

Definition 2.2. The Riemann-Liouville derivative with fractional order α ∈ R+ of

function x(t) is defined by:

D
RL

α

t0,t
x(t) :=

dm

dtm
J
(m−α)
t0,t

x(t)

where m− 1 < α ≤ m ∈ Z+.

The Laplace transform of the Riemann-Liouville fractional derivative D
RL

α

0,t
x(t) for

0 < α ≤ 1 is

L{ D
RL

α

0,t
x(t)} = sαX(s)− (Dα−1

0 x(t))t=0

Here X(s) is the Laplace transform of x(t).

Definition 2.3. The Caputo derivative with fractional order α ∈ R+ of function

x(t) is defined by:

D
C

α

t0,t
x(t) := J

(m−α)
t0,t

dm

dtm
x(t)

where m− 1 < α ≤ m ∈ Z+.

The Laplace transform of the Caputo fractional derivative D
C

α

a,t
x(t) is

L{ D
C

α

a,t
x(t)} = sαX(s)−

m
∑

k=1

sα−kx(k−1)(a), (m− 1 < α ≤ m).

If 0 < α ≤ 1 we have

L{ D
C

α

a,t
x(t)} = sαX(s)− sα−1x(a).

Definition 2.4. [19] The Mittag-Leffler function is defined by

Eα(z) =

∞
∑

k=0

zk

Γ(αk + 1)

where α > 0, z ∈ C. The two-parameter Mittag-Leffler function is defined by

Eα,β(z) =

∞
∑

k=0

zk

Γ(αk + β)

where α, β > 0, z ∈ C. It can be see easily that Eα(z) = Eα,1(z).
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For j ∈ N0, λ ∈ R and α, β > 0 the Laplace transform of the function

f(t) = tjα+β−1E
(j)
α,β(±λtα) can be easily found to be

L{f(t)} =
j!sα−β

(sα ∓ λ)j+1
,

If β = α and j = 0 we have:

L{tα−1Eα,α(±λtα)} =
1

sα ∓ λ
,

and if β = 1, j = 0 we have:

L{Eα(±λtα)} =
sα−1

sα ∓ λ
.

The Mittag-Leffler function has the following asymptotic expression.

Lemma 2.5. [19] If 0 < α < 2 and β is an arbitrary complex number, then for an

arbitrary integer p ≥ 1 the following expansions hold:

Eα,β(z) =
1

α
z

(1−β)
α exp(z

1
α )−

p
∑

k=1

1

Γ(β − αk)

1

zk
+O

( 1

|z|
p+1

)

with |z| → ∞, |arg(z)| ≤ απ
2 , and

Eα,β(z) = −

p
∑

k=1

1

Γ(β − αk)

1

zk
+O

( 1

|z|
p+1

)

with |z| → ∞, |arg(z)| > απ
2 .

We consider the following general type of fractional differential equations involving

Riemann-Liouville derivative

D
RL

α

t0,t
x(t) = f(t, x(t)) (2.1)

with suitable initial values D
RL

α−k

t0,t
x(t)|t=t0 = xk = (xk1, xk2, ..., xkn)

T ∈ Rn (k =

1, ...,m) where x(t) = (x1(t), x2(t), ..., xn(t))
T ∈ Rn, m − 1 < α ≤ m ∈ Z+ and

f : [t0,∞)× Rn → Rn.

Definition 2.6. The system (2.1) is said to be stable if, for any initial values

xk = (xk1, xk2, ..., xkn)
T ∈ Rn (k = 1, ...,m), there exists an ε > 0 such that any

solution x(t) of (2.1) satisfies ‖x(t)‖ < ε for all t > t0. The system (2.1) is said to be

asymptotically stable if ‖x(t)‖ → 0 as t → ∞.

Recently D.Qian, et all; [20] studied the case of the following linear system of FDEs

with Riemann-Liouville derivative by using the asymptotic expansions of Mittag-

Leffler function, 0 < α < 1,

D
RL

α

t0,t
x(t) = Ax(t) (2.2)
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where x(t) = (x1(t), x2(t), ..., xn(t))
T ∈ Rn, A ∈ Rn×n. We recall the following

theorem from [20].

Theorem 2.7. The system (2.2) with initial value D
RL

α−1

t0,t
x(t)|t=t0 , where 0 < α < 1

and t0 = 0, is

i) asymptotically stable if all the non-zero eigenvalues of A satisfy |arg(spec(A))| >
απ
2 , or A has k-multiple zero eigenvalues corresponding to a Jordan block

diag(J1, J2, ..., Ji), where Jl is a Jordan canonical form with order nl×nl,
∑i

l=1 nl =

k, and nlα < 1 for each 1 ≤ l ≤ i.

ii) stable if all the non-zero eigenvalues of A satisfy |arg(spec(A))| ≥ απ
2 and the

critical eigenvalues satisfying |arg(spec(A))| = απ
2 have the same algebraic and ge-

ometric multiplicities, or A has k-multiple zero eigenvalues corresponding to a Jor-

dan block matrix diag(J1, J2, ..., Ji), where Jl is a Jordan canonical form with order

nl × nl,
∑i

l=1 nl = k, and nlα ≤ 1 for each 1 ≤ l ≤ i.

We derive the following theorem from the Theorem 2.7.

Theorem 2.8. The following statement hold for the Mittag-Leffler function Eα,α(At
α):

a) If all the non-zero eigenvalues of A satisfy |arg(spec(A))| > απ
2 then

i) Eα,α(At
α) remains bounded for t → ∞ if zero eigenvalues of A have the same

algebraic and geometric multiplicities.

ii) tα−1Eα,α(At
α) remains bounded for t → ∞ if A has k-multiple zero eigenvalues

corresponding to a Jordan block diag(J1, J2, ..., Ji), where Jl is a Jordan canonical

form with order nl × nl,
∑i

l=1 nl = k, and nlα ≤ 1 for 1 ≤ l ≤ i.

b) If all the non-zero eigenvalues of A satisfy |arg(spec(A))| ≥ απ
2 and those critical

eigenvalues which satisfy |arg(spec(A))| = απ
2 , have the same algebraic and geometric

multiplicities, then tα−1Eα,α(At
α) remains bounded for t → ∞.

3. STABILITY OF D
RL

α

0,T
X(T ) = AX(T ) + B(T )

In this section, we consider the nonlinear fractional differential system with Riemann-

Liouville derivative

D
RL

α

0,t
x(t) = Ax(t) + b(t), (0 < α < 1) (3.1)

under the initial condition x0 = D
RL

α−1

0,t
x(t)|t=0, where x(t) = (x1(t), x2(t), ..., xn(t))

T

∈ Rn, A ∈ Rn×n, and b(t) : [0,∞) → Rn is a continuous vector function. We can get
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the solution of (3.1), by using the Laplace and inverse Laplace transforms, as

x(t) = tα−1Eα,α(At
α)x0 +

∫ t

0

(t− θ)α−1Eα,α(A(t− θ)α)b(θ)dθ. (3.2)

We present the following stability results.

Theorem 3.1. Suppose that all the non-zero eigenvalues of A satisfy

|arg(spec(A))| >
απ

2

and the zero eigenvalues of A have the same algebraic and geometric multiplicities.

Let b(t) : [0,∞) → Rn be a continuous vector function, and there exist β > α and

M,h > 0 such that

‖b(t)‖ ≤
M

tβ
(t ≥ h).

Then the system (3.1) is asymptotically stable.

Proof. By using the continuity of b(t) we can assume that α < β < 1, and by using the

assumptionsN = sup
θ≥0

‖b(θ)‖ is finite, also by using Theorem 2.8, E = sup
0≤t<∞

‖Eα,α(At
α)‖

is finite. So, from (3.2) it suffices to show that

lim
t→∞

∫ t

0

(t− θ)α−1Eα,α(A(t − θ)α)b(θ)dθ = 0. (3.3)

Now, we have

∫ t

0

(t− θ)α−1Eα,α(A(t − θ)α)b(θ)dθ =

∫ h

0

(t− θ)α−1Eα,α(A(t− θ)α)b(θ)dθ +

∫ t

h

(t− θ)α−1Eα,α(A(t− θ)α)b(θ)dθ.

We observe that

∥

∥

∥

∫ h

0

(t− θ)α−1Eα,α(A(t − θ)α)b(θ)dθ
∥

∥

∥
≤

∫ h

0

(t− θ)α−1ENdθ

=
ENh

α
[
tα − (t− h)α

h
] −→ 0

as t → ∞ and

∥

∥

∥

∫ t

h

(t− θ)α−1Eα,α(A(t − θ)α)b(θ)dθ
∥

∥

∥
≤ E

∫ t

h

(t− θ)α−1‖b(θ)‖dθ

≤ EM

∫ t

h

(t− θ)α−1θ−βdθ
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≤ EM

∫ t

0

(t− θ)α−1θ−βdθ

≤ EM

∫ 1

0

(t− ty)α−1(ty)−βtdy

= EMtα−βB(α, 1 − β) −→ 0

as t → ∞, where B(., .) stands for the Beta function. This completes the proof. �

We present the following definitions which are needed for the stability of the non-

linear system to be discussed in the next section.

Definition 3.2. The system (2.1) with initial condition x0 = D
RL

α−1

0,t
x(t)|t=0 is

said to be essentially bounded (ess-bdd) if, for any ε > 0 there exist the constants

T,M > 0 such that ‖x0‖ < ε implies ‖x(t)‖ < M , for all t > T .

Definition 3.3. The solution x(t) : (0,+∞) → R
n of the system (2.1) is said to be

ess-bdd if, there exists T > 0 such that the restriction of x(t) on [T,+∞) is bounded.

Definition 3.4. The system (2.1) with initial condition x0 = D
RL

α−1

0,t
x(t)|t=0 is said

to be uniformly essentially bounded (u-ess-bdd) if, there exist some T > 0 for which

∀ε > 0, ∃M > 0 such that ‖x0‖ < ε ⇒ ‖x(t)‖ < M , (t > T ).

4. STABILITY OF D
RL

α

0,T
X(T ) = AX(T ) + F (T,X(T ))

In this section, we study the following fractional differential system with Riemann-

Liouville derivative

D
RL

α

0,t
x(t) = Ax(t) + f(t, x(t)), (0 < α < 1) (4.1)

under the initial condition x0 = D
RL

α−1

0,t
x(t)|t=0, where x(t) = (x1(t), x2(t), ..., xn(t))

T

∈ Rn and A ∈ Rn×n. The system (4.1) can be solved analytically as

x(t) = tα−1Eα,α(At
α)x0 +

∫ t

0

(t− θ)α−1Eα,α(A(t− θ)α)f(θ, x(θ))dθ. (4.2)

We establish the following stability results.

Theorem 4.1. Suppose f be a continuous vector function, and there exist constants

M,h > 0 and β > α such that for all t ≥ h,

‖f(t, x(t))‖ ≤
M

tβ
.
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Then the system (4.1) is asymptotically stable if all the non-zero eigenvalues of A

satisfy

|arg(spec(A))| >
απ

2
,

and the zero eigenvalues of A have the same algebraic and geometric multiplicities.

Proof. Following the proof of Theorem 3.1, we suppose that α < β < 1 and there

exists E > 0 such that ‖Eα,α(At
α)‖ ≤ E. Thus

‖x(t)‖ ≤ ‖tα−1Eα,α(At
α)x0‖+

∫ t

0

(t− θ)α−1‖Eα,α(A(t − θ)α)‖ ‖f(θ, x(θ))‖dθ

we set

I =

∫ t

0

(t− θ)α−1‖Eα,α(A(t− θ)α)‖ ‖f(θ, x(θ))‖dθ

so

I ≤ E
[

∫ h

0

(t− θ)α−1‖f(θ, x(θ))‖dθ +

∫ t

h

(t− θ)α−1‖f(θ, x(θ))‖dθ
]

. (4.3)

By using the assumptions F = sup
0≤t≤h

‖f(t, x(t)‖ is finite. then

∫ h

0

(t− θ)α−1‖f(θ, x(θ))‖dθ ≤ F

∫ h

0

(t− θ)α−1dθ −→ 0

as t → ∞, and

∫ t

h

(t− θ)α−1‖f(θ, x(θ))‖dθ ≤

∫ t

h

(t− θ)α−1M

θβ
dθ ≤M

∫ t

0

(t− θ)α−1θ−βdθ

=M

∫ 1

0

(t− ty)α−1(ty)−βtdy

=Mtα−βB(α, 1− β) −→ 0,

as t → ∞. So the system (4.1) is asymptotically stable. �

Theorem 4.2. Under the assumption of Theorem 4.1 the system (4.1) is u-ess-bdd

if β ≥ α and for all non-zero eigenvalues of A, we have

|arg(spec(A))| >
απ

2
,

and the zero eigenvalues of A have the same algebraic and geometric multiplicities.

Proof. Since

∫ h

0

(t− θ)α−1‖f(θ, x(θ))‖dθ −→ 0
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as t → ∞ , there exists a t1 > 0, such that for all t > t1

∣

∣

∣

∫ h

0

(t− θ)α−1‖f(θ, x(θ))‖dθ
∣

∣

∣
< 1,

and, by
∫ t

h

(t− θ)α−1‖f(θ, x(θ))‖dθ ≤ Mtα−βB(α, 1 − β),

we deduce that

∀ t ≥ 1,
∣

∣

∣

∫ t

h

(t− θ)α−1‖f(θ, x(θ))‖dθ
∣

∣

∣
≤ MB(α, 1− β).

Now by the assumption, there exists a t2 > 0 such that ‖tα−1Eα,α(At
α)‖ < 1 for all

t > t2. We set, T = max{1, t1, t2}, and for ε > 0 set M ′(ε) := ε+E+EMB(α, 1−β).

If ‖x0‖ < ε then using the inequality (4.3) yields to

‖x(t)‖ ≤ ε+ E
(

1 +MB(α, 1− β)
)

= M ′(ε).

This completes the proof. �

Remark 1. Under the assumption of Theorem 4.2 any solution of the system (4.1)

is ess-bdd if β ≥ α.

Remark 2. Suppose that f(t, x(t)) = b(t) in which b(t) : (0,+∞) → Rn is a contin-

uous function. Suppose for all non-zero eigenvalues of A, |arg(spec(A))| > απ
2 holds,

and the zero eigenvalues of A have the same algebraic and geometric multiplicities,

and there exists a constant M > 0 such that ‖b(t)‖ < M
tβ
. Then the system (4.1) is

asymptotically stable for β > α and u-ess-bdd for β ≥ α.

5. F-STABILITY OF D
RL

α

0,T
X(T ) = AX(T ) + B(T )X(T )

In this section, we study the following fractional differential system with Riemann-

Liouville derivative

D
RL

α

0,t
x(t) = Ax(t) +B(t)x(t), (0 < α < 1) (5.1)

under the initial condition x0 = D
RL

α−1

0,t
x(t)|t=0, where

x(t) = (x1(t), x2(t), ..., xn(t))
T ∈ Rn and A ∈ Rn×n. We can get the solution of (5.1),

by using the Laplace transform and inverse Laplace transform, as

x(t) = tα−1Eα,α(At
α)x0 +

∫ t

0

(t− θ)α−1Eα,α(A(t − θ)α)B(θ)x(θ)dθ. (5.2)

Now we give the following definition:
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Definition 5.1. Let F be a family of vector functions defined on [t0,∞). The frac-

tional differential system (2.1) is said to be F-asymptotically stable if every solution

which belongs to F, is asymptotically stable.

We derive the following stability results.

Theorem 5.2. Suppose all the non-zero eigenvalues of A satisfy

|arg(spec(A))| >
απ

2
,

and the zero eigenvalues of A have the same algebraic and geometric multiplicities. If

B(t) be an n × n matrix continuously depending on time t and there exist M,h > 0

and β > α such that

‖B(t)‖ ≤
M

tβ
, (t ≥ h)

then the system (5.1) is F-asymptotically stable, where

F :=
{

x(t) : [0,∞) → R
n, ∃M ′ > 0, ‖x(t)‖ ≤ M ′

}

.

Proof. We have

∥

∥

∥

∫ t

0

(t− θ)α−1Eα,α(A(t − θ)α)B(θ)x(θ)dθ
∥

∥

∥
≤ (5.3)

≤ M ′

∫ t

0

(t− θ)α−1‖Eα,α(A(t − θ)α)‖‖B(θ)‖dθ

By (3.3), we can conclude immediately that (5.3) tends to zero as t → ∞. So, the

system (5.1) is F-asymptotically stable. �

Theorem 5.3. Suppose the conditions of Theorem 5.2 hold and F := Lp(R+), then

the system (5.1) is F-asymptotically stable for p > 1
α
.

Proof. Without loss of generality, we suppose that β < 1. So there exists a constant

E > 0 such that ‖Eα,α(At
α)‖ ≤ E. Thus

‖x(t)‖ ≤ ‖tα−1Eα,α(At
α)x0‖+

∫ t

0

(t− θ)α−1‖Eα,α(A(t− θ)α)‖‖B(θ)‖‖x(θ)‖dθ.

Hence

‖x(t)‖ ≤ ‖tα−1Eα,α(At
α)x0‖+ EM

∫ t

0

(t− θ)α−1θ−β‖x(θ)‖dθ.

Applying the Holder inequality yields to

‖x(t)‖ ≤ ‖tα−1Eα,α(At
α)x0‖+ EM

[

(

∫ t

0

((t− θ)α−1θ−β)qdθ
)

1
q
(

∫ t

0

‖x(θ)‖pdθ
)

1
p

]
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≤ ‖tα−1Eα,α(At
α)x0‖+ EM‖x(θ)‖p

[

(

∫ t

0

(t− θ)(α−1)qθ−βqdθ
)

1
q

]

.

Where 1
p
+ 1

q
= 1. The right hand side of the above inequality tends to zero as t → ∞.

Thus (5.1) is F-asymptotically stable. �

Corollary 1. Suppose that all the non-zero eigenvalues of A satisfy

|arg(spec(A))| >
απ

2
,

and the zero eigenvalues of A have the same algebraic and geometric multiplicities.

The fractional differential system

D
RL

α

0,t
x(t) = Ax(t) + f(t, x(t)), (0 < α < 1)

is F-asymptotically stable for either:

• F = Lp(R+), for p > 1
α

• F = {x(t) : [0,∞) → Rn, ∃M ′ > 0, ‖x(t)‖ ≤ M ′},

if there exist M,h > 0 and β > α, for which

‖f(t, x(t))‖ ≤
M‖x(t)‖

tβ
, (t ≥ h).

5.1. NOTE

We show that Theorem (4.1) in [20] is incomplete and even wrong, we consider the

system

D
RL

α

t0,t
x(t) = Ax(t) +B(t)x(t) (5.4)

in which A is an arbitrary n × n matrix and B(t) : [0,∞) → Rn×n is a continuous

bounded function. We can rewrite the equation (5.4) as

D
RL

α

t0,t
x(t) = Ax(t) +B(t)x(t) = −Id x(t) + (Id+A+B(t))x(t) (5.5)

where Id is the identity matrix. This system now satisfies in the hypothesis of Theo-

rem (4.1) in [20] since |arg(spec(−Id))| > απ
2 and Id+A+B(t) is always a continuous

bounded function. So the system (5.5) is always asymptotically stable according to

the Theorem (4.1) in [20] and equivalently (5.4) is asymptotically stable independent

of the matrix A, which is clearly a wrong conclusion.
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6. NUMERICAL APPROACH AND EXAMPLE

Example 6.1. Consider the periodically forced linear oscillators model [26] presented

by

ẍ+ δẋ+ ω0
2x = γ cosωt

which in turns can be written as
{

ẋ = y

ẏ = −ω0
2x− δy + γ cosωt

(6.1)

where ω0, δ, ω, δ are constants. We rewrite (6.1) as

(

ẋ

ẏ

)

=

(

0 1

−ω0
2 −δ

)(

x

y

)

+

(

0

γ cosωt

)

. (6.2)

We now introduce the fractional order derivatives into the above system, and then

modify the above system to obtain the following modified fractional order oscillator

model:
(

xα

yα

)

=

(

0 1

−ω0
2 −δ

)(

x

y

)

+

(

0
γ cosωt

s+tβ

)

. (6.3)

If we set

A =

(

0 1

−ω0
2 −δ

)

, b(t) =

(

0
γ cosωt

s+tβ

)

,

then ‖b(t)‖ ≤ |γ|
s+tβ

. For choosing appropriate parameter values, we get |arg(spec(A))| >
απ
2 , so according to the Theorem 4.1, for s > 0 and β > α the system (6.3) becomes

asymptotically stable.

To verify the stability results of this example numerically, we perform numeri-

cal simulation by means of the method by Atanackovic and Stankovic [1]. In [1] it

was shown that for a function f(t), the Riemann-Liouville derivative of order α with

0 < α < 1 may be expressed as

D
RL

α

0,t
f(t) =

1

Γ(2− α)
×

[

f ′(t)

tα−1

(

1 +
∞
∑

p=1

Γ(p− 1 + α)

Γ(α− 1)p!

)

−

(

α− 1

tα
f(t) +

∞
∑

p=2

Γ(p− 1 + α)

Γ(α− 1)(p− 1)!

(f(t)

tα
+

vp(f)(t)

tp−1+α

)

)

]

,

(6.4)

where

vp(f)(t) = −(p− 1)

∫ t

0

τp−2f(τ)dτ, p = 2, 3, · · ·
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For the sake of simplicity, we proceed the computations as follows.

First we approximate D
RL

α

0,t
f(t) by using the first M terms in the sum appearing in

Eq. (6.4) by

D
RL

α

0,t
f(t) ≃

1

Γ(2− α)
×

[

f ′(t)

tα−1

(

1 +
M
∑

p=1

Γ(p− 1 + α)

Γ(α− 1)p!

)

−

(α− 1

tα
f(t) +

M
∑

p=2

Γ(p− 1 + α)

Γ(α− 1)(p− 1)!

(f(t)

tα
+

vp(f)(t)

tp−1+α

)

)

]

.

(6.5)

We can rewrite Eq. (6.5) as follows

D
RL

α

0,t
f(t) ≃ Ω(α, t,M)f ′(t) + Φ(α, t,M)f(t) +

M
∑

p=2

A(α, t, p)
vp(f)(t)

tp−1+α
,

where

Ω(α, t,M) =

1 +
M
∑

p=1

Γ(p−1+α)
Γ(α−1)p!

Γ(2− α)tα−1
, R(α, t) =

1− α

tαΓ(2− α)
,

and

Φ(α, t,M) = R(α, t) +
M
∑

p=2

A(α, t, p)

tα
, A(α, t, p) = −

Γ(p− 1 + α)

Γ(2− α)Γ(α− 1)(p− 1)!
.

We set

vp(x)(t) = wp(t), vp(y)(t) = up(t), p = 2, 3, · · · ,M.

For the system (6.3) , we have

Ω(α, t,M)x′(t) + Φ(α, t,M)x(t) +

M
∑

p=2

A(α, t, p)
wp(t)

tp−1+α
= D

RL

α

0,t
x(t) = y(t),

where

wp(t) = −(p− 1)

∫ t

0

τp−2x(τ)dτ, p = 2, 3, · · · ,M.

Also, we have

Ω(α, t,M)y′(t)+Φ(α, t,M)y(t)+
M
∑

p=2

A(α, t, p)
up(t)

tp−1+α
= D

RL

α

0,t
y(t) = −ω0

2
x(t)−δy(t)+

γcosωt

s+ tβ
,

where

up(t) = −(p− 1)

∫ t

0

τp−2y(τ)dτ, p = 2, 3, · · · ,M.

Now we can rewrite the above equations as the following forms

x
′(t) =

1

Ω(α, t,M)

[

y(t)− Φ(α, t,M)x(t)−
M
∑

p=2

A(α, t, p)
wp(t)

tp−1+α

]

, (6.6)
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Figure 1: Phase portrait of (6.3), for

δ = 1.
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Figure 2: Phase portrait of (6.3), for

δ = .1.
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Figure 3:

Numerical value of (6.3), for δ = 1.
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Figure 4: Numerical value of (6.3), for

δ = .1.

where

w′
p(t) = −(p− 1)tp−2x(t), p = 2, 3, · · · ,M,

and

y
′(t) =

1

Ω(α, t,M)

[

− ω0
2
x(t)− δy(t) +

γcosωt

s+ tβ
− Φ(α, t,M)y(t)−

M
∑

p=2

A(α, t, p)
up(t)

tp−1+α

]

,

(6.7)

in which

u′
p(t) = −(p− 1)tp−2y(t), p = 2, 3, · · · ,M,

along with the following initial conditions

x(ξ) = x0, wp(ξ) = 0, p = 2, 3, · · · ,M,
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Figure 5:

Numerical value of (6.3), for δ = 1.

10 20 30 40 50 60 70 80 90 100
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

t

x

Figure 6: Numerical value of (6.3), for

δ = .1.

y(ξ) = y0, up(ξ) = 0, p = 2, 3, · · · ,M, (6.8)

where ξ is a positive constant. Now we consider the numerical solution of system of

ordinary differential Eqs. (6.6), (6.7), with the initial conditions (6.8) by using the

well known Runge-Kutta method of the fourth order and depict orbits of the system

(6.3) for different set of parameters.

Phase portrait and numerical value of system (6.3) for the fixed parameter values

α = .98, ω0 = 4, γ = 2, s = .5, β = 7, ω = .1, x0 = .1, y0 = .1, are depicted in Figs. 1,

2, 3, 4, 5, 6.

7. CONCLUSION

In the present paper, we provide analytical methods to examine the asymptotic sta-

bility for a class of nonlinear differential systems with Riemann-Liouville fractional

derivative for the commensurate order 0 < α < 1. We also establish F-asymptotic

stability theorems of the nonlinear differential system. To reveal validity of the ob-

tained analytical results we examine a test example in which we compute different

orbits of the given system by means of numerical simulations.
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