
Neural, Parallel, and Scientific Computations, 26, No. 3 (2018), 345-353 ISSN: 1061-5369

SPEEDING UP THE GENERATION OF NEAR-RINGS ON FINITE

CYCLIC GROUPS USING PARALLEL PROCESSING IN C#

MARIA MALINOVA1, ANGEL GOLEV2, AND ASEN RAHNEV3

1,2,3Faculty of Mathematics and Informatics

Paisii Hilendarski University of Plovdiv

Plovdiv, BULGARIA

ABSTRACT: The main purpose of this article is to reduce the generation time

of near-rings on finite cyclic groups using the parallel processing provided by C#.

We divide the near-rings into independent subsets and generate them simultaneously.

The calculations are further accelerated after refactoring and defining appropriate

compiler optimizations.

AMS Subject Classification: 16Y30

Key Words: near-rings, generating near-rings, parallel programming

Received: August 21, 2018 ; Accepted: November 13, 2018 ;
Published: November 27, 2018. doi: 10.12732/npsc.v26i3.9

Dynamic Publishers, Inc., Acad. Publishers, Ltd. https://acadsol.eu/npsc

1. INTRODUCTION

An algebraic system (G,+, ∗) is a (left) near-ring on (G,+), if (G,+) is a group,

(G, ∗) is a semigroup and a ∗ (b+ c) = a ∗ b+ a ∗ c for a, b, c ∈ G. The left distributive

law yields x ∗ 0 = 0 for x ∈ G. A near-ring (G,+, ∗) is called zero-symmetric, if

0 ∗ x = 0 holds for x ∈ G.

J. R. Clay initiated the study of near-rings, whose additive groups are finite cyclic

in 1964 [1]. Some sufficient conditions for the construction of near-rings on any finite

cyclic groups were obtained. In [2] Jacobson determined the entire structure and

number of the left near-rings on a group of prime order. In 1968 all near-rings on

cyclic groups of order up to 7 were computed [3]. Later all near-rings on cyclic groups

of order 8 [4, 5], of order up to 12 [6], of order up to 13 [7], of order up to 15 [9] as

well as of order up to 24 [10, 11] and up to 29 [14], 32 [15], 35 [16] were computed.

346 M. MALINOVA, A. GOLEV, AND A. RAHNEV

We will assume G coincides with the set Zn = {0, 1, . . . , n−1}, 2≤n<∞ since

every cyclic group of order n is isomorphic to the group of the remainders of modulo

n. We will denote the functions mapping Zn into itself by π, and the addition and

the multiplication modulo n we will denote by + and · respectively. The equality

c = a · b will be equivalent to the congruence ab ≡ c (mod n).

It is known that there exists a bijective correspondence between the left distribu-

tive binary operations ∗ defined on Zn and the nn functions π mapping Zn into itself.

If r∗1 = b defines the function π(r) = b, then according to [1, Theorem II], the binary

operation ∗ is left distributive exactly when, for any x, y ∈ Zn, the equality

(1) π(x) · π(y) = π(x · π(y))

holds.

According to the above result, obtaining the near-rings on Zn is equivalent to

obtaining the functions π such that equation (1) holds. We represent a near-ring with

a list of the values of function π(r), r = 0, ... , n− 1.

2. DIVIDING THE NEAR-RINGS INTO SEVERAL

INDEPENDENT GROUPS

The goal of this article is to reduce the generation time of near-rings on finite cyclic

groups by using parallel processing in C# and especially Parallel.For.

The program module is developed as a part of the system for generating and

researching near-rings [12, 16, 17].

We want to speed up the process of generating near-rings [13] with minimal changes

to the core functionality of our software.

We divide the set of near-rings into subsets, which can be generated independently

of one another. We use Parallel.For to start multiple instances of our generation

algorithm and calculate the subsets simultaneously.

We divide the near-rings into at least 6 different subsets, for which the π function

has the following preset values:

subset 1: π(0) = 0, π(1) = 0, π(2) = 0

subset 2: π(0) = 0, π(1) = 0, π(2) ≥ 1

subset 3: π(0) = 0, π(1) = 1, π(2) = 0

subset 4: π(0) = 0, π(1) = 1, π(2) ≥ 1

subset 5: π(0) = 0, π(1) ≥ 2

subset 6: π(0) ≥ 1

For near-rings over a Zn with only the trivial idempotents 0 and 1, subset 6

contains only one near-ring.

FINITE CYCLIC GROUPS 347

Zero- Non-zero- Total

symmetric symmetric number

Z3 6 1 7

Z4 16 1 17

Z5 28 1 29

Z6 65 33 98

Z7 111 1 112

Z8 349 1 350

Z9 1 169 1 1 170

Z10 807 393 1 200

Z11 1 311 1 1 312

Z12 4 467 1 055 5 522

Z13 5 263 1 5 264

Z14 10 505 5 256 15 761

Z15 21 783 6 215 27 998

Z16 16 834 653 1 16 834 654

Z17 72 816 1 72 817

Z18 15 032 215 610 684 15 642 899

Z19 286 380 1 286 381

Z20 876 919 109 847 986 766

Z21 1 164 023 304 834 1 468 857

Z22 2 225 545 1 111 088 3 336 633

Z23 4 371 615 1 4 371 616

Z24 15 821 973 2 619 758 18 441 731

Z25 95 367 449 527 555 1 95 367 449 527 556

Z26 34 749 177 17 400 576 52 149 753

Z27 286 174 087 734 1 286 174 087 735

Z28 207 919 830 19 570 310 227 490 140

Z29 273 300 895 1 273 300 896

Z30 552 602 256 461 986 240 1 014 588 496

Z31 1 089 204 381 1 1 089 204 382

Z32 72 651 402 778 958 352 1 72 651 402 778 958 353

Z33 4 364 742 735 1 092 510 166 5 457 252 901

Z34 8 677 365 263 4 338 542 561 13 015 907 824

Z35 17 373 338 997 1 362 452 660 18 735 791 657

Table 1: Number of near-rings on Zn, 3 ≤ n ≤ 35

For a Zn with non-trivial idempotents, there exist non-zero-symmetric near-rings,

for which the value of π(0) is equal to the non-trivial idempotent. In that case we

divide subset 6 into additional subsets - one for each non-trivial idempotent in Zn [8].

348 M. MALINOVA, A. GOLEV, AND A. RAHNEV

Shown below is the number of near-rings in the independent subsets that get

constructed over Zn, 16 ≤ n ≤ 24. The execution time provided for some n does not

include saving the generated near-rings into a file or database.

Near-rings on Z16

π(0, 0, 0, ...): 1060763

π(0, 0, 1̂, ...): 3158642

π(0, 1, 0, ...): 9710

π(0, 1, 1̂, ...): 10263

π(0, 2̂, ...): 12595275

π(1̂, ...): 1

All n-rs: 16834654

Near-rings on Z17

π(0, 0, 0, ...): 17144

π(0, 0, 1̂, ...): 17942

π(0, 1, 0, ...): 17138

π(0, 1, 1̂, ...): 17952

π(0, 2̂, ...): 2640

π(1̂, ...): 1

All n-rs: 72817

Near-rings on Z18

π(0, 0, 0, ...): 1628601

π(0, 0, 1̂, ...): 3225457

π(0, 1, 0, ...): 35213

π(0, 1, 1̂, ...): 37264

π(0, 2̂, ...): 10105680

π(1̂, ...): 610684

All n-rs: 15642899

Near-rings on Z19

π(0, 0, 0, ...): 67983

π(0, 0, 1̂, ...): 70729

π(0, 1, 0, ...): 67987

π(0, 1, 1̂, ...): 70730

π(0, 2̂, ...): 8951

π(1̂, ...): 1

All n-rs: 286381

Near-rings on Z20

π(0, 0, 0, ...): 202136

π(0, 0, 1̂, ...): 209430

π(0, 1, 0, ...): 137077

π(0, 1, 1̂, ...): 145465

π(0, 2̂, ...): 182811

π(1̂, ...): 109847

All n-rs: 986766

Calc.time: 1 sec.

Near-rings on Z21

π(0, 0, 0, ...): 272334

π(0, 0, 1̂, ...): 284679

π(0, 1, 0, ...): 273049

π(0, 1, 1̂, ...): 289987

π(0, 2̂, ...): 43974

π(1̂, ...): 304834

All n-rs: 1468857

Calc.time: 2 sec.

Near-rings on Z22

π(0, 0, 0, ...): 537665

π(0, 0, 1̂, ...): 551683

π(0, 1, 0, ...): 538583

π(0, 1, 1̂, ...): 552062

π(0, 2̂, ...): 45552

π(1̂, ...): 1111088

All n-rs: 3336633

Calc.time: 4 sec.

Near-rings on Z23

π(0, 0, 0, ...): 1068269

π(0, 0, 1̂, ...): 1087942

π(0, 1, 0, ...): 1068259

π(0, 1, 1̂, ...): 1087955

π(0, 2̂, ...): 59190

π(1̂, ...): 1

All n-rs: 4371616

Calc.time: 5 sec.

Near-rings on Z24

π(0, 0, 0, ...): 3209493

π(0, 0, 1̂, ...): 3409926

π(0, 1, 0, ...): 2181369

π(0, 1, 1̂, ...): 2266558

π(0, 2̂, ...): 4754627

π(1̂, ...): 2619758

All n-rs: 18441731

Calc.time: 16 sec.

The number of near-rings in the subsets is proportional. There are exceptions for

Zn with non-trivial idempotents or nilpotents of order 2.

For a Zn with non-zero nilpotents and n > 16, there is a big group of previously de-

scribed near-rings, which are skipped during generation – for n=25, n=8, n=32 these

near-rings are so many, that they cannot be generated in real-time. The structure of

these near-rings is described in [11, Theorem 9] and in [15] for n=32.

Due to the non-zero nilpotents of order 2 over Z16, Z18, Z20, Z24, the number of

near-rings in their subsets is also not proportional.

If the contents of these big subsets are ignored, the number of near-rings is at least

doubled with each subsequent n. This also holds true for the execution time.

FINITE CYCLIC GROUPS 349

3. IMPLEMENTATION OF THE PARALLEL PROCESSING IN C#

Our goal is to be able to compute different subsets simultaneously. To avoid mul-

tithreading problems, every near-rings subset has its own copy of the main data

structures we use.

During its generation, every subset needs 4 one-dimensional arrays to hold the

values of π and some additional data. This means that in our software we have

4 jagged arrays (C# arrays of arrays) - pi, pi 2, pi n, pi ptr, with each near-rings

subset using one row from each jagged array. The initialization is shown below.

for (int k = 0 ; k < subsetsnum ; k++)

{

pi [k] = new int [n] ;

p i 2 [k] = new int [n] ;

p i n [k] = new int [n] ;

p i p t r [k] = new List<int>[n] ;

for (int i = 0 ; i < n ; i++) p i p t r [k] [i] = new List<int>(n+2) ;

}

Why we use simple arrays as the best solution for storing this data is discussed in

the next section of the article.

We change the main function for generating near-rings so that it accepts as input

parameters the starting and ending values of the π function. These values uniquely

define the subsets described in the previous section.

private stat ic void MakeNearRings (int [] pi , int [] p i 2 , int [] p i n ,

Li st<int > [] p i p t r)

After setting the initial values of the π function and some other parameters, we

start the parallel calls to the main generator function.

Pa r a l l e l . For (0 , subsetsnum , k =>

{MakeNearRings (p i [k] , p i 2 [k] , p i n [k] , p i p t r [k]) }) ;

If enough processing cores are available, the calculation of all subsets can happen

simultaneously and then the execution time for the program depends only on the time

needed to calculate the largest subset of near-rings.

Shown below is the initialization of some structures and variables used in the

program and the calls to the function for generating near-rings. Of particular interest

is the specific way in which we utilize Parallel.For.

mod n = new int [n ∗ n] ;

n i l p = new int [n] ;

idemp = new int [n] ;

n r r e s u l t = new St r i ngBu i l d e r [pn] ;

P a r a l l e l . For (0 , n ∗ n , index => { mod n [index] = index % n ; }) ;

350 M. MALINOVA, A. GOLEV, AND A. RAHNEV

Cal cNi lpotents (n , n i l p , out n i l p n) ;

CalcIdempotents (n , idemp , out idemp n) ;

subsetnum = 4 + idemp n ;

I n i tP i (0 , new int [] { 0 , 0 , 0 } , new int [] { 0 , 0 , 1 }) ;

I n i tP i (1 , new int [] { 0 , 0 , 1 } , new int [] { 0 , 1 , 0 }) ;

I n i tP i (2 , new int [] { 0 , 1 , 0 } , new int [] { 0 , 1 , 1 }) ;

I n i tP i (3 , new int [] { 0 , 1 , 1 } , new int [] { 0 , 2 }) ;

I n i tP i (4 , new int [] { 0 , 2 } , new int [] { 1 }) ;

I n i tP i (5 , new int [] { 1 } , new int [] { 2 }) ;

i f (subsetnum > 6)

{

for (int i d = 2 ; id < idemp n ; id++)

{

I n i tP i (4 + id , new int [] { idemp [id] } ,

new int [] { i d < idemp n−1 ? idemp [id+1] : n}) ;

}

}

Pa r a l l e l . For (0 , subsetnum , k =>

{

MakeNearRings (p i [k] , p i 2 [k] , p i n [k] , p i p t r [k]) ;

}) ;

4. CONCLUSIONS REACHED DURING THE OPTIMIZATION

PROCESS

The algorithm described in this paper utilizes arrays for storing intermediate data –

this is the best approach for our use case, because there is nothing more than direct

memory access involved in the reading and writing of intermediate results. If there are

multiple threads accessing the same jagged array at the same time, they are always

doing their work onto different rows – there is no fighting for resources or locking

involved.

The C# language has two types of multi-dimensional arrays – rectangular and

jagged (an array of arrays). We use the second, because we are able to pass a reference

to a single row to the near-rings generator code – rectangular arrays don’t have this

functionality.

We tested separating the jagged arrays into single rows, organized within an object

instance of a helper class. This made the code more readable, but decreased the speed

of generation due to the overhead of using objects for millions of read/write operations.

Finally, we experimented with moving the data structures onto the stack. Overall,

FINITE CYCLIC GROUPS 351

this did not affect our execution time, mostly because our data structures are small

and get cached anyway. We utilized the new Span〈T 〉 functionality of C# from mid

2018 (Span〈T 〉 on the stack), but as mentioned this did not produce any noticeable

speed gains.

5. ADDITIONAL TECHNIQUES FOR SPEEDING UP THE

GENERATION OF NEAR-RINGS

We made additional optimizations to our project, which sped up the generation 4

times.

5.1. PLATFORM AND COMPILER OPTIMIZATIONS

The Microsoft platform .NET Core, which shares most of its API with the .NET

Framework, is used for creating applications where the goal is speed and scalability.

Moving the code base onto .NET Core halved the execution time for any given n.

Most functions were also annotated with AggresiveInlining flags which, in combi-

nation with compiler flags for code optimization, additionally reduced the execution

time.

5.2. CODE ANALYSIS USING VISUAL STUDIO TOOLS

The Visual Studio tools for analyzing running code gave us insight into bottlenecks in

the code base. With some refactoring of heavy code blocks, we were able to achieve a

50% increase in speed over the above mentioned results from switching to .NET Core.

6. CONCLUSION

We have created a module for generating near-rings on finite cyclic groups, using

the parallel processing provided by C#. The near-rings on Zn are divided into at

least 6 independent subsets and then multiple instances of the generation algorithm

are started. If enough processor cores are available the generation may be speed up

around 5 times. Further optimizations were applied during refactoring, code analysis

and porting the code to a newer framework. The module is part of a system for

generating and researching near-rings.

352 M. MALINOVA, A. GOLEV, AND A. RAHNEV

ACKNOWLEDGEMENTS

This work was partially supported by the project FP17-FMI-008 of the Scientific Fund

of the University of Plovdiv Paisii Hilendarski, Bulgaria.

REFERENCES

[1] Clay J.R., The near-rings on a finite cycle group, Amer. Math. Monthly, 71

(1964), 47–50.

[2] Jacobson R.A., The structure of near-rings on a group of prime order, Amer.

Math. Monthly, 73 (1966), 59–61.

[3] Clay J.R., The near-rings on groups of low order, Math. Zeitschr., 104 (1968),

364–371.

[4] Pilz G., Near-rings, North-Holland, Amst., 23 (1977).

[5] Pilz G., Near-rings, North-Holland, Amst., Revised edition, 23 (1983).

[6] Yerby R., H.Heatherly, Near-Ring Newsletter, 7 (1984), 14–22.

[7] Rakhnev A.K., G.A. Daskalov, Construction of near-rings on finite cyclic groups,

Math. and Math. Education, Sunny Beach, Bulgaria, (1985), 280–288.

[8] Rakhnev A.K., On near-rings, whose additive groups are finite cyclics, Compt.

rend. Acad. bulg. Sci., 39 No. 5 (1986), 13–14.

[9] Aichinger E., F. Binder, J. Ecker, R. Eggetsberger, P.Mayr and C.Nöbauer.

SONATA: Systems Of Nearrings And Their Applications, Package for the group

theory system GAP4. Johanes Kepler University Linz, Austria, (2008).

http://www.algebra.uni-linz.ac.at/sonata/

[10] Rahnev A., A. Golev, Some New Lower Bounds for the Number of Near-rings on

Finite Cyclic Groups, Int. Journal of Pure and Applied Mathematics, 59, No.1

(2010), 59–75.

[11] Rahnev A.K., A.A. Golev, Computing Near-rings on Finite Cyclic Groups,

Compt. rend. Acad. bulg. Sci., 63, book 5 (2010), 645–650.

[12] Golev A., A. Rahnev, Computing Classes of Isomorphic Near-rings on Cyclic

Groups of Order up to 23, Scientific Works, Plovdiv University, 37, book 3,

Mathematics (2010), 53–66.

[13] Golev A., Algorithms for Generating Near-rings on Finite Cyclic Groups, Pro-

ceedings of the Anniversary International Conference REMIA 2010, Plovdiv,

255–262, 10-12 December 2010.

FINITE CYCLIC GROUPS 353

[14] Golev A. A., A. K. Rahnev, Computing Near-rings on Finite Cyclic Groups of

Order up to 29, Compt. rend. Acad. bulg. Sci., 64, No. 4, (2011), 461–468.

[15] Golev A., A. Rahnev, New results for near-rings on finite cyclic groups, Proceed-

ings of Annual Workshop “Coding Theory and Applications”, 51–54, Gabrovo,

December 2011.

[16] Pavlov N., A. Golev, A. Rahnev, Distributed Software system for Testing Near-

RIngs Hypotheses and New Constructions for Near-Rings on Finite Cyclic Groups,

Int. Journal of Pure and Applied Mathematics, 90, No.3 (2014), 345–356.

[17] Malinova M., A. Golev, A. Rahnev, Generating SQL Queries for Filtering Near-

Rings on Finite Cyclic Groups, Int. Journal of Pure and Applied Mathematics,

119, No.1 (2018), 225–234.

354

