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ABSTRACT: In this note we gave new realization of Euclidean algorithm for cal-

culation of greatest common divisor (GCD). Our results are extension of results given

in [1]–[26], [41]–[64]. For computer implementation Visual C# 2017 programming

environment is used. We optimize about 40% and about 10% Knuth’s recursive and

iterative algorithms respectively.
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1. INTRODUCTION

Our work is next part of research in [27]–[40]. In most of these papers and book [33]

we already received some improvements of Euclidean algorithm, extended Euclidean

algorithm, multiplicative inverse algorithm, extended Euclidean algorithm using SGN

function, algorithm for continued fractions.

2. MAIN RESULTS

Now we set the task to optimize Euclidean GCD algorithm. For testing we will use

the following computer: processor - Intel(R) Core(TM) i7-6700HQ CPU 2.60GHz,

2592 Mhz, 4 Core(s), 8 Logical Processor(s), RAM 16 GB, Microsoft Windows 10

Enterprise x64.
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Let a>0 and b>0 be natural numbers. We propose new organizing of the Euclidean

algorithm:

Algorithm 1.

if (a > b) while (((a %= b) != 0) && ((b %= a) != 0));

else while (((b %= a) != 0) && ((a %= b) != 0));

gcd = a + b;

Its recursive implementation is:

Algorithm 2.

static long Euclid(long a, long b)

{ long r, u = b;

if ((r = a % b) != 0 && (u = b % r) != 0) return Euclid(r, u);

else return r + u; }

We will compare Algorithm 1 with Knuth’s iterative

Algorithm 3.

while (b > 0) { ob = b; b = a % b; a = ob; }

gcd = a;

and Algorithm 2 with Knuth’s recursive

Algorithm 4.

static long Euclid(long a, long b)

{ if (b == 0) return a; long r = a % b;

return Euclid(b, r); }

3. NUMERICAL EXPERIMENT

Part 1.

long a, b, gcd, ob, d = 0;

for (int i = 1; i < 100000001; i++) { b = i; a = 200000002 - i;

//here is the source code of every one of algorithms 1, 3

//and calling of recursive algorithms 2 and 4

d += gcd; }

Console.WriteLine(d);

Part 2. We will use the task from Part 1. where we swapped the values of ‘a’ and

‘b’.

Part 3. Average time of performance
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Figure 1: Knuth’s recursive (1 – red color), Iliev–Kyurkchiev–Rahnev recur-

sive (2 – green line)

EN = (Part 1.AlgorithmN + Part 2.AlgorithmN ) / 2,

where N = 1 to 4 denotes using of Algorithms 1 to 4.

Both recursive implementations can be called by:

if (a > b) gcd = Euclid(a, b); else gcd = Euclid(b, a);

The reader can see the advantages of new improvement suggested by us (see Fig.

1 and Fig. 2 for recursive and iterative implementations respectively).

We will note that this improvement (see Algorithms 1 and 2) gives a better perfor-

mance even than previous results in [27] and [28] concretely for Euclidean algorithm.
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Figure 2: Knuth’s iterative (1 – red color), Iliev–Kyurkchiev–Rahnev iterative

(2 – green line)
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