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ABSTRACT: In this paper we receive models that in some situations can be applied

to the theory of computer viruses propagation. As the authors in [3] mention: ”It

is very hard to use some real-world worm traffic traces or realistic parameters for

research. Even traffic traces used in research papers (e.g. Slammer [4] and Code-

red [5]) are not public. From the published papers [4], [5] we are not able to find

parameters that can be used in our model.”. Many researchers make a great efforts

to describe adequately situation connected to worm propagation [14]–[58].
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1. COOPERATIVE DISTRIBUTION OF

TRAFFIC FILTERING POLICIES

The epidemic infection models that can be used to study the propagations of the

worms as it infects Internet hosts are divided into two directions: discrete stochastic

(time-stepped) and deterministic (using differential equations).

For large enough populations it is common to approximate the stochastic model

by the better continuous state continuous time deterministic model.

Very often deterministic infection Kermack–Mckendrick SIR model for worm prop-

agation dynamics is used.
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This model assumes that individuals in a populations of N hosts fall into three

classes, susceptible individuals S(t), infected individuals I(t), and removed individuals

R(t) who were infected but have recovered (the recovery, or removal rate being γ).

Infections occur randomly and homogeneously transmission coefficient β, that is,

the pairwise rate of infection.

The epidemic process is described by the following differential equations:

∂S

∂t
=− βIS,

∂I

∂t
=βIS − γR,

∂R

∂t
=γI.

(1)

We will continue the work in [1] we will study the filter propagation via the Border

Gateway Protocol (BGP).

If the population is split into K separate strata, each corresponding to a single

autonomous system (AS), the same state variables as above can be defined for each

stratum, with a subscript notation, i.e.,

N =

K
∑

k=1

Nk =

K
∑

k=1

(Sk + Ik +Rk).

In the stratified epidemic model, the equation for the susceptibles in stratum k is

∂Sk

∂t
= −Sk

K
∑

j=1

βkjIj (2)

and the other equations are derived similarly. Now, from the point of view of filtering,

we need to consider two things.

First, interactions within a stratum (AS) are unconstrained and only depend on

the worm scanning capabilities, whereas interactions across strata also depend on

filtering rules in place at the gateways.

We can assume that the typical filtering rules are precise about the characteristics

of packets. Using approach given by [1] we set βkj ≡ βµkj , with µkk = 1 for k =

1, 2, ...,K and denote µk ≡ µkj , k 6= j the permeability of the gateways in the kth AS

with respect to scans. The equations thus become

∂Sk

∂t
=− βSk(Ik + µk(I − Ik)),

∂Ik
∂t

=βSk(Ik + µk(I − Ik))− γIk,

∂Rk

∂t
=γIk.

(3)
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We note that the separation of infection rate and permeability enables us to pro-

vide a rough approximate model of the local preference scan pattern, such as those

observed in Code Red II, Nimda and Blaster worms, by appropriately choosing initial

values for the permeability.

Dynamically filtering is as desirable as dynamic routing. The authors in [1] con-

ceived the notion of a Dynamically Distributed Traffic Filter (DTF). A DTF contains

indication of a network activity that should be blocked.

The so-called ”stratified epidemic model” gives good results, but numerical anal-

ysis is very difficult.

The conducted serious research, connected to the data analysis which are object

to the explorations in this paper and the possibility of their good approximation with

over fifty ”sigmoidal functions” show that there are models which are preferable in

comparison to seemingly much more sophisticated models, as an example stratified

epidemic model and its modifications. We will give a short look at such one model.

The following modified form of the Verhulst logistic model is called a power law

logistic model, see Banks [6]:

dM

dt
= kM

(

1−

(

M

m

)θ
)

. (4)

Integrating (2.4) with initial condition M(0) = m0 we have

M(t) = m









1

1 +

(

(

m
m0

)θ

− 1

)

e−kθt









1
θ

. (5)

The logistic function (5) finds applications in many scientific fields, including pop-

ulation dynamics, bacterial growth, population ecology, plant biology, chemistry and

statistics.

Let

ht0(t) =















0, if t < t0,

[0, 1], if t = t0,

1, if t > t0,

(6)

is the Heaviside function for

t0 =
1

kθ
ln

(

1

θ

(

(

m

m0

)θ

− 1

))

.
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Let

p = −1 +
m

(1 + θ)
1
θ

,

q = 1 +
kmθ

(1 + θ)
1+θ

θ

,

r = qm−1(1 + θ)
1
θ .

For some conditions for q, m, for the one–sided Hausdorff distance d [8] between

ht0(t) and the sigmoid (5) the following inequalities hold [7]:

dl =
1

r
< d <

ln r

r
= dr. (7)

The estimates for the value of the Hausdorff approximation is reliable when as-

sessing the important characteristic - ”saturation”.

We use the following model:

M∗(t) = ω









1

1 +

(

(

1

x0

)θ

− 1

)

e−kθt









1
θ

.

For contemporary applied research on sigmoids and some of their applications see

the monographs [9]–[13].

So, we will study how we can effectively approximate propagation of SQL slammer

the worm infection dynamics with and without DTF form [1], see Fig. 1 where it can

be seen that the exponential growth in the early propagation stages will be evidently

smoothed after the DTF application (after 10 and 15 sec., see Fig. 2 and Fig. 3

respectively).

2. PERCENTAGE OF TRAFFIC EXPLAINED BY AUTOMATICALLY

GENERATED IDS RULES IN EACH ITERATION

In the paper [2] the authors proposed a novel framework for automatically discovering

and analyzing of traffic generated by computer worms and other anomalous behaviors

that interact with a non-solicited traffic monitoring system.

Network packets are analyzed by an Intrusion Detection System (IDS), and new

signatures are generated clustering those which remain unknown for the IDS.

Furthermore, the framework provides a mechanism to cluster the alarms produced

by the IDS producing a correlated vision of the traffic observed.

Both the automatic signature generation and the alarm clusters are accomplished

using data mining techniques.
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Figure 1: SQL slammer – the worm infection dynamics with and without

DTF [1].

Figure 2: The model M∗(t) for ω = 105450; x0 = 0.0125657; k = 0.0529382;

θ = 0.330662.

The framework [2] relies on four components (see Fig. 4):

1) a Worm Detection System (WDS) responsible for interacting with worm infected

machines;
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Figure 3: The model M∗(t) for ω = 100000; x0 = 0.240324; k = 4.79847;

θ = 0.004498.

2) a knowledge-based Intrusion Detection System (IDS) which discerns the data be-

tween known and unknown traffic patterns;

3) a data mining tool;

4) an automatic signature generation system.

Results of the knowledge discovery of the unknown traffic dataset [2] show that

in only three iterations more than 95% of the data captured by the system can be

explained, using 69 new IDS rules.

On the 5th iteration, 99% of the data is explained with 86 signatures.

Figure 5 shows which percentage of the traffic is explained by the automatically-

generated IDS rules over the experiment.

The process of IDS rules for recognizing known and unknown traffic patterns

iteration is a random value.

It is turns out that this process is well modelled with model M∗(t), see Fig. 6.

The received result and explicit type of this approximate model can be used to

control and adequate intervention in pointed out mechanism described in [2].
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Figure 4: Framework for the analysis of worm activity [2].

Figure 5: Percentage of traffic explained by automatically generated IDS

rules in each iteration [2].

3. ACKNOWLEDGMENTS

This paper is supported by the National Scientific Program ”Information and Commu-

nication Technologies for a Single Digital Market in Science, Education and Security

(ICTinSES)”, financed by the Ministry of Education and Science.



30 A. ILIEV, N. KYURKCHIEV, A. RAHNEV, AND T. TERZIEVA

Figure 6: The model M∗(t) for ω = 115; x0 = 0.170588; k = 0.610897;

θ = 0.997403.
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