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ABSTRACT: In this paper we consider the logistic differential model y′(t) =

ky(t)s(t) with y(t0) = y0 where s(t) is of the form e−θ(eθt−1)(1 −m +me−θ(eθt−1)).

We study upper and lower estimates for the one–sided Hausdorff approximation of

the shifted Heaviside function ht∗(t) by means of the general solution y(t). We will

illustrate the advances of the solution y(t) for approximating of: ”data on the develop-

ment of Saccharomyces culture in nutrient medium” [8]–[9] and ”Telecommunication

System Data” [10]–[11]. Numerical examples using CAS Mathematica are given.
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1. INTRODUCTION

Following the ideas given in [1]–[5], [36] we consider the following logistic differential

model:










dy(t)
dt

= ky(t)e−θ(eθt−1)(1−m+me−θ(eθt−1))

y(t0) = y0

(1)

where θ > 0; k > 0 and 0 < m < 1. We prove upper and lower estimates for the
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one–sided Hausdorff approximation of the shifted Heaviside function ht∗(t) by means

of the general solution of this differential equation. We will illustrate the advances of

the solution y(t) for approximating and modelling of: ”data on the development of

Saccharomyces culture in nutrient medium” [8] (see, also [9]) and ”Telecommunication

System Data” [10] (see, also [11]).

2. PRELIMINARIES

Definition 1. The shifted Heaviside step function is defined by

ht∗(t) =















0, if t < t∗,

[0, 1], if t = t∗,

1, if t > t∗.

(2)

Definition 2. [6], [7] The Hausdorff distance (the H–distance) ρ(f, g) between two

interval functions f, g on Ω ⊆ R, is the distance between their completed graphs F (f)

and F (g) considered as closed subsets of Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||}, (3)

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB, xB) in R
2 is ||A−B|| =

max(|tA − tB |, |xA − xB|).

3. MAIN RESULTS

The general solution of the differential equation (1) is of the following form:

y(t) = y0e
e
θ
k(eθmEi(−2eθtθ)−(m−1)Ei(−e

θt
θ))

θ
−

e
θ
k(eθmEi(−2eθt0 θ)−(m−1)Ei(−e

θt0 θ))
θ (4)

where Ei(.) is the exponential integral function defined by Ei(z) = −
∫

∞

−z
e−t

t
dt (for

z > 0), where the principal value of the integral is taken. It is important to study the

characteristic - ”supersaturation” of the model to the horizontal asymptote. In this

Section we prove upper and lower estimates for the one–sided Hausdorff approxima-

tion of the Heaviside step–function ht∗(t) by means of families (4). Without loss of

generality, we consider the following class of this family for:

t0 = 0; y0 = e
e
θ
k(eθmEi(−2θ)−(m−1)Ei(−θ))

θ
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Figure 1: The functions M(t)–(red) and s(t)–(green) for k = 70;m = 0.8; θ =

3.

M(t) = e
e
θ
k(eθmEi(−2eθtθ)−(m−1)Ei(−e

θt
θ))

θ . (5)

The functionM(t) and the ”input function” s(t) are visualized on Fig. 1. Denoting

by t∗ the unique positive solution of the nonlinear equation: M(t∗)−0.5 = 0. The one–

sided Hausdorff distance d between the function ht∗(t) and the function(5) satisfies

the relation M(t∗ + d) = 1− d.

The following theorem gives upper and lower bounds for d

Theorem 1. Let

α = − 1
2 ,

β = 1 + k
2e

θ(1−eθt
∗

)
(

1−m+meθ(1−eθt
∗

)
)

γ = 2.1β.

(6)

For the one–sided Hausdorff distance d between ht∗(t) and M(t) (5) the following

inequalities hold for the condition - γ > e1.05:

dl =
1

γ
< d <

ln γ

γ
= dr. (7)

Proof. Let us examine the function:

F (d) = M(t∗ + d)− 1 + d. (8)

From F ′(d) > 0 we conclude that function F is increasing.

Consider the function

G(d) = α+ βd. (9)
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Figure 2: The functions F (d) and G(d) for k = 70; m = 0.8; θ = 3.

From Taylor expansion we obtain G(d) − F (d) = O(d2).

Hence G(d) approximates F (d) with d → 0 as O(d2) (see Fig. 2).

In addition G′(d) > 0.

Further, for γ > e1.05 we have

G(dl) < 0; G(dr) > 0.

This completes the proof of the theorem.

Approximation of the ht∗(t) by model (5) for k = 70; m = 0.8; θ = 3 is visualized

on Fig. 3.

4. SOME APPLICATIONS

4.1. APPROXIMATING THE ”DATA ON THE DEVELOPMENT OF

SACCHAROMYCES CULTURE IN NUTRIENT MEDIUM”

We will now analyze a sample of experimental data obtained by the biologist T.

Carlson in 1913 about the development of Saccharomyces culture in nutrient medium

(see, for example [8], [9]:
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Figure 3: The model (5) for k = 70; m = 0.8; θ = 3; t∗ = 0.0917241;

Hausdorff distance d = 0.0944645; dl = 0.0603377; dr = 0.169416.

Figure 4: The fitted model M∗(t).

data Carlson

:= {{0, 9.6}, {1, 18.3}, {2, 29}, {3, 47.2}, {4, 71.1}{5, 19.1},

{6, 174.6}, {7, 257.3}, {8, 350.7}, {9, 441}, {10, 513.3}, {11, 559.7},

{12, 594.8}, {13, 629.4}, {14, 640.8}, {15, 651.1}, {16, 655.9},

{17, 659.6}}.

After that using the model M∗(t) = ωM(t) for θ = 0.2, k = 0.778165, m =

0.546432 and ω = 659.6 we obtain the fitted model (see, Fig. 4).
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Figure 5: Table: Phase I system test data [11]

4.2. ”TELECOMMUNICATION SYSTEM DATA”

Here we will use the telecommunication system data reported by Zhang in 2002 [10]

(see, also [11]) to check the proposed model.

System test data consisting of two releases (Phases 1 and 2) are shown in Tables

1 and 2.

In each phase, the system records the cumulative number of faults by each week.

In both tests, automated test and humaninvolved tests are executed on multiple

test beds.

The models M∗(t) for ”Phase I system test data” (θ = 0.149, k = 0.341002,

m = 0.361086, ω = 26) and for ”Phase II system test data” (θ = 0.15, k = 0.27003,

m = 0.0741987, ω = 43) are visualized on Fig. 6 and Fig. 8, respectively.
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Figure 6: The fitted model M∗(t).

Figure 7: Table: Phase II system test data [11]



100 E. ANGELOVA, T. TERZIEVA, V. KYURKCHIEV, AND O. RAHNEVA

Figure 8: The fitted model M∗(t).

4.3. THE NEW ACTIVATION FUNCTION BASED ON

”AMENDMENTS” OF ”TRANSMUTED EXPONENTIAL -

EXPONENTIAL” TYPE

Definition 3. The sign function of a real number t is defined as follows:

sgn(t) =











−1, if t < 0,

0, if t = 0,

1, if t > 0.

(10)

Let λ = 1; θ = 0.5.

Definition 4. The new parametric activation function is defined as follows

W (t) =
M(t)−M(−t)

M(t) +M(−t)
. (11)

Approximations of the sgn(t) by function W (t) for θ = 0.5, m = 0.1 and k =

10, 20, 30 are visualized on Fig. 9.

We will note that the study of the Hausdorff’s approximation of the sign function

by means of this new family can be done in a way given in [15] and we will omit it.

Similarly to the article cited above, recursively generable families of higher order

activation functions can also be constructed.

5. CONCLUSION

A special choice of nutrient supply for cell growth in a continuous bioreactor is intro-

duced.
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Figure 9: Approximation of the sgn(t) by W (t) for k = 10 (thick); k = 20

(blue) and k = 30 (dashed).

We prove upper and lower estimates for the one–sided Hausdorff approximation of

the shifted Heaviside function ht∗(t) by means of the general solution of the differential

equation y′(t) = ky(t)s(t) with y(t0) = y0, where s(t) is the correction of ”transmuted

exponential - exponential” type.

The general solution y(t) has been applied widely in life testing experiments and

debugging theory.

We propose a software module within the programming environment CAS Math-

ematica for the analysis of the considered family of functions.

The module offers the following possibilities:

- calculation of the H-distance between the ht∗ and the model M(t);

- generation of the functions under user defined values of the parameters k, λ and

θ;

- numerical solution of the differential model (1) and opportunities for comparison

with other logistics models;

- software tools for animation and visualization.

For other results, see [12]–[35].
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