INVESTIGATIONS ON A LOGISTIC MODEL WITH WEIGHTED EXPONENTIAL GOMPERTZ TYPE CORRECTION. SOME APPLICATIONS

EVGENIA ANGELOVA¹, ANNA MALINOVA², VESSELIN KYURKCHIEV³, AND OLGA RAHNEVA⁴

^{1,2,3}Faculty of Mathematics and Informatics University of Plovdiv Paisii Hilendarski
24, Tzar Asen Str., 4000 Plovdiv, BULGARIA
⁴Faculty of Economy and Social Sciences University of Plovdiv Paisii Hilendarski
24, Tzar Asen Str., 4000 Plovdiv, BULGARIA

ABSTRACT: In this paper we will consider the possibility of approximating the input function s(t) in the differential model y'(t) = ky(t)s(t); $y(t_0) = y_0$ with the Gupta-Kundu [7] type correction. We prove upper and lower estimates for the one-sided Hausdorff approximation of the Heaviside step-function $h_{t^*}(t)$ by means of a new logistic family. Numerical examples, illustrating our results are given.

AMS Subject Classification: 41A46

Key Words: nutrient supply s(t), Weighted exponential Gompertz type correction, Heaviside step function, Hausdorff distance, Upper and lower bounds

Received:	April 27, 2019;	Accepted:	August 1, 2019;
Published:	August 5, 2019.	doi:	10.12732/npsc.v27i2.5
Dynamic Publis	shers, Inc., Acad.	Publishers, Ltd.	https://acadsol.eu/npsc

1. INTRODUCTION

Dynamical models consisting of a systems of "reaction" differential equations are commonly used in chemistry, there the differential equations are called *reaction equations*. In chemistry reaction differential equations are induced by chemical reactions networks via reaction kinetic principles, such as mass action kinetics [1]-[4].

In the present work we propose a new sigmoidal class of growth functions. We prove upper and lower estimates for the one-sided Hausdorff approximation of the Heaviside step-function $h_{t^*}(t)$ by means of a new logistic family.

The proposed model can be successfully used to approximating data from tumor growth, epidemics, population dynamics, debugging theory and computer viruses propagation theory.

2. PRELIMINARIES

Definition 1. The shifted Heaviside step function is defined by

$$h_{t^*}(t) = \begin{cases} 0, & \text{if } t < t^*, \\ [0,1], & \text{if } t = t^*, \\ 1, & \text{if } t > t^* \end{cases}$$
(1)

Definition 2. [5], [6] The Hausdorff distance (the H-distance) $\rho(f, g)$ between two interval functions f, g on $\Omega \subseteq \mathbb{R}$, is the distance between their completed graphs F(f) and F(g) considered as closed subsets of $\Omega \times \mathbb{R}$. More precisely,

$$\rho(f,g) = \max\{\sup_{A \in F(f)} \inf_{B \in F(g)} ||A - B||, \sup_{B \in F(g)} \inf_{A \in F(f)} ||A - B||\},$$
(2)

wherein ||.|| is any norm in \mathbb{R}^2 , e. g. the maximum norm $||(t,x)|| = \max\{|t|, |x|\};$ hence the distance between the points $A = (t_A, x_A), B = (t_B, x_B)$ in \mathbb{R}^2 is $||A - B|| = \max(|t_A - t_B|, |x_A - x_B|).$

3. MAIN RESULTS.

3.1. A NEW LOGISTIC DIFFERENTIAL MODEL

In the case of continuous bioreactor, the nutrient supply is considered as an input function s(t) as follows:

$$\frac{dy(t)}{dt} = ky(t)s(t)$$

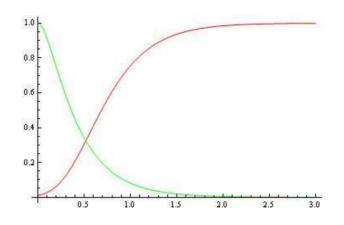


Figure 1: The functions M(t)-(red) and s(t)-(green) for k = 10; $\alpha = 2.1$; $\beta = 2.9$.

where s is additional specified.

In this Section we will consider the possibility of approximating the input function s(t) with the Gupta-Kundu [7] type correction and study the following model:

$$\begin{cases} \frac{dy(t)}{dt} = ky(t)\frac{1}{\alpha}e^{-\beta t}\left(\alpha + 1 - e^{-\alpha\beta t}\right)\\ y(t_0) = y_0 \end{cases}$$
(3)

where α , $\beta > 0$.

The general solution of the differential equation (3) is of the following form:

$$y(t) = y_0 e^{\frac{e^{-(1+\alpha)\beta t_k \left(\frac{(-1-\alpha)e^{\alpha\beta t}}{\beta} + \frac{1}{\beta(1+\alpha)}\right)}{\alpha} - \frac{e^{-(1+\alpha)\beta t_0 k \left(\frac{(-1-\alpha)e^{\alpha\beta t_0}}{\beta} + \frac{1}{\beta(1+\alpha)}\right)}{\alpha}}{\alpha}}.$$
 (4)

Without loss of generality, we consider the following class of this family for:

$$t_0 = 0; \ y_0 = e^{\frac{k\left(\frac{-1-\alpha}{\beta} + \frac{1}{\beta(1+\alpha)}\right)}{\alpha}}$$
$$M(t) = e^{\frac{e^{-(1+\alpha)\beta t_k}\left(\frac{(-1-\alpha)e^{\alpha\beta t}}{\beta} + \frac{1}{\beta(1+\alpha)}\right)}{\alpha}}.$$
(5)

The function M(t) and the "input function" s(t) are visualized on Fig. 1.

It is important to study the characteristic - "super saturation" of the model to the horizontal asymptote.

Denoting by t^* the unique positive solution of the nonlinear equation $M(t^*) = \frac{1}{2}$. The one-sided Hausdorff distance d between the function $h_{t^*}(t)$ and the sigmoid - (5) satisfies the relation

$$M(t^* + d) = 1 - d. (6)$$

The following theorem gives upper and lower bounds for d

Theorem. Let $y_0 < 1$ and

$$p = -\frac{1}{2},$$

$$q = 1 + \frac{k}{2}e^{-\beta t^{*}} \left(1 + \frac{1}{\alpha} - ke^{-\beta t^{*}(1+\alpha)} \left(1 + \frac{1}{1+\alpha} + \frac{1}{\alpha(1+\alpha)}\right)\right)$$
(7)
$$\gamma = 2.1q.$$

For the one-sided Hausdorff distance d between $h_{t^*}(t)$ and the sigmoid (5) the following inequalities hold for the condition - $\gamma > e^{1.05}$:

$$d_l = \frac{1}{\gamma} < d < \frac{\ln \gamma}{\gamma} = d_r.$$
(8)

Proof. Let us examine the function:

$$F(d) = M(t^* + d) - 1 + d.$$
(9)

From F'(d) > 0 we conclude that function F is increasing. Consider the function

$$G(d) = p + qd. \tag{10}$$

From Taylor expansion we obtain $G(d) - F(d) = O(d^2)$. Hence G(d) approximates F(d) with $d \to 0$ as $O(d^2)$ (see Fig. 2). In addition G'(d) > 0. Further, for $\gamma > e^{1.05}$ we have

$$G(d_l) < 0; \quad G(d_r) > 0.$$

This completes the proof of the theorem.

Approximations of the $h_{t^*}(t)$ by model (5) for various k, α and β are visualized on Fig. 3–Fig. 4.

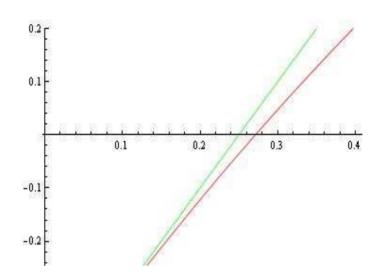


Figure 2: The functions F(d) and G(d) for k = 10; $\alpha = 2.1$; $\beta = 2.9$.

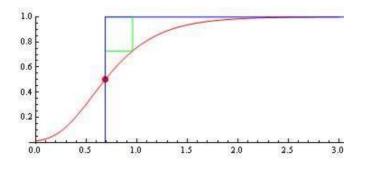


Figure 3: The model (5) for k = 10; $\alpha = 2.1$; $\beta = 2.9$; $t^* = 0.686988$; Hausdorff distance d = 0.271086; $d_l = 0.237892$; $d_r = 0.341598$.

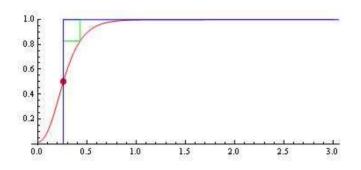


Figure 4: The model (5) for k = 28; $\alpha = 2.9$; $\beta = 7.6$; $t^* = 0.258765$; Hausdorff distance d = 0.171563; $d_l = 0.131099$; $d_r = 0.266368$.

From the graphic it can be seen that the "saturation" is faster.

3.2. APPROXIMATING THE "GROWTH DATA (MEAN HEIGHT) OF SUNFLOWER PLANTS"

We analyze experimental growth data (mean height) of sunflower plants (DSP) (see, for example [10]):

 $data_DSP$:= {{14, 36.4}, {28, 98.1}, {49, 205.5}, {56, 228.3}, {70, 250.5}, {84, 254.5}}.

For $\alpha = 0.12$, $\beta = 0.066$, k = 0.122257 and $\omega = 273.67$ we obtain the fitted model $M^*(t) = \omega M(t)$ (see, Fig. 5).

4. CONCLUSION.

We will explicitly note that similar approximation and modeling results associated with the use of "input function" S(t) with weighted exponential Gompertz type correction [8]–[9]:

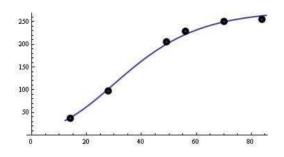


Figure 5: The fitted model $M^*(t)$.

$$S(t) = 1 - \frac{\alpha + 1}{\alpha} \left(1 - e^{-\sigma(e^{\lambda t} - 1)} \right)^{\beta} + \frac{1}{\alpha} \left(1 - e^{-\sigma(e^{\lambda t} - 1)} \right)^{\beta(\alpha + 1)}$$

can be obtained with the mathematical apparatus outlined in this chapter and here we will miss them.

We propose a software module within the programming environment CAS Mathematica for the analysis of the considered family of functions.

For some recent results see [11]-[40].

ACKNOWLEDGMENTS

This paper is supported by the National Scientific Program "Information and Communication Technologies for a Single Digital Market in Science, Education and Security (ICTinSES)", financed by the Ministry of Education and Science.

REFERENCES

- G. Lente, Deterministic kinetics in chemistry and systems biology, In: Briefs in Molecular Science, Cham Heidelberg New York Dordrecht London: Springer, (2015).
- [2] J. D. Murray, *Mathematical Biology: I. An Introduction*, 3rd ed., New York Berlin Heidelberg, Springer-Verlag, (2002).
- [3] V. Chellaboina, S. P. Bhat, W. M. Haddat, D. S. Bernstein, Modeling and analysis of mass-action kinetics, *IEEE Contr. Syst. Mag.*, **29** (2009), 60–78.
- [4] S. Markov, Reaction Networks Reveal New Links Between Gompertz and Verhulst Growth Functions, *Biomath*, 8, No. 1 (2019), 14 pp.

- [5] F. Hausdorff, Set Theory, 2nd ed., Chelsea Publ., New York (1962).
- [6] B. Sendov, Hausdorff Approximations, Kluwer, Boston (1990).
- [7] R. D. Gupta, D. Kundu, A new class of weighted exponential distribution, *Statis*tics, 43, 2008, 621–634.
- [8] H. S. Bakouch, Abd El-Bar A. M. T., A new weighted Gompertz distribution with applications to reliability data, *Appl. Math.*, 62 (2017), 269–296.
- [9] A. M. T. Abd El-Bar, I. Rageb, On weighted exponential Gompertz distribution: properties and application, J. of Taibah Univ. for Sci., 1 (2019), 616–627.
- [10] Bl. Sendov, R. Maleev, S. Markov, S. Tashev, *Mathematics for Biologists*, University Publishing House, "St. Kliment Ohridski", (1991).
- [11] N. Kyurkchiev, Investigations on a hyper-logistic model. Some applications, Dynamic Systems and Applications, 28, No. 2 (2019), 351–369.
- [12] E. Angelova, A. Golev, T. Terzieva, O. Rahneva, A study on a hyper-power-logistic model. Some applications, *Neural, Parallel and Scientific Computations*, 27 No. 1 (2019), 45–57.
- [13] N. Kyurkchiev, A. Iliev, A. Rahnev, On a special choice of nutrient supply for cell growth in a continuous bioreactor. Some modeling and approximation aspects, *Dynamic Systems and Applications*, 28, No. 3 (2019), 587–606.
- [14] N. Kyurkchiev, S. Markov, On a logistic differential model. Some applications, *Biomath Communications*, 6, No. 1 (2019), 34–50.
- [15] N. Kyurkchiev, A. Iliev, A. Rahnev, A special choice of nutrient supply for cell growth in logistic differential model. Some applications, *Conference Proceedings* of AIP, (2019). (to appear)
- [16] N. Kyurkchiev, A. Iliev, A. Rahnev, T. Terzieva, A new analysis of Code Red and Witty worms behavior, *Communications in Applied Analysis*, 23, No. 2 (2019), 267–285.
- [17] N. Kyurkchiev, A. Iliev, A. Rahnev, T. Terzieva, Some New Approaches for Modelling Large–Scale Worm Spreading on the Internet. II, *Neural, Parallel,* and Scientific Computations, 27, No 1 (2019), 23–34.
- [18] N. Kyurkchiev, A. Iliev, A. Rahnev, T. Terzieva, A New Analysis of Cryptolocker Ransomware and Welchia Worm Propagation Behavior. Some Applications. III, *Communications in Applied Analysis*, 23, No. 2 (2019), 359–382.
- [19] N. Kyurkchiev, A. Iliev, A. Rahnev, A new class of activation functions based on the correcting amendments of Gompertz-Makeham type, *Dynamic Systems and Applications*, 28, No. 2 (2019), 243–257.

- [20] R. Anguelov, M. Borisov, A. Iliev, N. Kyurkchiev, S. Markov, On the chemical meaning of some growth models possessing Gompertzian-type property, *Math. Meth. Appl. Sci.*, (2017), 12 pp.
- [21] N. Kyurkchiev, S. Markov, On the Hausdorff distance between the Heaviside step function and Verhulst logistic function, J. Math. Chem., 54, No. 1 (2016), 109–119.
- [22] N. Kyurkchiev, S. Markov, Sigmoid functions: Some Approximation and Modelling Aspects, LAP LAMBERT Academic Publishing, Saarbrucken (2015), ISBN 978-3-659-76045-7.
- [23] N. Kyurkchiev, A. Iliev, S. Markov, Some techniques for recurrence generating of activation functions, LAP LAMBERT Academic Publishing (2017), ISBN: 978-3-330-33143-3.
- [24] N. Kyurkchiev, A. Iliev, Extension of Gompertz-type Equation in Modern Science: 240 Anniversary of the birth of B. Gompertz, LAP LAMBERT Academic Publishing (2018), ISBN: 978-613-9-90569-0.
- [25] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Some software reliability models: Approximation and modeling aspects, LAP LAMBERT Academic Publishing, (2018), ISBN: 978-613-9-82805-0.
- [26] N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Nontrivial Models in Debugging Theory (Part 2), LAP LAMBERT Academic Publishing, (2018), ISBN: 978-613-9-87794-2.
- [27] N. Kyurkchiev, A. Iliev, A. Rahnev, Some Families of Sigmoid Functions: Applications to Growth Theory, LAP LAMBERT Academic Publishing, (2019), ISBN: 978-613-9-45608-6.
- [28] A. Iliev, N. Kyurkchiev, A. Rahnev, T. Terzieva, Some models in the theory of computer viruses propagation, LAP LAMBERT Academic Publishing, (2019).
- [29] R. Anguelov, N. Kyurkchiev, S. Markov, Some properties of the Blumberg's hyper-log-logistic curve, *Biomath*, 7 No. 1 (2018), 8 pp.
- [30] A. Iliev, N. Kyurkchiev, S. Markov, On the Approximation of the step function by some sigmoid functions, *Mathematics and Computers in Simulation*, **133** (2017), 223–234.
- [31] S. Markov, A. Iliev, A. Rahnev, N. Kyurkchiev, A note on the Log-logistic and transmuted Log-logistic models. Some applications, *Dynamic Systems and Applications*, **27** No. 3 (2018), 593–607.
- [32] S. Markov, N. Kyurkchiev, A. Iliev, A. Rahnev, On the approximation of the cut functions by hyper-log-logistic function, *Neural, Parallel and Scientific Computations*, **26** No. 2 (2018), 169–182.

- [33] N. Kyurkchiev, A Note on the Volmer's Activation (VA) Function, C. R. Acad. Bulg. Sci., 70, No. 6 (2017), 769–776.
- [34] N. Kyurkchiev, A note on the new geometric representation for the parameters in the fibril elongation process. C. R. Acad. Bulg. Sci., 69, No. 8 (2016), 963-972.
- [35] N. Kyurkchiev, On the numerical solution of the general "ligand-gated neuroreceptors model" via CAS Mathematica, Pliska Stud. Math. Bulgar., 26 (2016), 133 - 142.
- [36] N. Kyurkchiev, S. Markov, On the numerical solution of the general kinetic "Kangle" reaction system, Journal of Mathematical Chemistry, 54, No. 3 (2016), 792-805.
- [37] S. Markov, N. Kyurkchiev, A. Iliev, A. Rahnev, On the approximation of the generalized cut functions of degree p+1 by smooth hyper-log-logistic function, Dynamic Systems and Applications, 27 No. 4 (2018), 715–728.
- [38] N. Kyurkchiev, On a Sigmoidal Growth Function Generated by Reaction Networks. Some Extensions and Applications, Communications in Applied Analysis, **23**, No. 3 (2019), 383–400.
- [39] N. Kyurkchiev, A. Iliev, Investigations on a New Parametric Family of Sigmoidal Functions with Possible Application to Generate a New Class of Fuzzy Operators, Neural, Parallel, and Scientific Computations, 27, No. 2 (2019), 85–92.
- [40] N. Kyurkchiev, A. Iliev, A. Golev, A. Rahnev, On a Special Choice of Nutrient Supply with Marshall-Olkin Correction. Some Applications, Communications in Applied Analysis, 23, No. 3 (2019), 401–419.