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ABSTRACT: The Hausdorff approximation of the shifted Heaviside function ht0(t)

by cumulative function based on the Song–Chang–Pham’s model [1] (see, also [2]) is

investigated and an expression for the error of the best approximation is obtained in

this paper.

The results of numerical examples confirm theoretical conclusions and they are

obtained using programming environment Mathematica.

We give real examples with dataset, was proposed by Musa in [3] using the new

Song–Chang–Pham’s software reliability model.
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1. INTRODUCTION AND PRELIMINARIES

An important role within the hierarchical models in the procedure for quantifying

the quality of software products is played by the so-called computational method

based on the theoretical and empirical dependencies (usually at an early stage in

their development), statistical data accumulated during tests, exploitation and the

accompaniment of the program product.
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Detailed description of all elements in the area of debugging theory may be found

in the following books [4]–[6].

In the books [7]–[8], we pay particular attention to both deterministic approaches

and probability models for debugging theories. A Hausdorff metric was chosen to

evaluate the test data which are fitted to the sigmoid models proposed in these

book. Some of the existing cumulative distributions (Gompertz–Makeham, Yamada-

exponential, Yamada–Rayleigh, Yamada–Weibull, transmuted inverse exponential,

transmuted Log-Logistic, Kumaraswamy–Dagum and Kumaraswamy Quasi Lindley)

are considered in the light of modern debugging and test theories.

Some software reliability models, can be found in [9]–[34].

In this note we study the Hausdorff approximation of the Heaviside function ht0(t)

by function based on the Song–Chang–Pham’s [1] cumulative function.

We propose a software modules (intellectual properties) within the programming

environment CAS Mathematica for the analysis.

The models have been tested with real-world data.

A general mean value function m(t) of software reliability models is given by

solution of the equation

dm(t)

dt
= ηh(t)(a(t) −m(t)),

where

- m(t) is the mean value function of faults detected up to time t;

- a(t) is the total number of faults in the Software at time t;

- h(t) represents the fault detection rate function dependent on time t

- (assume η’s probability density function is g(η))

and m(t0) = m0 is the marginal condition of

m(t) =

∫ +∞

0

e−xH(t)

(

m0 +

∫ t

t0

xa(τ)h(τ)exH(τ)dτ

)

g(x)dx,

H(t) =

∫ t

0

h(u)du

For example, for
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Figure 1: The functions m(t)–red; h(t)–blue; a(t) = a–dashed.

a(t) = a,

h(t) = b ln a× tb−1at
b

g(x) = βαxα−1eβx

Γ(α)

we have the Pham’s software reliability model with Vtub–Shaped fault detection rate

and the uncertainty of operating environment:

m(t) = a

(

1−

(

β

β − 1 + atb

)α)

(see, Fig. 1).

For some details, see [1]).

For a special choice of the functions h(t) and a(t), in [1] the authors considered a

class of growth functions.

First, we study the Hausdorff approximation of the shifted Heaviside function

ht0(t) by sigmoidal function based on the Song, Chang and Pham [1] cumulative

function (1).

Definition 1. Song, Chang and Pham [1] developed the following software reliability

growth model:
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M(t) = N

(

1−

(

β

β + ln a+ebt

a+1

)α)

. (1)

where a, b, α, β > 0, t > 0.

Definition 2. The shifted Heaviside step function is defined by

ht0(t) =























0, if t < t0,

[0, 1], if t = t0,

1, if t > t0

(2)

Definition 3. [35] The Hausdorff distance (the H–distance) ρ(f, g) between two

interval functions f, g on Ω ⊆ R, is the distance between their completed graphs F (f)

and F (g) considered as closed subsets of Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||},

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB, xB) in R
2 is ||A−B|| =

max(|tA − tB |, |xA − xB|).

2. MAIN RESULTS

2.1. A NOTE ON THE SOFTWARE RELIABILITY GROWTH

MODEL (1)

Without loosing of generality we will look at the following ”cumulative sigmoid”:

M∗(t) = 1−

(

β

β + ln a+ebt

a+1

)α

, (3)

with N = 1 (see (1)), and
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t0 =
1

b
ln









(1 + a)e

β

(

1−(1/2)
1
α

)

(1/2)
1
α − a









. (4)

Evidently, for the ”median” we have

M∗(t0) =
1

2
.

The one–sided Hausdorff distance d between the function ht0(t) and the cumulative

function (3) satisfies the relation

M∗(t0 + d) = 1− d. (5)

2.2. APPROXIMATION RESULT

With some constraints imposed on the parameters a, b, α and β (which we will not

stop here, for some details, see [1]), it can be shown that the following theorem gives

upper and lower bounds for d

Theorem. Let

p = −
1

2
,

q = 1 +
bα(1/2)

1
α ebt0

2β(a+ ebt0)
.

For the one–sided Hausdorff distance d between ht0(t) and the function (3) the

following inequalities hold for:

2.1q > e1.05

dl =
1

2.1q
< d <

ln(2.1q)

2.1q
= dr. (6)

Proof. Let us examine the function:

F (d) = M∗(t0 + d)− 1 + d. (7)

From F ′(d) > 0 we conclude that function F is increasing.

Consider the function
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Figure 2: The functions F (d) and G(d).

G(d) = p+ qd. (8)

From Taylor expansion we obtain G(d)− F (d) = O(d2).

Hence G(d) approximates F (d) with d → 0 as O(d2) (see Fig. 2).

In addition G′(d) > 0.

Further, for 2.1q > e1.05 we have G(dl) < 0 and G(dr) > 0.

This completes the proof of the theorem.

The model (3) for β = 0.2, α = 0.8, a = 16, b = 10.1, t0 = 0.183735 is visualized

on Fig. 3.

From the nonlinear equation (5) and inequalities (6.6) we have: d = 0.198019,

dl = 0.13901 and dr = 0.274296.

The model (3) for β = 0.1, α = 0.9, a = 20, b = 15.1, t0 = 0.0850837, d =

0.136023, dl = 0.0828472, dr = 0.206352 is visualized on Fig. 4.

The model (3) for β = 0.05, α = 0.99, a = 25, b = 20 is visualized on Fig. 5.
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Figure 3: The model (3) for β = 0.2, α = 0.8, a = 16, b = 10.1, t0 = 0.183735;

H–distance d = 0.198019, dl = 0.13901 and dr = 0.274296.

Figure 4: The model (3) for β = 0.1, α = 0.9, a = 20, b = 15.1, t0 =

0.0850837; H–distance d = 0.136023, dl = 0.0828472, dr = 0.206352.

3. NUMERICAL EXAMPLES.

Example 1. We examine the dataset, was proposed by Musa in [3].

For the first 12 hours of testing, the number of failures each hour is given in Fig.

6

Below, we will illustrate the fitting of this data, for example, with theM1(t) model.
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Figure 5: The model (3) for β = 0.05, α = 0.99, a = 25, b = 20, t0 =

0.0427688; H–distance d = 0.0979944, dl = 0.0503667, dr = 0.150517.

Figure 6: Dataset [3].

The fitted model

M∗

1 (t) = N

(

1−

(

β

β + ln a+ebt

a+1

)α)

based on the dataset for the estimated parameters:

N = 104; a = 2.65; β = 0.73006; α = 1.7; b = 0.35
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Figure 7: The model M∗

1 (t) with N = 104; a = 2.65; β = 0.73006; α =

1.7; b = 0.35.

Figure 8: The extended data for modeling the growth of red abalone Haliotis

Rufescens in Northern California.

is plotted on Fig. 7.

Example 2. We examine the following data for the growth of red abalone Haliotis

Rufescens in Northern California.

The extended data for modeling the growth of red abalone is shown on Fig. 8.

For more details see [37].

For this data the fitted model for estimated parameters:
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Figure 9: The fitted modelM∗

1 (t) withN = 194;a = 18.65;β = 0.589515;α =

2.9; b = 0.29.

N = 194; a = 18.65; β = 0.589515; α = 2.9; b = 0.29

is plotted on Fig. 9.

Example 3. Analysis of MyDoom worm propagation.

MyDoom spreads by email [38], [39].

MyDoom searches local hard drive for addresses. MyDoom.O uses Web search

engines.

On July 26, 2004 (see Fig. 10) a variant of Mydoom attacks Google, AltaVista and

Lycos, completely stopping the function of the popular Google search engine for the

larger portion of the workday, and creating noticeable slow-downs in the AltaVista

and Lycos engines for hours.

Queries are distributed between Google (45%), Lycos (22.5%), Yahoo (20%) and

Altavista (12.5%).

As usually we photographed the data from Fig. 10.

data MyDoom := {{0, 0}, {1, 800}, {2, 3000}, {3, 9610}, {4, 23270},

{5, 38846}, {6, 50000}, {7, 53846}, {8, 57300}}

Approximation is obtained by us using these data and the model (3), see Fig. 11.
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Figure 10: Google’s view of MyDoom [38].

4. CONCLUDING REMARKS.

The Song–Chang–Pham’s model can be applied to the debugging theory (Example

1), population dynamics (Example 2) and computer viruses propagation (Example

3).

In conclusion, we will note that the determination of compulsory in area of the

Software Reliability Theory components, such as confidence intervals and confidence

bounds, should also be accompanied by a serious analysis of the value of the best

Hausdorff approximation - the subject of study in the present paper.

We hope that the results will be useful for specialists in this scientific area.
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Figure 11: The model M∗

1 (t) with N = 57300; α = 1.102; a = 2160; b =

0.8585; β = 0.021036.
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