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ABSTRACT: The aim of this note is to study ”saturation” of the Chi and weighted

Erlang cumulative distribution functions
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respectively, to the horizontal asymptote with respect to Hausdorff distance.

We prove upper and lower estimates for the one–sided Hausdorff approximation

of the Heaviside step–function ht1(t) by means of these families.

Numerical examples on real datasets (1. ”actual data to estimate the number of

software residual faults” and 2. ”2017 meningitis outbreak data were obtained from

Nigeria Centre for Disease Control”) using CAS Mathematica, illustrating our results

are given.
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1. INTRODUCTION AND PRELIMINARIES

In [1], the authors studied some properties of the Wilson–Hilferty cumulative distri-

bution
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and in particular ”saturation” to the horizontal asymptote.

Similar studies can be applied to other known cumulative distributions.

Definition 1. The Chi cumulative distribution function (CCDF) is given by
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)

where P (s, x) is regularized gamma function, or
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where
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∫

∞

x

ts−1e−tdt

is the upper incomplete gamma function.

Definition 2. The weighted Erlang cumulative distribution function (WECDF) is

given by

M1(t) = 1−
1

Γ(λ+ θ)
Γ(λ+ θ,

t

β
). (2)

Definition 3. The shifted Heaviside step function is defined by
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0, if t < t1,

[0, 1], if t = t1,

1, if t > t1.

(3)

Definition 4. [2] The Hausdorff distance (the H–distance) ρ(f, g) between two

interval functions f, g on Ω ⊆ R, is the distance between their completed graphs F (f)

and F (g) considered as closed subsets of Ω× R.

More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||}, (4)



CHI AND WEIGHTED ERLANG DISTRIBUTION FUNCTIONS 133

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB, xB) in R
2 is ||A−B|| =

max(|tA − tB |, |xA − xB|).

2. MAIN RESULTS.

When studying the intrinsic properties of these distributions, it is also appropriate to

study the ”saturation” to the horizontal asymptote.

In this Section we prove upper and lower estimates for the one–sided Hausdorff

approximation of the Heaviside step–function ht1(t) by means of families (1) and (2).

2.1. THE CHI CUMULATIVE FUNCTION

Let t1 is the unique positive root of the nonlinear equation M(t1)−
1
2 = 0.

The one–sided Hausdorff distance d satisfies the relation

M(t1 + d) = 1− d. (5)

The following theorem gives upper and lower bounds for d
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s = 2.1q.

(6)

Let s > e1.05 and k > 0.5.

For the one–sided Hausdorff distance d between ht1(t) and the cumulative sigmoid

(1) the following inequalities hold:

dl =
1

s
< d <

ln s

s
= dr. (7)

Proof. Let us examine the function:

F (d) = M(t1 + d)− 1 + d. (8)
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Figure 1: The functions F (d) and G(d) for k = 1.1.

Figure 2: The cumulative function (1) for k = 1.1; t1 = 0.730256; Hausdorff

distance d = 0.320908; dl = 0.293014; dr = 0.359685.

F ′(d) > 0 and the function F is increasing.

Consider the function

G(d) = p+ qd. (9)

From Taylor expansion we obtain G(d) − F (d) = O(d2).

Hence G(d) approximates F (d) with d → 0 as O(d2) (see Fig. 1).

In addition G′(d) > 0 and the function G is also increasing.

Further, for s > e1.05 and k > 0.5 we have

G(dl) < 0; G(dr) > 0.

This completes the proof of the theorem.

The cumulative sigmoid (1) for k = 1.1 is visualized on Fig. 2.
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Figure 3: The cumulative function (2) for β = 0.1;λ = 0.95; θ = 0.03; t2 =

0.0673801; Hausdorff distance d = 0.131901; dl = 0.078354; dr = 0.19953.

2.2. THE WEIGHTED ERLANG CUMULATIVE FUNCTION

Let t2 is the unique positive root of the nonlinear equation M1(t2)−
1
2 = 0.

The one–sided Hausdorff distance d satisfies the relation M1(t2 + d) = 1− d.

The following theorem gives upper and lower bounds for d

Theorem 2. Let

p1 = −
Γ(θ+λ,

t2
β )

Γ(θ+λ) ,

q1 = 1 +
e
−

t2
β ( t2

β )
λ+θ−1

βΓ(θ+λ)

s1 = 2.1q1.

(10)

Let s > e1.05. With some constraints imposed on the parameters θ and λ which

we will not explore here, for the one–sided Hausdorff distance d between ht2(t) and

the cumulative function (2) the following inequalities hold:

dl =
1

s1
< d <

ln s1
s1

= dr. (11)

The proof follows the ideas given in this paper and will be omitted.

For some experiments, see Fig. 3–Fig. 4.
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Figure 4: The cumulative function (2) for β = 0.04;λ = 0.99; θ = 0.01; t2 =

0.0277259; Hausdorff distance d = 0.0755788; dl = 0.0352734; dr = 0.117976.

Figure 5: The fitted model M∗

1 (t).

3. NUMERICAL EXAMPLES

1. We analyze the following ”actual data to estimate the number of software residual

faults” [3]–[4].

After that using the model M∗

1 (t) = ωM1(t) for ω = 5186, θ = 1.97, λ = 1× 10−9

and β = 9.6 we obtain the fitted model (see, Fig. 5).

2. We analyze the ”2017 meningitis outbreak data were obtained from Nigeria

Centre for Disease Control” [5]
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Figure 6: The model [5].

data Meningitis

:= {{5, 158}, {6, 210}, {7, 263}, {8, 474}, {9, 579}, {10, 789},

{11, 1053}, {14, 4500}, {15, 6500}, {16, 7200}, {17, 8368},

{18, 9053}, {19, 9368}, {20, 9474}, {21, 9526}, {22, 9632},

{23, 9684}, {25, 9737}, {26, 9790}, {27, 9790}}.

After that using the model M∗

1 (t) = ωM1(t) for ω = 9790, θ = 26.95, λ = 0.01

and β = 0.531 we obtain the fitted model (see, Fig. 7).

For some comparisons, see model [5] - Fig. 6.

4. CONCLUSION.

The aim of this note is to study ”saturation” of the Chi and weighted Erlang cumu-

lative functions.

For other results, see [6]–[11].
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Figure 7: The fitted model M∗

1 (t).
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