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ABSTRACT: In [1] the authors look at a new probability model, which is a re-

markable combination of the Lomax and generalized Weibull distributions based on

an exponent odd function.

The authors’ assertion that probability distribution produces very good results in

approximating specific data from the field of hydrology has encouraged us to conduct

further studies on ”saturation” in Hausdorff sense of the corresponding commutative

function to the horizontal asymptote hoping to partially contribute to uncovering

some of the ”intrinsic properties” of this apparently good model.

We will show that the proposed model can be successfully used with success (of

course, after extensive research) in the field of analysis of Computer Viruses Propa-

gation.

We also analyze some experimental data: the cumulative number of Welchia at-

tackers; data of Conficker propagation in 2008; the cumulative number of users at-

tacked by Trojan-Ransom malware.

Numerical examples, illustrating our results are presented using programming en-

vironment CAS Mathematica.
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1. INTRODUCTION AND PRELIMINARIES

In this note we study the Hausdorff approximation of the Heaviside function ht0(t)

by the cdf of the Lomax–D–generalized Weibull distribution (cdfLDGW), defined by

Hussain, Bakouch and Chesneau [1].

The model have been tested with real-world data.

Definition 1. Hussain, Bakouch and Chesneau [1] developed the following cdf of

the new Lomax–D–generalized Weibull distribution for t ≥ 0:

M(t) = 1−

(

1 +
eθ((1−λtθ)−

1

λ −1) − 1

eθ − 1

)−β

(1)

where λ ≤ 0, θ > 0, β > 0.

Definition 2. The shifted Heaviside step function is defined by

ht0(t) =























0, if t < t0,

[0, 1], if t = t0,

1, if t > t0

(2)

Definition 3. [2] The Hausdorff distance (the H–distance) ρ(f, g) between two

interval functions f, g on Ω ⊆ R, is the distance between their completed graphs F (f)

and F (g) considered as closed subsets of Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||},

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB, xB) in R
2 is ||A−B|| =

max(|tA − tB|, |xA − xB|).

2. MAIN RESULTS

2.1. A NOTE ON THE NEW (CDFLDGW)

The investigation of the characteristic ”supersaturation” of the cdf (1) to the hori-

zontal asymptote is important.

Let t0 is the value for which M(t0) =
1
2 .

The one–sided Hausdorff distance d between the function ht0(t) and the cdf (1)

satisfies the relation
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Figure 1: The cdf (1) for λ = −0.05, β = 0.8, θ = 0.99 and t0 = 0.809797;

H–distance d = 0.301775.

Figure 2: The cdf (1) for λ = −0.001, β = 8.9, θ = 0.99 and t0 = 0.119372;

H–distance d = 0.161348.

M(t0 + d) = 1− d. (3)

For given λ, β, θ and t0, the nonlinear equation M(t0 + d)− 1+ d = 0 has unique

positive root – d.

The cdf (1) for λ = −0.05, β = 0.8, θ = 0.99 and t0 = 0.809797 is visualized on

Fig. 1.

From the nonlinear equation (3) we have: d = 0.301775.

The cdf (1) for λ = −0.001, β = 8.9, θ = 0.99 and t0 = 0.119372 is visualized on

Fig. 2.

From the nonlinear equation (3) we have: d = 0.161348.

The cdf (1) for λ = −0.0005, β = 25, θ = 0.999 and t0 = 0.0459322 is visualized

on Fig. 3.

From the nonlinear equation (3) we have: d = 0.097724.
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Figure 3: he cdf (1) for λ = −0.0005, β = 25, θ = 0.999 and t0 = 0.0459322;

H–distance d = 0.097724.

From the above examples, it can be seen that the ”supersaturation” by the (cdf)

M(t) is faster.

Obviously, this ”advantage” can actually be used to approximate some specific

data from the field of analysis of Computer Viruses Propagation.

In the next Section, we will support what is said by analyzing real datasets.

2.2. APPLICATIONS

Welchia worm and Cryptolocker ransomware have a long growing phase in contrast

to many other threats.

In September 2013 the CryptoLocker malware starting its invasion using mainly

P2P ZeuS (aka Gameover ZeuS) malware. CryptoLocker’ main aim was to receive

money from the unsuspecting victims for decrypting their files.

Welchia worm uses a vulnerability in the Microsoft remote procedure call service.

Welchia firstly checks for Blaster worm and if it is exists continues with Blaster

deletion as well as takes care for computer to be immunised for Blaster worm.

Example 1. Analysis of Welchia worm infection behavior

For epidemic as Welchia worm it is appropriately to use a model

M∗(t) = ω



1−

(

1 +
eθ((1−λtθ)−

1

λ −1) − 1

eθ − 1

)−β


 (4)

for approximating data from the statistics collected on an individual Welchia [3] hon-

eypot administered by Frederic Perriot between August 24th, 2003 and February 24th,

2004, shown in Fig. 4.



THE LOMAX–D–GENERALIZED–WEIBULL CUMULATIVE SIGMOID 145

Figure 4: The cumulative number of Welchia attackers [3].

We will explore this example by photographing the data from Fig. 4.

data Welchia :=

{{1.1, 1000}, {2, 2333}, {3, 3500}, {4, 5000}, {5, 6833}, {6, 8000},

{7, 9333}, {8, 10500}, {9, 12000}, {10, 14000}, {11, 16333},

{12, 18167}, {13, 19667}, {14, 21000}, {15, 22667}, {16, 23667},

{17, 25000}, {18, 26333}, {19, 27500}, {20, 28333}, {21, 29333},

{22, 29500}, {23, 29500}, {24, 29500}, {25, 29500}, {26, 29500},

{27, 29500}, {28, 29500}, {29, 29500}, {30, 29500}, {31, 29667},

{32, 29667}}

The fitted model is given by

λ = −0.1; β = 0.0385232; θ = 0.602142; ω = 30000.

We receive an impressive result when approximating these data, see Fig. 5.

Example 2. Here we will present a new analysis of Conficker propagation in

2008 and we explore the Network Telescope project’s daily dataset [4], [5] collected

on November 21, 2008.
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Figure 5: The fitted model M∗(t).

We analyze the following data

data Conficker :=

{{0.1, 10}, {1, 150}, {2, 300}, {3, 600}, {4, 2500}, {5, 5000},

{6, 7500}, {7, 13000}, {8, 19000}, {9, 25000}, {10, 31000},

{11, 37000}, {12, 44000}, {13, 52000}, {14, 58000}, {15, 66000},

{16, 74000}, {17, 81000}, {18, 86000}, {19, 89000}, {20, 92000},

{21, 92500}}

The model (4) for ω = 93000; λ = −0.1; β = 0.00547243 and θ = 0.757525 is

visualized on Fig. 6.

Example 3. Number of users attacked by Trojan-Ransom malware

We will study how it can be modelled data in [6] for the number of users attacked

by Trojan-Ransom malware (Q4 2014 - Q3 2015).

The cumulative data is:

Number of users attacked by T rojan−Ransom malware

(Q4 2014−Q3 2015) data :=

{{1, 128132}, {2, 278706}, {3, 543089}, {4, 880294}}

The fitted model M∗(t) = ωM(t) for ω = 1150000; λ = −0.04; β = 0.0731211 and

θ = 0.872133 is visualized on Fig. 7.
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Figure 6: The fitted model M∗(t).

Figure 7: The fitted model M∗(t).

3. CONCLUDING REMARKS

Finally, we note that the studied model produces extremely good results, generally

when approximating specific ”cumulative data” from Computer Viruses Propagation,

Debugging and Test theory.

For other approximation and modelling results, see [7]–[29].

We hope that the results will be useful for specialists in this scientific area.
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