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ABSTRACT: In [1] the authors proposed a new family of continuous distributions

called the odd generalized exponential family.

Their reviews have brought to life a number of modifications that have appeared

in the literature over the las few years, with applications to approximate specific

”cumulative data” from different branches of science.

In this article we will look at the one suggested in [2].

The authors’ assertion that probability distribution produces very good results

encouraged us to conduct further studies on ”saturation” in Hausdorff sense of the

corresponding commutative function to the horizontal asymptote hoping to partially

contribute to uncovering some of the ”intrinsic properties” of this apparently good

model.

We also analyze some experimental data: the cumulative number of Welchia at-

tackers; ”growth of the cumulative number of TREZ publications”; data set ”US

mobile”; Software Failure Data – Release #1; Defects (AT & T).

Numerical examples, illustrating our results are presented using programming en-

vironment CAS Mathematica.
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1. INTRODUCTION AND PRELIMINARIES

In this note we study the Hausdorff approximation of the Heaviside function ht0(t)

by the cdf of the ODD–Generalized–Exponential–Power–Function–Distribution (cd-

fOGEPF), suggested in [2].

The model have been tested with real-world data.

Definition 1. The cdf of the ODD–Generalized–Exponential–Power–Function–

Distribution (cdfOGEPF) is defined by [2]:

M(t) =
(

1− e−λ( tα

βα
−tα )

)θ

(1)

where 0 ≤ t < β, θ > 0, α > 0.

Definition 2. The shifted Heaviside step function is defined by

ht0(t) =























0, if t < t0,

[0, 1], if t = t0,

1, if t > t0

(2)

Definition 3. [3] The Hausdorff distance (the H–distance) ρ(f, g) between two

interval functions f, g on Ω ⊆ R, is the distance between their completed graphs F (f)

and F (g) considered as closed subsets of Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||},

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB, xB) in R
2 is ||A−B|| =

max(|tA − tB |, |xA − xB|).

2. MAIN RESULTS

2.1. A NOTE ON THE NEW (CDFOGEPF)

The investigation of the characteristic ”supersaturation” of the cdf (1) to the hori-

zontal asymptote is important.

The quantile function is defined by:
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Figure 1: The function Q(u) for α = 1.9, β = 2, λ = 1.5 and θ = 0.9.

Q(u) = β

(

−
ln(1− u

1

θ )

λ− ln(1− u
1

θ )

)
1

α

(3)

(see, Fig. 1 for α = 1.9, β = 2, λ = 1.5 and θ = 0.9).

The median is obtained by substituting u = 0.5 in (3).

Let t0 is the value for which M(t0) =
1
2 , i.e. t0 = u(0.5) .

The one–sided Hausdorff distance d between the function ht0(t) and the cdf (1)

satisfies the relation

M(t0 + d) = 1− d. (4)

For given β, θ, α, λ, the nonlinear equation M(t0 + d) − 1 + d = 0 has unique

positive root – d.

The cdf (1) for λ = 1.5, β = 2, θ = 0.9, α = 1.9 and t0 = 1.04818 is visualized on

Fig. 2.

From the nonlinear equation (4) we have: d = 0.266933.

The cdf (1) for λ = 25.6, β = 1.8, θ = 0.999, α = 1.4 and t0 = 0.133999 is

visualized on Fig. 3.

From the nonlinear equation (4) we have: d = 0.139343.

From the above examples, it can be seen that the ”supersaturation” by the (cdf)

M(t) is faster.

Obviously, this ”advantage” can actually be used to approximate some specific

”cumulative data” from different branches of science.

In the next Section, we will support what is said by analyzing real datasets.

2.2. APPLICATIONS

Welchia worm ransomware has a long growing phase in contrast to many other threats.
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Figure 2: The cdf (1) for λ = 1.5, β = 2, θ = 0.9, α = 1.9 and t0 = 1.04818;

H–distance d = 0.266933.

Figure 3: The cdf (1) for λ = 25.6, β = 1.8, θ = 0.999, α = 1.4 and

t0 = 0.133999; H–distance d = 0.139343.

Welchia worm uses a vulnerability in the Microsoft remote procedure call service.

Welchia firstly checks for Blaster worm and if it is exists continues with Blaster

deletion as well as takes care for computer to be immunised for Blaster worm.

Example 1. Analysis of Welchia worm infection behavior

For epidemic as Welchia worm it is appropriately to use a model

M∗(t) = ω
(

1− e−λ( tα

βα
−tα )

)θ

(5)

for approximating data from the statistics collected on an individual Welchia [4] hon-

eypot administered by Frederic Perriot between August 24th, 2003 and February 24th,
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Figure 4: The cumulative number of Welchia attackers [4].

2004, shown in Fig. 4.

We will explore this example by photographing the data from Fig. 4.

data Welchia :=

{{1.1, 1000}, {2, 2333}, {3, 3500}, {4, 5000}, {5, 6833}, {6, 8000},

{7, 9333}, {8, 10500}, {9, 12000}, {10, 14000}, {11, 16333},

{12, 18167}, {13, 19667}, {14, 21000}, {15, 22667}, {16, 23667},

{17, 25000}, {18, 26333}, {19, 27500}, {20, 28333}, {21, 29333},

{22, 29500}, {23, 29500}, {24, 29500}, {25, 29500}, {26, 29500},

{27, 29500}, {28, 29500}, {29, 29500}, {30, 29500}, {31, 29667},

{32, 29667}}

The fitted model is given by

λ = 2.51375; β = 33; θ = 0.999; α = 1.31223; ω = 30000.

We receive an impressive result when approximating these data, see Fig. 5.

Comparison between M∗(t) and the model M∗

1 (t) [5] with λ = −0.1; β =

0.0385232; θ = 0.602142; ω = 30000 (see, Fig. 6):
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Figure 5: The fitted model M∗(t).

Figure 6: The fitted models M∗(t)–blue and M∗

1 (t)–dashed.

M∗

1 (t) = ω



1−

(

1 +
eθ((1−λtθ)−

1

λ −1) − 1

eθ − 1

)−β


 (6)

Example 2. Analysis of data ”growth of the cumulative number of TREZ pub-

lications” [6], [7]
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Figure 7: The fitted model M∗(t).

data Journal

:= {{1.1, 5}, {2, 37}, {3, 107}, {4, 201}, {5, 298}, {6, 439},

{7, 617}, {8, 773}, {9, 936}, {10, 1121}, {11, 1316},

{12, 1451}, {13, 1563}, {14, 1629}, {15, 1722}, {16, 1788}};

After that using the model M∗(t) = ωM(t) for λ = 4.80604, β = 22.1, θ =

0.9, α = 2.33693 and ω = 1800 we obtain the fitted model (see, Fig. 7).

Example 3. Analysis of data set ”US mobile”, [7]

dataMobile

:= {{3, 20.29}, {4, 25.08}, {5, 30.81}, {6, 38.75}, {7, 45}, {8, 49.16},

{9, 55.15}, {10, 62.852}, {11, 68.63}, {12, 76.64}, {13, 82.47},

{14, 85.68}, {15, 89.14}, {16, 91.864}, {17, 95.28}, {18, 98.17}};

After that using the model M∗(t) = ωM(t) for λ = 3.10703, β = 20.1, θ =

0.183849, α = 5.26477 and ω = 100 we obtain the fitted model (see, Fig. 8).

Example 4. Software Failure Data – Release #1. These data derive from one

major release of software products at Tandem Computers [8], [9]
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Figure 8: The fitted model M∗(t).

Figure 9: The fitted model M∗(t).

data PhamNordmanZhang := {{1, 16}, {2, 24}, {3, 27}, {4, 33},

{5, 41}, {6, 49}, {7, 54}, {8, 58}, {9, 69}, {10, 75}, {11, 81}, {12, 86},

{13, 90}, {14, 93}, {15, 96}, {16, 98}, {17, 99}, {18, 100}, {19, 100},

{20, 100}};

For this data the fitted model for estimated parameters: ω = 100; α = 0.0265009;

β = 20.1; λ = 0.0336371; θ = 1.69507 is plotted on Fig. 9.
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3. CONCLUDING REMARKS

Finally, we note that the studied model produces extremely good results, generally

when approximating specific ”cumulative data” from Computer Viruses Propagation,

Debugging and Test theory.

For other approximation and modelling results, see [10]–[23].

We hope that the results will be useful for specialists in this scientific area.
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