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ABSTRACT: In this paper we study the characteristic - ”saturation” of the cumu-

lative distribution function of the ”Type I General Class of Distributions” proposed

by Hamediani et al. [1] to the horizontal asymptote in the Hausdorff sense.

We also analyze some experimental data.

The experiments show that in some cases the use of the model proposed in [1] and

analyzed in this article with ”respect to the Hausdorff distance” is satisfactory.

Numerical examples, illustrating our results are presented using programming en-

vironment CAS Mathematica.
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1. INTRODUCTION AND PRELIMINARIES

Definition 1. The cdf of the ”Type I general exponential–exponentiated–exponential

distribution” is defined by [1]
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M(t) = eλ(1−((1−e
−

t

θ )b)−α), (1)

for t ≥ 0, and λ > 0, b > 0, θ > 0, α > 0.

Some properties and applications can be found in [1]–[3].

Definition 2. The shifted Heaviside step function is defined by

ht0(t) =























0, if t < t0,

[0, 1], if t = t0,

1, if t > t0

Definition 3.The Hausdorff distance [4] (the H–distance) ρ(f, g) between two interval

functions f, g on Ω ⊆ R, is the distance between their completed graphs F (f) and

F (g) considered as closed subsets of Ω× R.

More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||},

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB, xB) in R
2 is ||A−B|| =

max(|tA − tB |, |xA − xB|).

We study the Hausdorff approximation of the shifted Heaviside step function by

the family of type (1).

2. MAIN RESULTS AND NUMERICAL EXAMPLES

We consider the class of this family:

M(t0) =
1

2
; t0 = −θ ln

(

1−

(

1 +
ln 2

λ

)−
1

bα

)

. (2)

The one–sided Hausdorff distance d between the function ht0(t) and the sigmoid

(1)–(2) satisfies the relation

M(t0 + d) = 1− d. (3)

For given λ > 0, b > 0, θ > 0, α > 0 the nonlinear equation M(t0 + d)− 1+ d = 0

has unique positive root – d.

The model (1)–(2) for λ = 1.5, b = 0.5, θ = 0.3, α = 0.4 and t0 = 0.0486371 is

visualized on Fig. 1.

From the nonlinear equation (3) we have: d = 0.181134.
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Figure 1: The model (1)–(2) for λ = 1.5, b = 0.5, θ = 0.3, α = 0.4 and

t0 = 0.0486371; H–distance d = 0.181134.

Figure 2: The model (1)–(2) for λ = 0.5, b = 0.9, θ = 0.25, α = 0.15 and

t0 = 0.0003984; H–distance d = 0.0862234.

The model (1)–(2) for λ = 0.5, b = 0.9, θ = 0.25, α = 0.15 and t0 = 0.0003984 is

visualized on Fig. 2.

From the nonlinear equation (3) we have: d = 0.0862234.

Some computational examples are presented in Table 1.

From the above examples, it can be seen that the ”super saturation” is faster.

1. We examine the following data for the growth of red abalone Haliotis Rufescens

in Northern California (see, Fig. 3 [5])

The fitted model Mast(t) = ωM(t) for λ = 0.754, b = 0.775696, θ = 18.6101, α =

0.749892 and ω = 270 is visualized on Fig. 4.

2. Analysis of data ”growth of the cumulative number of TREZ publications” [6],



180 A. MALINOVA, O. RAHNEVA, T. TERZIEVA, AND E. ANGELOVA

α b λ θ t0 H − distance

0.4 0.5 1.5 0.3 0.0486371 0.181134

0.4 0.5 0.9 0.25 0.0148142 0.13983

0.5 0.6 1 0.1 0.0189776 0.103801

0.15 0.9 0.5 0.25 0.0003984 0.0862234

0.2 0.7 0.4 0.15 0.00011417 0.0627285

0.12 0.6 0.7 0.15 0.000010586 0.0579859

Table 1: The Hausdorff distance d computed by nonlinear equation (3)

Figure 3: The extended data for modeling the growth of red abalone Haliotis

Rufescens in Northern California.

[7]

data Journal

:= {{1.1, 5}, {2, 37}, {3, 107}, {4, 201}, {5, 298}, {6, 439},

{7, 617}, {8, 773}, {9, 936}, {10, 1121}, {11, 1316},

{12, 1451}, {13, 1563}, {14, 1629}, {15, 1722}, {16, 1788}};

After that using the model M∗(t) = ωM(t) for λ = 4.24, b = 0.957212, θ =

4.77001, α = 0.954099 and ω = 2000 we obtain the fitted model (see, Fig. 5).
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Figure 4: The fitted model M∗(t).

Figure 5: The fitted models M∗(t).

3. CONCLUSIONS

The proposed growth model can be successfully used with success (of course, after

extensive research) in the field of analysis of Computer Viruses Propagation, Bio-

chemical sciences and Debugging and Test Theory.

For some approximation, computational and modelling aspects, see [8]–[29].

The experiments show that in some cases the use of the model proposed in [1] and
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analyzed in this article with ”respect to the Hausdorff distance” is satisfactory.

Specialists working in this scientific field have a say.
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