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ABSTRACT: In [1] Aggarwal, Gandhi, Verma and Tandon considered a new four–

parameter expected mean number of faults - function M(t) by:

M(t) =
a

1− α

(

1− (1 + bt)r(1−α)e−btr(1−α)
)

,

where α is the constant rate at which new faults are introduced.

Also of interest to the specialists is the task of approximating the Heaviside func-

tion

ht0(t) =















0, if t < t0,

[0, 1], if t = t0,

1, if t > t0

where t0 is the median, i.e. M(t0) =
1
2 with the new function in the Hausdorff sense.

We give example with real dataset.

Numerical examples, illustrating our results are presented using programming en-

vironment CAS Mathematica.
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1. INTRODUCTION AND PRELIMINARIES

Reliability modelling is a process of determining an appropriate mathematical expres-

sion which can describe the time–based software failure process.

Some software reliability models and studies on their ”intrinsic properties”, can

be found in [3]–[43], [57].

In this note we study the Hausdorff approximation of the Heaviside function ht0(t)

by function M(t), defined by Aggarwal, Gandhi, Verma and Tandon.

The model have been tested with real-world data.

Definition 1. Aggarwal, Gandhi, Verma and Tandon [1] developed the following

new function:

M(t) =
a

1− α

(

1− (1 + bt)r(1−α)e−btr(1−α)
)

, (1)

where α is the constant rate at which new faults are introduced.

Definition 2. The shifted Heaviside step function is defined by

ht0(t) =























0, if t < t0,

[0, 1], if t = t0,

1, if t > t0

(2)

Definition 3. [2] The Hausdorff distance (the H–distance) ρ(f, g) between two

interval functions f, g on Ω ⊆ R, is the distance between their completed graphs F (f)

and F (g) considered as closed subsets of Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||, sup
B∈F (g)

inf
A∈F (f)

||A−B||},

wherein ||.|| is any norm in R
2, e. g. the maximum norm ||(t, x)|| = max{|t|, |x|};

hence the distance between the points A = (tA, xA), B = (tB, xB) in R
2 is ||A−B|| =

max(|tA − tB|, |xA − xB|).
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Figure 1: The model (1) for a = 0.9, b = 1.1, α = 0.1, r = 7 and t0 =

0.495576; H–distance d = 0.24896.

2. MAIN RESULTS

2.1. A NOTE ON THE NEW AGGARWAL, GANDHI, VERMA AND

TANDON’S SOFTWARE RELIABILITY GROWTH MODEL (1)

The investigation of the characteristic ”supersaturation” of the model (1) to the hor-

izontal asymptote is important.

Let t0 is the value for which M(t0) =
1
2 .

The one–sided Hausdorff distance d between the function ht0(t) and the M(t)

satisfies the relation

M(t0 + d) = 1− d. (3)

For given α, a, b, r and t0, the nonlinear equation M(t0+d)−1+d = 0 has unique

positive root – d.

The model (1) for a = 0.9, b = 1.1, α = 0.1, r = 7 and t0 = 0.495576 is visualized

on Fig. 1.

From the nonlinear equation (3) we have: d = 0.24896.

The model (1) for a = 0.99, b = 1.7, α = 0.01, r = 10 and t0 = 0.248392 is

visualized on Fig. 2.

From the nonlinear equation (3) we have: d = 0.173821.

The model (1) for a = 0.999, b = 2, α = 0.001, r = 20 and t0 = 0.120403 is

visualized on Fig. 3.

From the nonlinear equation (3) we have: d = 0.136971.

Some computational examples are presented in Table 1: ”The saturation with the

model (1) in Hausdorff sence”.

From the above examples, it can be seen that the ”supersaturation” by the M(t)

is faster.
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Figure 2: The model (1) for a = 0.99, b = 1.7, α = 0.01, r = 10 and t0 =

0.248392; H–distance d = 0.173821.

Figure 3: The model (1) for a = 0.999, b = 2, α = 0.001, r = 20 and

t0 = 0.120403; H–distance d = 0.136971.

Obviously, this ”advantage” can actually be used to approximate some specific

data.

In the next Section, we will support what is said by analyzing real dataset: ”actual

data to estimate the number of software residual faults” [44]–[45].

2.2. APPLICATION

We analyze the following ”actual data to estimate the number of software residual

faults” [44]–[45] (see, Fig. 4).
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a b α r t0 H − distance

0.9 1.1 0.1 7 0.495576 0.24896

0.99 1.7 0.01 10 0.248392 0.173821

0.999 2 0.001 20 0.120403 0.136971

0.999 2.5 0.001 25 0.101782 0.0969141

0.9999 2.6 0.0001 30 0.0887109 0.0876929

0.9999 3 0.0001 40 0.0659675 0.07056

0.9999 4 0.0001 50 0.0439719 0.0520972

Table 1: ”The saturation with the model (1) in Hausdorff sense”. The Haus-

dorff distance d computed by nonlinear equation (3)

data Satoh :=

{{1, 248}, {2, 262}, {3, 372}, {4, 526}, {5, 742},

{6, 958}, {7, 1215}, {8, 1471}, {9, 1738}, {10, 1936},

{11, 1971}, {12, 2147}, {13, 2258}, {14, 2418}, {15, 2567},

{16, 2688}, {17, 2809}, {18, 2925}, {19, 3026}, {20, 3205},

{21, 3348}, {22, 3476}, {23, 3573}, {24, 3719}, {25, 3750},

{26, 3952}, {27, 4048}, {28, 4137}, {29, 4251}, {30, 4301},

{31, 4351}, {32, 4401}, {33, 4439}, {34, 4488}, {35, 4548},

{36, 4596}, {37, 4629}, {38, 4680}, {39, 4713}, {40, 4749},

{41, 4783}, {42, 4817}, {43, 4849}, {44, 4877}, {45, 4901},

{46, 4928}, {47, 4950}, {48, 4970}, {49, 4998}, {50, 5024},

{51, 5060}, {52, 5085}, {53, 5088}, {54, 5090}, {55, 5110},

{56, 5129}, {57, 5139}, {58, 5167}, {59, 5186}}.

After that using the model M(t) for α = 0.1, a = 4667.4, b = 0.286409 and

r = 0.299832 we obtain the fitted model (see, Fig. 4).

Remark. In many cases it is appropriate to use the following model by Diwakar,

A. G. Aggarwal [42]:

M1(t) =
a

1− α

(

1− e−b(1−α) t
k+1

k+1

)

, (4)

where α is the constant rate at which new faults are introduced.

After that using the model M1(t) for α = 0.1, a = 4667.4, b = 0.0293167 and

k = 0.306508 we obtain the fitted model (see, Fig. 5).
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Figure 4: The fitted model M(t).

Figure 5: The fitted model M1(t).

Fig. 4 and Fig. 5 shows that the M(t) and M1(t) models used are comparable,

with a slight advantage in approximating the specific database in favor of the M(t)

model.
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3. CONCLUDING REMARKS

The analysis we conducted in this article on the new Diwakar and Aggarwal’s model

shows its advantages and reliability compared to other similar models.

For other approximation and modelling results, see [46]–[56].

We hope that the results will be useful for specialists in this scientific area.
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