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ABSTRACT: In this paper we study a spacially compact spacetime (M, g) evolved through a
conformal Killing vector (CKV) field ξ such that: (a) the normal component of ξ is constant on
each spacelike slice Σ and each Σ has constant mean curvature; (b) the stress energy tensor obeys
the mixed energy condition; (c) the conformal scalar function is non-decreasing along the evolution
CKV field ξ. We prove that: (i) ξ is homothetic and orthogonal to Σ: (ii) Σ is hyperbolic and totally
umbilical in M ; and (iii) M is a vacuum spacetime. We also discuss a physically important case of
Killing horizon when ξ is a null Killing vector field and Σ degenerates to a null hypersurface.
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1. INTRODUCTION

Solutions of the highly nonlinear Einstein’s field equations requires the assumption

that they admit Killing or homothetic vector fields. Even though these solutions

provide significant clues and insights into astrophysical and cosmological questions, it

would be interesting to analyze solutions with weaker symmetries, such as a conformal

Killing vector (CKV). Robertson-Walker spacetimes admit a G6 of Killing vectors and

a G9 of CKVs, see Maartens and Maharaj [7]. A CKV preserves the causal character

of the spacetime but does not preserve the Einstein tensor, and hence is not a natural

symmetry. In spite of this, many solutions with a CKV are known (see Duggal and

Sharma [4]).

Considering a solution of Einstein’s equations as the time evolution of an initial

spacelike hypersurface has proved useful in quantization of gravity, gravitational ini-

tial value problem, the computer evolution of colliding black holes and collapsing
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stars. Using this formalism Eardley et al [6] proved the following result “Let (M, g)

be a globally hyperbolic spacetime which: (a) satisfies the Einstein’s equations for

a stress tensor T obeying the mixed and dominant energy conditions; (b) admits a

homothetic vector field ξ of g; and (c) admits a compact hypersurface of constant

mean curvature. Then either (M, g) is an expanding vacuum hyperbolic model or ξ

is Killing”. Intrigued by Sharma [8] obtained the following result: “Let (M, g) be a

spacetime solution of Einstein’s equations admitting a CKV field ξ and be evolved

out of a complete spacelike hypersurface Σ such that: (a) Σ is totally umbilical in M ;

(b) the normal component of ξ is non-constant on Σ; and (c) the normal sectional

curvature of M is independent of the tangential direction at each point of Σ. Then

Σ is conformally diffeomorphic to (i) a 3-sphere, or (ii) Euclidean space E3, or (iii)

hyperbolic space H3, or (iv) the Riemannian product of a complete 2-dimensional

manifold and an open real interval. If Σ is compact, then only (i) holds.” Also see

some more results in Duggal and Sharma [5].

In this paper we examine the case when the normal component of the CKV ξ is

constant on Σ. We also obtain a condition for ξ to be null when Σ degenerates to a

null hypersurface as a Killing horizon.

2. PRELIMINARIES

We use the 3+1 splitting (see Arnowitt et al [1]) of the spacetime manifold (M, g).

This assumes a thin sandwich of (M, g) evolved from a spacelike hypersurface Σt at

a coordinate time t to another spacelike hypersurface Σt+dt at coordinate time t + dt

with the metric g given by

ds2 = −λ2dt2 + gab(dxa + Sadt)(dxb + Sbdt) , (1)

where x0 = t,and xa are three spatial coordinates; λ is the lapse function and Sa∂/∂xa

is shift vector. For brevity we denote Σt by Σ. Let N = −λ∇̄t be the unit future

pointing normal vector to Σ, where ∇̄ is the spacetime covariant derivative operator.

Denote arbitrary vector fields tangent to Σ by X, Y, Z, W . Let K denote the shape

operator of Σ defined by the Weingarten formula KX = ∇̄XN . If i : Σ → M is the

embedding map, then the pull-back γ = i∗g is the 3-metric induced on Σ. The pair

(γ, K) constitutes the initial data for the evolution. Denote the traceless part of K

by L, i.e. L = K − τ
3
I, where τ = TrK, and I is the identity tensor. Using the

Gauss-Codazzi-Mainardi equations and Einstein’s field equations

R̄ic − r̄

2
ḡ = 8πT (2)

one obtains the constraint equations

r +
2τ 2

3
− |L|2 = 16πTnn and (divL)X − 2

3
Xτ = 8πT (X, N), (3)
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where R̄ic and r̄ are the Ricci tensor and scalar curvature of g, and r is the scalar

curvature of the 3-metric γ. Also, T is the stress-energy tensor and Tnn = T (N, N).

Assume that (M, g) admits a CKV field ξ, i.e. satisfies

£ξg = σg (4)

for a smooth conformal scalar function σ. Decompose ξ orthogonally as ρN + V ,

where V is the tangential part of ξ. Following Berger [2], set the evolution vector

field ∂/∂t equal to the CKV field ξ so that λ = ρ. As derived in Eardley et al [6],

Sharma [8], we write the following conformal evolution equations

(£V γ)(X, Y ) = σγ(X, Y ) − 2ργ(LX, Y ) − 2
ρτ

3
γ(X, Y ), (5)

(£V L)X = −(∇XDρ − ∇2ρ

3
X) − 8πρ(TX − T m

m

3
X)

+(ρτ − σ

2
)LX + ρ(QX − r

3
X), (6)

£V τ =
3Nσ

2
− στ

2
−∇2ρ + ρ[

τ 2

3
+ |L|2 + 4π(T m

m + Tnn)]. (7)

3. RESULTS

Recall that a stress energy tensor T is said to obey mixed energy condition (e.g.

Eardley et al [6]) if at any point x on Σ, the strong energy condition Tnn + T m
m |x ≥ 0

holds and equality implies vanishing of all components of T at x.

Theorem 1. Let (M, g) be a spatially compact spacetime evolved by a CKV field ξ

whose normal component ρ is constant on each spacelike slice Σ (t = a constant) and

each Σ has constant mean curvature. Then:

(a) ρ satisfies the differential equation

d2

dt2
(ln ρ) +

ρ2

3
[|L|2 + 4π(T m

m + Tnn)] = 0 and σ = 2
d ln ρ

dt
. (8)

(b) Moreover, if (1) the stress energy tensor obeys the mixed energy condition, (2)

the conformal scale function is non-decreasing along ξ, then: (i) ξ is homo-

thetic and orthogonal to Σ; (ii) Σ is hyperbolic and totally umbilical in (M, g);

and (iii) (M, g) is a vacuum spacetime.

Proof. As shown in Berger [2], the decomposition of the conformal Killing equa-

tion (4) into tangential-tangential, tangential-normal and normal-normal components

yields equation (5) and the following equations

∇̄NV = KV + Dρ − ρD ln λ + (V ln λ)N, (9)

σ = 2V ln λ + 2Nρ. (10)
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By hypothesis, λ = ρ are constants on each Σ. So (10) reduces to

σ = 2Nρ (11)

and (9) reduces to ∇̄NV = KV . Hence £ξN = −σ
2
N . Operating (10) by ∇̄N and

using the commutation relation (see Yano [9], p. 39)

£ξ∇̄NN − ∇̄N£ξN − ∇̄[ξ,N ]N = (£ξ∇̄)(N, N) ,

we get σ∇̄NN = 2(Nσ)N + D̄σ. Taking its inner product with N shows that D̄σ =

−(Nσ)N , i.e. σ is a function of only t. Now the γ-trace of (5) is 2divV = 3σ − 2ρτ .

As Σ is compact, using divergence theorem in this equation and noting that τ is

constant on Σ we have

3σ = 2ρτ. (12)

In view of (12) and (11) we obtain τ = 3N ln ρ. Using equation (7) and noting that

∂t = ρN + V we obtain (8) which proves (a).

In view of (11), equation (8) assumes the form

dσ

dt
+

2ρ2

3
[|L|2 + 4π(T m

m + Tnn)] = 0 .

By hypothesis, the first term of the above equation is non-negative which implies that

σ is constant on M , i.e. ξ is homothetic, and since T obeys mixed energy condition we

also conclude that L = 0, i.e. Σ is totally umbilical and T = 0 on each Σ, i.e. (M, g)

is a vacuum spacetime. Consequently, first equation of (3) reduces to r = −2 τ2

3
. Also

equation (6) reduces to

Ric = −2τ 2

9
γ. (13)

As (Σ, γ) is a 3-dimensional Riemannian space, its Weyl conformal tensor is zero.

Hence (13) implies that γ has constant negative curvature. Only the standard hy-

perbolic metrics satisfy this condition, and they are specified by the choice of global

topology and the choice of a single scale factor. Furthermore we see from (5) and (12)

that V is a Killing vector on (Σ, γ). However we know from Yano [9], Theorem 6.1,

p. 46, that a compact Riemannian manifold with negative definite Ricci tensor can

not admit a CKV field other than the zero vector field. Thus, V = 0 so homothetic

vector field ξ is orthogonal to Σ, which proves (b) and the proof is complete. �

Proposition 1. (see Duggal and Sharma [5]) A null CKV field on a spacetime (M, g)

is a geodesic vector field.

Now we consider the case when the evolution vector field ξ is a null CKV field on

(M, g). First we prove the following result.

Theorem 2. Let (M, g) be a spacetime evolved through a 1-parameter family of

spacelike hypersurfaces Σt such that the evolution vector field ξ is a null CKV field on

(M, g). Then ξ reduces to a Killing vector field if and only if the part of ξ tangential



Spacetime Solutions of Einstein’s Equations 19

to Σt is asymptotic everywhere on Σt for all t. Moreover, ξ is a geodesic vector field.

Proof. First we write equation (5) as

(£V γ)(X, Y ) = σγ(X, Y ) − 2ργ(KX, Y ) (14)

for any vector fields tangent to Σt. As ξ is null, we have

γ(V, V ) = ρ2, (15)

which gives γ(∇XV, V ) = ρXρ. Substituting V for Y in (14) we get

∇V V + ρDρ = σV − 2ρKV, (16)

where D is the gradient operator of the 3-metric γ. Taking inner product of (9) with

V gives g(∇̄NV, V ) + ρV ln λ − γ(KV, V ) − V ρ = 0, which in view of (15) assumes

the form

ρNρ + ρV ln λ − γ(KV, V ) − V ρ = 0. (17)

As γ(∇V V, V ) = ρV ρ, taking inner product of (16) with V yields

ργ(KV, V ) =
σ

2
|V |2 − ρV ρ. (18)

As ξ is the evolution vector field, we have λ = ρ, and hence ρ > 0. The use of (18)

in (17) gives ρNρ = V ρ + σ
2ρ
|V |2. Using this last equation and (18) we get ρNρ =

σ
ρ
|V |2 − γ(KV, V ). Now using (17) in this last equation we obtain γ(KV, V ) = σ

2
ρ.

This shows that σ = 0 on M if and only if γ(KV, V ) = 0, i.e. V is asymptotic

everywhere on Σt for all t. Finally, ξ geodesic follows from Proposition 1, which

completes the proof. �

Observe that when ξ is null the coefficient of dt2 in the metric of g vanishes i.e.,

λ2 = SaSa. Now, using (15) and λ = ρ we have Sa = V a so that λ2 = V aVa. Thus,

the metric g of M takes the form

ds2 = 2gabV
adxbdt + gabdxadxb. (19)

Consequently, the absence of dt2 in (19) implies that there exists a foliation of null hy-

persurfaces (Σ0, γ
0), of M , defined by {x1 = constant} whose each induced degenerate

metric γ0 is given by

ds2
γ0 = γ0

aαV adxαdt + γ0
αβdxαdxβ, 2 ≤ α, β ≤ 3, (20)

such that the null Killing vector field ξ is tangent to the null hypersurface Σ0. More-

over, as per Proposition 1, ξ is a geodesic vector field. At this point we follow Duggal

and Sharma [4], Chapter 2, Section 2.7. Contrary to the Riemannian case, for null
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hypersurfaces both the tangent space Tp(Σ0) and the normal space Tp(Σ0)
⊥, at every

point p of Σ0, are degenerate. Moreover,

Tp(Σ0) ∩ Tp(Σ0)
⊥ = Tp(Σ0)

⊥, dim(Tp(Σ0)
⊥) = 1.

Dropping the suffix p we let S(TΣ0) be the 2-dimensional complementary spacelike

distribution to T (Σ0)
⊥ in T (Σ0). Then we have

T (M) = S(TΣ0) ⊕ S(TΣ0)
⊥, S(TΣ0) ∩ S(TΣ0)

⊥ = {0}, (21)

where S(Σ0)
⊥ is a 2-dimensional complementary orthogonal distribution of T (M).

Let T (Σ0)
⊥ be spanned by {`}, where ` is a real null vector.

Theorem. (see Duggal and Sharma [4], p. 29) Let (Σ0, γ
0, S(TΣ0)) be a null hy-

persurface of a 4-dimensional Lorentz manifold (M, g). Then, with respect to each

coordinate neighborhood U of Σ0, there exists a unique null distribution E = ∪p∈Σ Ep,

where E is spanned by a unique null vector field n such that

g(`, n) = 1, g(n, n) = g(n, X) = 0, ∀X ∈ Γ(S(TΣ0)|U). (22)

Using (21) and (22) we have the following decompositions:

T (M) = S(TΣ0) ⊕ (T (Σ)⊥ + E) and T (Σ) = S(TΣ0) ⊕ T (Σ)⊥, (23)

where + denotes non-orthogonal complementary sum. Using above and (20) we say

that the metric of a leaf Li of S(TΣi
0) is given by

ds2|S(TΣi

0
) = γi

αβdxαdxβ. (24)

4. PHYSICAL INTERPRETATION

Denote the null evolution vector field on M by ξ0. We first recall the concept of

Killing horizon (see Carter [3]) which is defined as the union Σ0 =
⋃

Σi
0, where Σi

0 is

a connected component of the set of points forming a null hypersurface on which a

Killing vector field ξ0 is null and is nowhere vanishing. Now we show how a Killing

horizon acts as a link between the spacelike hypersurfaces of Theorem 1 and a foliation

of null hypersurfaces (Σ0, γ
0, S(TΣ0)) of M .

Consider a pseudo-orthonormal basis {`, n, u, v} at each point p ∈ M , where

{`, n}, satisfying (21), are future directed null vectors, {u, v} are unit spacelike vec-

tors. Let H be an orientable spacelike 2 - surface of (M, g) such that TpH is generated

by {u, v}. Thus, we have

TM = TH ⊕ TH⊥ ,

where the normal bundle TH⊥ is generated by {`, n}. Let (M, g) be evolved through

a family of spacelike hypersurfaces Σs, with ξs the evolution CKV field as described

in Theorem 1. and containing Hs as a codimension one submanifold, where s ∈ (0, δ)
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and δ > 0. Let Cs be a differentiable curve of Σs such that for each s, the unit normal

vector field of Ns is given by

Ns =
1√
2
(s−1n − s`),

such that the component of Ns in the `-direction vanishes as s → 0. This means that

Ns approaches a null vector field N0 which is entirely in the n - direction as s → 0.

From this data we construct a null hypersurface Σ0 of M in the following way:

Suppose Ω(Σs) is an object defined on each spacelike hypersurface Σs. Then, the

concept of null limit (explained above) can be used to define analogous object Ω(Σ0),

for the null hypersurface Σ0, by defining

Ω(Σ0) = Lims→oΩ(Σs) ,

In this way, we say that

Σ0 = Lims→o(Σs) such that Lims→o(ξs) = ξ0

is the null Killing geodesic vector field of Σ0 which is Killing horizon as a boundary,

where ξs approaches ξ0 and the spacelike hypersurface Σs degenerates to the null

hypersurface Σ0. Contrary to the non-degenerate case, ξ0 can not be uniquely ex-

pressed as a sum of its tangential and normal components. Instead, using (23) we

can decompose null ξ0 of Σ0 in terms of three componets as

ξ0 = V +
λ√
2
(` − n).

Furthermore, it follows from (1) that the induced metric of each spacelike 2-surface

H i ⊂ Σi ⊂ M can be expressed as

ds2|Hi = γi
αβdxαdxβ, 2 ≤ α, β ≤ 3 ,

where we define H i in Σi by x1 = constant. Compairing above with (24) we con-

clude that a leaf Li of a chosen screen distribution S(Σi
0) can be identified with each

corresponding spacelike 2-surface H i ⊂ Σi
0 ⊂ M , that is each

Σi
0 ⊃ Li = H i ⊂ Σi

is a common 2-surface of both Σ0 and Σt. For some more basic details on null

hypersurfaces, see Duggal and Sharma [4], Chapter 2, Section 7.
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