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ABSTRACT: The source of zero point field (ZPF) as an aggregate of random electromagnetic
fields generated by charged particles through out the universe is shown to be inconsistent with
Lorentz invariance. Here, we have used the idea of statistically stable distributions in analyzing the
spectral density of ZPF.
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1. INTRODUCTION

The idea of real zero point fluctuations was introduced by Plank [10] in connection

with his second form of the Planck distribution, which differed from the first one,

aside from conceptual matters, just by the presence of an extra term that assigns an

energy 1/2hw to the fluctuations of each oscillator. It was Nernst [7] who took the

matter seriously and even generalized the idea by applying it to the oscillators of the

field. The idea of real zero point fluctuation has been put forward time and again

from different considerations (see Sakharov [12], or Misner et al [6]). Weisskopf [13]

and Welton [14] considered the vacuum field of quantum electrodynamics (QED) as

real field. Welton explained Lamb shift by considering the effect of fluctuation of this

vacuum field to the hydrogen atom. Braffort et al [1] came to the conclusion that

in absorber theory of Wheeler and Feynman there must exist a remnant fluctuating

field, due to the highly irregular motion of the atoms of the absorber and concluded

that the spectral density of the vacuum field should be of the form

ρ(w) = aw3 ,
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where w denotes the frequency. The fundamental properties of the zero point field

are:

(1) It is homogeneous.

(2) It is isotropic.

(3) It is stationary field with a Lorentz invariant spectrum.

Homogeneity and isotropy are required to guarantee that no position and no di-

rection in space are privileged. Lorentz invariance is required to guarantee that no

inertial frame is preferred. In a recent paper Braffort [2], Ibison observed that the

w3 spectrum is the only spectrum that is self-consistent and self-maintaining in a

expanding (or contracting) cosmology with an FRW metric, in addition to Lorentz

Invariance. Ibison and Haisch also discussed the quantum and classical statistics of

the ZPF. They emphasized on the connection between the probability distributions

of the stochastic variables in the classical field, and those of the Fourier amplitudes of

the quantum field theory. In this paper we investigate the source of ZPF in the light

of statistically stable distributions. This shows that ‘random aggregate’ of minute

sources cannot possibly give rise to the ZPF. One may have to sacrifice Lorentz in-

variance of ZPF under such a ‘random aggregate’ model. In Section 2, we shall briefly

discuss the characteristics of the ZPF for our convenience. Then we shall study the

stability of distributions in Section 3. Finally we shall indicate its consequences in

Section 4.

2. ZERO POINT FIELD

Let us consider the radiation field in a cubic box of side L with perfectly conducting

walls. For simplicity let us describe these in coulomb gauge. Then a decomposition

of the vector potential into plane waves with propagation vector ~k and frequency

w(= ck), k = ~k, gives

~A =
1

L3/2

∑

k,λ

ε̂kλ[ckλe
i(~k.~r−wt) + c∗kλe

−i(~k.~r−wt)] , (1)

where ε̂kλ are the polarization vectors λ = 1, 2, which satisfy the transversality

condition
~k.ε̂kλ = 0 and the orthogonality condition:

ε̂kλ.ε̂kλ′ = δλλ′ .

In Coulomb gauge

~E(~r, t) = −1

c

∂ ~A

∂ t
, ~B(~r, t) = ∇ × ~A . (2)

Then the fields can also be decomposed as

~E(~x, t) =

√

4π

L3

∑

n,λ

ε̂nλ[pnλ cos(~kn.~x) + wnqnλ sin(~kn.~x)] , (3)
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~B(~x, t) =

√

4πc2

L3

∑

n,λ

(~knxε̂nλ)[qnλ sin(~kn.~x) +
pnλ

wn
cos(~kn.~x)] , (4)

where q̇nλ = pnλ, ṗnλ = −w2
nqnλ.

Here qnλ and pnλ are random variables. Since equation (3) and (4) refer to a vacuum

field that averages to zero we have

< qnλ >= 0, < pnλ >= 0 .

These are the statistical properties of amplitudes q and p. Again, the idea that the

field is in a maximum state of randomness leads us to assume that each Fourier

component in equation (1) fluctuates independently of the others, i.e. they are not

correlated. Mathematically, we can write (see Ibison [4])

< qnλpn′λ′ >= 0 ,

< qnλqn′λ′ >=
h

2wn
δnn′δλλ′ , (5)

< pnλpn′λ′ >=
1

2
hwnδnn′δλλ′ ,

which is equivalent to assuming that the amplitudes q, p have a Gaussian distribution.

This follows from a general theorem which establishes that a random stationary field

with statistically independent Fourier components, is Gaussian.

Now we calculate the autocorrelation function of the electric field at two different

points (see Ibison [4]) in space-time. We have

< Ei(~x, t)Ej(~x
′, t′) >=

∑

n,n′

∑

λ,λ′

f(wn)f(wn′)ε̂(nλ)i
ε̂(n′λ′)j

×
[

< anλa
∗

n′λ′ei(~kn.~x−wnt)−i(~kn′ .~x′−wn′ t′) >

+ < a∗

nλan′λ′e−i(~kn.~x−wnt)+i(~kn′ .~x′
−wn′ t′) >

]

. (6)

After simplification we get

< Ei(~x, t)Ej(~x
′, t′) >=< Bi(~x, t)Bj(~x

′, t′) >

=
2πh

L3

∑

n

wn(δij −
kni

knj

k2
n

) cos[~kn.(~x − ~x′) − wn(t − t′)] . (7)

Let us use the above results to calculate the energy density of the field. For this

purpose it is convenient to take the limit L → ∞, which is achieved with the substi-

tution
1

L3

∑

n

−→ 1

8π3

∫

d3k .
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We then obtain

< Ei(~x, t)Ej(~x
′, t′) >=

h

4π2

∫

(δij − kikj

k2
)w cos[~k.(~x − ~x′) − w(t − t′)]d3k , (8)

again

∮

(δij −
kikj

k2
)d Ωk =

8π

3
δij . (9)

Changing the variable w = ck; one can get

< Ei(~x, t)Ej(~x
′, t′) >=

2h

3πc3
δij

∫

∞

0

w3 cos

[

(t − t′ − |~x − ~x′|
c

)w

]

dw . (10)

For many applications, the effects of the retardation (at least when |~x − ~x′| is

not too large) are negligible, in those cases we can approximate (10) by its value at

~x′ = ~x. So,

< Ei(~x, t)Ej(~x
′, t′) >=

4π

3
δij

∫

∞

0

ρ(w) cos w(t − t′)dw =
4π

3
δij

∫

∞

0

ρ(w)dw, (11)

taking t ' t′, where ρ(w) = h
2π2c3

w3.

This indicates that the variance of ~E in zero point field (ZPF) is infinite.

3. STABILITY OF DISTRIBUTION

The limiting distribution of standardized sum of independent and identically dis-

tributed (iid) random variables is normal provided the variance is finite (or the trun-

cated variance is a slowly varying function). This concept is generalized by the class of

stable distribution when the truncated variance has growth higher than that already

stated above i.e., the variance is finite or the truncated variance is a slowly varying

function. This is especially relevant in view of the fact that in ZPF the spectral

density is proportional to w3 resulting to the infinite variance of the electromagnetic

variable. We intend to show that under appropriate assumption, ~E (electric field)

falls under stable domain. We briefly discuss the properties of stable distributions

Ibison and Haisch [5] in the followings.

Let X1, · · · , Xn be independent and identically distributed normal random vari-

ables with mean 0 and variance 1, then

X1 + · · ·+ Xn =
√

n(
√

n Xn)
D
=

√
n X , where X ∼ N(0, 1) .

Now let X, X1, · · · , Xn be iid random variable distributed as F , then:

(1) Iff, X1 + · · ·+ Xn
D
= cnX + γn for some cn and γn, then X is said to be a stable

distribution.

(2) If γn = 0, then the distribution is said to be strictly stable.

Every stable distribution with exponent α 6= 1, can be centered so as to become

strictly stable. For γ = 1, the centering constant is γn = γ n log n. It can be shown
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that the scaling constant n1/α is possibility for cn, only when 0 < α ≤ 2. Note

that for small α, cn is much higher than n1/2, the scaling constant of central limit

theorem. The stable distribution for α = 2, corresponds to normal distribution. Now

if we relax the above condition slightly and only require that Ibison and Haisch [5]

X1 + · · · + Xn

cn

− γn
D−→ G ,

then we say that X belongs to domain of attraction of G. It can be shown that then

G is stable. A necessary condition that F falls in the domain of a stable distribution

G = G(α) is that

U(x) =

∫ x

−x

y2dF (y) ∼ x(2−α)L(x), 0 < α ≤ 2

where L is a slowly varying function.

Now note that the truncated variance of E up to frequency w0 (say) becomes

< Ei(w)Ei(w) >|w0
=

4π

3

∫ w0

0

ρ(w)dw ∝ w2−α
0 (12)

if ρ(w) ∝ w(1−α).

So, if the spectral density

ρ(w) ∝ w(1−α), with 0 < α ≤ 2 ,

then E falls in the domain of attraction of stable distribution of exponent α.

The statistical meaning of

ρ(w) 6∼ w(1−α), 0 < α ≤ 2

is that E cannot be represented as sum of several random independent component

variables of equal magnitude. In such a sum representation, contribution from a

few particular component then becomes exceedingly large and no normalization is

possible. For example, consider 0 < α < 1, then

n−1(X1 + · · · + Xn) ∼ X1n
[(−1)+ 1

α
] ,

i.e., average is larger (in distribution) than any given component which means that

max(X1, · · · , Xn) grows at an exceedingly large rate to have a tremendous effect on

the sum to blow it up. Incidentally for α-stable laws, moments of order ≥ α may not

exist as

1 − G(x) + G(−x) ∼ (2 − α)

α
x−αL(x) . (13)

The tail probabilities of these distribution are larger, as a result higher moments

do not exist.

So we see that statistical stability is not in conformity with Lorentz invariance of

ZPF, where we require ρ(w) ∝ w3.

Lorentz invariance may not follow and in fact contradictory to a equally appealing

assumption of the source of ZPF as ‘random aggregate’ of randomly varying motion
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of charged particles, see de La Pena [9]. These particles may also be thought as

the source of random radiations all over the universe. The same idea is also used

to derive the gravitational field of stars. This is called Holtzmark distribution. We

follow the same idea here which leads to a stable distribution of exponent 3/2. Let us

assume that Eλ, the x component of the electric field with density λ has the following

property:

Two independent aggregate of densities λ and µ may be combined into a single

aggregate of densities (λ + µ). This amounts to assuming that

Eλ + Eµ = Eλ+µ . (14)

Now the change of density from 1 to λ amounts to a change of unit length of the

box (in which the field is confined) from 1 to 1/λ(1/3). Also the electric force varies

inversely with the square of the distance. So Eλ must have same distribution as

λ(2/3)E1. This implies that E has a symmetric stable distribution with exponent 2/3,

since for stable α distribution X,

λ1/αX1 + µ1/αX2 = (λ + µ)1/αX .

It may be worth mentioning Feller [3] sketched a calculation supposedly giving the

result that the ZPF is self-consistently sourced by direct-action interactions.

4. CONCLUSIONS

It is evident from the above analysis that the source of ZPF as an aggregate of

random electromagnetic fields generated by charged particles throughout the universe

is inconsistent with Lorentz invariance.

One can also imagine that the frequencies wn appearing in expression (7) may be

either:

(1) of unequal weighting, or

(2) of a dissipative nature where a higher frequency dampens by a contraction factor

depending on the frequency.

In both the situation an extra term say g(w) appears which may be considered

either as unequal weighting or as a contraction factor in (7). Therefore (11) reduces

to

< Ei( ~X, t)Ej( ~X, t) >=
4π

3
δij

∫

∞

0

ρ(w)dw , (15)

with

ρ(w) =
h

2π2c3
w3g(w) .

Now if

g(w) ∝ w−(2+α) for 0 < α ≤ 2 ,
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then E belongs to domain of attraction of a α stable law, α = 2 indicates that the

distribution belongs to normal domain. One may also take

g(w) � exp(−εw), ε > 0 ,

as advocated in equilibrium of electromagnetic radiations with relativistic particle

distribution leading E to the normal domain of attraction.
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