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ABSTRACT: In this paper, we survey the literature on the Fourier and wavelet transforms in both
the continuous and discrete cases. A few new results have been obtained but the tone is intended
to be expository. Finally, we have discussed the Feichtinger space S0. It is dense in L2(R), much
larger than the Schwartz space, and it is a Banach space. Moreover, we have proved some results
using the Schoenberg’s quasi-interpolation techniques in S0.
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1. INTRODUCTION

The time-evolution of the frequencies is not reflected in the Fourier transform, at

least not directly. In theory, a signal can be reconstructed from its Fourier transform,

but the transform contains information about the frequencies of the signal over all

times instead of showing how the frequencies very with time. The wavelet transform

acts as a time and frequency localization operator. Several authors such as Daubechies

et al [1], Duffin and Schaeffer [3], R. Coifman, A.J.E.M. Janssen, S. Mallat, J. Morlet,

P. Tehmitchian and others have extensively developed the theory of continuous and

discrete wavelet transforms.

Frazier and Jawerth [11] developed a discrete wavelet transform which allowed func-

tions in a large class of spaces besides just L2(R) to be analyzed. Later, H. Feichtinger

realized that the same could be done for the Gabor case Feichtinger [6], and then,

together with K. Grochenig, unified the Gabor and wavelet transforms into a single

theory, showing that a large class of transforms give rise to discrete representations of

functions Feichtinger and Grochening [7], Feichtinger and Grochening [8], Feichtinger

and Grochening [9].

The present paper contains three sections. Section 1, i.e., Introduction gives some

definitions and auxiliary results on Fourier transform. Section 2 deals with some new
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results on continuous wavelet transform. An inversion formula has been obtained in

Lp(R), p ≥ 1 using the approximate identity. Finally, in Section 3 we have discussed

the Feichtinger space as a Banach algebra under convolution and obtained some new

results using the technique of quasi-interpolation. An inversion formula for short time

Fourier transform also have been obtained.

1.1. FOURIER TRANSFORMS. The Fourier transform of a function f ∈ L1(R)

is

f̂(ξ) =

∫

R

e−2πiξxdx, ξ ∈ R . (1.1.1)

If f ∈ L1(R) and f̂(ξ) ∈ L1(R), then the inverse Fourier transform of f̂(ξ) is defined

by

f(x) =

∫

R

f̂(ξ)e2πiξxdξ , (1.1.2)

for almost every x ∈ R. If f is continuous, then (1.1.1) holds for every x.

To define the Fourier transform of functions f ∈ L2(R) we can find functions

fn ∈ L1(R)
⋂

L2(R) such that fn → f ∈ L2(R) by real analysis techniques. One way

of choosing the fn as

fn(x) =





f , −n ≤ x ≤ n ,

0 , otherwise ,

then

f̂(ξ) lim
n→∞

∫ n

−n

f(x)e−2πiξxdx ,

this limit is in the Hilbert space L2(R), not a usual pointwise limit.

1.2. DEFINITIONS AND AUXILIARY RESULTS.

1.2.1. Translation, modulation, and dilation. Given a function f we define the fol-

lowing operators.

Translation: Taf(x) = f(x − a) for a ∈ R.

Modulation: Eaf(x) = e2πiaxf(x) for a ∈ R.

Dilation: Daf(x) = |a|−1/2f(x/a) for a ∈ R \ {0}.

Each of these is a unitary operator from L2(R) onto itself. R represents the set of

real numbers. A property is said to hold almost everywhere, denoted a.e. if the set

of points where it fails has Lebesgue measure zero. All functions f are defined on the

real line and are complex valued, unless otherwise indicated.

Definition 1.2.2. Given 1 ≤ p < ∞, we define the Lebesgue space Lp(R) =

{f : ||f ||p =
(∫

R
|f(x)|p

)1/p
< ∞}. For p = ∞, we take L∞(R) = {f : ||f ||∞ =
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ess supx∈R |f(x)| < ∞}. The essential supremum of a real-valued function f is

ess supx∈R f(x) = inf{x ∈ R : f(x) ≤ λ a.e}. It is known that for 1 ≤ p ≤ ∞, Lp(R)

is a Banach space with norm ||.||p and that L2(R) is a Hilbert space with inner

product < f, g >=
∫

R
f(x) ¯g(x)dx. In view of Cauchy-Schwarz inequality it gives

| < f, g > | ≤ ||f ||2||g||2.

Definition 1.2.3. Let ϕ ∈ L1(R) such that
∫

R
ϕ(x)dx = 1. Then ϕε(x) = ε−1ϕ(x/ε)

is called an approximate identity if:

(i)
∫

R
ϕε(x)dx = 1,

(ii) supε>0

∫
R
|ϕε(x)|dx < ∞,

(iii) limε>0

∫
|x|>δ

|ϕε(x)|dx = 0, ∀δ > 0.

Properties (i) and (ii) are obvious due to
∫

R

ϕε(x)dx =

∫

R

ε−1ϕ(x/ε)dx =

∫

R

ϕ(x/ε)d(x/ε) = 1.

For (iii), we have

∫

|x|>δ

ϕε(x)du =

∫

|x|>δ

(1/ε)ϕ(x/ε)du =

∫ ∞

δ

(1/ε)ϕ(x/ε)du+

∫ −δ

−∞

(1/ε)ϕ(x/ε)du.

Putting y = x/ε, we get

lim
ε→0

∫ ∞

δ/ε

ϕ(y)dy =

∫ −δ/ε

−∞

ϕ(y)dy = 0.

Definition 1.2.4. If ϕ ∈ L1(R) with ϕ̂(0) = 1 and we define ϕn(x) = nϕ(nx),

where n = 1/ε as n → ∞, ε → 0. Then the sequences of functions {ϕn}
∞
n=1 is an

approximate identity if:

(1)
∫

R
ϕn(x)du = 1 for all n,

(2) supn

∫
R
|ϕn(x)|du < ∞,

(3) limn→∞

∫
|x|>δ

|ϕn(x)|du = 0 for every δ > 0.

Let us consider the class S(R) of rapidly decreasing C∞-functions on R i.e., Schwartz

class such that

S(R) =

{
f : R → R, sup

x∈R

(
xn dm

dxm
f

)
(x) < ∞

}
; n, m ∈ N

⋃
{0}.

We know that if f ∈ S(R) then f̂ ∈ S(R) and S(R) ⊂ Lp(R). If ρ ∈ S(R) =⇒

|ρ(x)| ≤ C
1+|x|n

. For 1 ≤ p ≤ ∞,

∫

R

|ρ(x)|pdx ≤

∫

R

Cpdx

(1 + |x|n)p
< ∞

⇒ ρ ∈ Lp(R).
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Define a sequence {ρN} such that

ρN (x) =





f(x) , −N ≤ x ≤ N ,

0 , otherwise,

⇒ ∃ρN ∈ S(R), f ∈ Lp(R) such that
∫

R
|ρN − f |pdx → 0 as N → ∞, it proves that

S(R) is dense in Lp(R).

Remark 1.2.1. If 0 ≤ ϕ(x) ∈ S(R). Then ϕn(x) = nϕ(nx) is an approximate

identity.

Remark 1.2.2. If {ϕn}
∞
n=1 is an approximate identity and 1 ≤ p ≤ ∞, then

limn→∞ ||f ∗ ϕn − f ||p = 0 for every f ∈ Lp(R).

To prove the Remark 1.2.2, first we shall prove the following lemma.

Lemma 1.2.1. If f ∈ L1(R) and ϕ ∈ S(R) then ϕ ∗ f ∈ S(R).

Proof. We have

ϕ ∗ f =

∫

R

ϕ(y)f(x − y)dy ,

or
dn

dxn
(ϕ ∗ f) =

∫

R

ϕ(y)
dn

dxn
f(x − y)dy ,

or

|x|n
dn

dxn
(ϕ ∗ f) = |x|n

∫

R

f(x − y)
dn

dxn
ϕ(y)dy .

Putting x − y = z, we get

=

∫

R

f(y)|x|n
dn

dxn
ϕ(x − y)dy.

Since |x − y| ≤ |x| + |y| ≤ 3|x|
2

, so we get

=

∫

|y|>|x|/2

f(y)|x|n
dn

dxn
ϕ(x − y)dy +

∫

|y|≤|x|/2

f(y)|x|n
dn

dxn
ϕ(x − y)dy → 0. �

Proof of Remark 1.2.2. Consider
[∫

R

|(ϕn ∗ f)(x) − f(x)|pdx

]1/p

=

[∫

R

dx|

∫

R

ϕn(x − y)f(y)dy − f(x)|p
]1/p

=

[∫

R

dx|

∫

R

ϕn(y)f(x − y)dy − f(x)|p
]1/p

.

Using f(x) =
∫

R
f(x)ϕn(y)dy in above we obtain

[∫

R

dx|

∫

R

ϕn(y)(f(x − y) − f(x))dy|p
]1/p
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≤

[∫

R

dx

∫

|y|>δ

|ϕn(y)|p|f(x − y) − f(x)|pdy

]1/p

+

[∫

R

dx

∫

|y|≤δ

|ϕn(y)|p|f(x − y) − f(x)|pdy

]1/p

≤

∫

|y|>δ

dy|ϕn(y)|

[∫

R

dx|f(x − y) − f(x)|p
]1/p

+

∫

|y|≤δ

dy|ϕn(y)|

[∫

R

dx|f(x − y) − f(x)|p
]1/p

≤

∫

|y|>δ

dy|ϕn(y)| (2||f ||p)

+

∫

|y|≤δ

dy|ϕn(y)| sup
|y|<δ

[∫

R

|f(x − y) − f(x)|pdx

]1/p

.

Using limit n → ∞, the right hand side tends to zero since

sup
|y|<δ

[∫

R

|f(x − y) − f(x)|pdx

]1/p

→ 0.

Hence the proof is completed. �

2. MAIN RESULTS

2.1. WAVELETS. Definition 2.1.1. (Wavelet) Wavelets constitutes a family of

functions derived from one single function g ∈ L2(R) and indexed by two labels, one

for position and one for frequency. We define

ga,b(x) = |a|1/2g

(
x − b

a

)
, a 6= 0, b ∈ R.

g is admissible if Cg =
∫

R
|bg(ξ)|2

|ξ|
< ∞.

Definition 2.1.2. (Continuous Wavelet Transform) If g ∈ L2(R), then the integral

transformation Wg defined on L2(R) by

Wg[f ](a, b) =< f, ga,b >=

∫

R

f(x)ga,b(x)dx =< f, DaTbg >

for all f ∈ L2(R) is called a continuous wavelet transform of f(x).

Now we shall prove the following result.

Theorem 2.1.1. Let f ∈ L2(R). Then:

(i) The mapping (a, b) → ga,b : R+ × R → L2(R) is continuous.

(ii)The operator Wg is continuous on R × R.

(iii) Wg is bounded.
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Proof. (i) We have

ga,b = [Da(Tb)](g) = Dag(x − b) = |a|−1/2g

(
x − b

a

)
,

i.e., ga,b(x) is the composition of two functions transformation Tb and dilation Da.

To prove the continuity of mapping (a, b) → ga,b, it is sufficient to prove that both

functions Tb and Da are continuous.

Let Tb(g) = g(x − b). We have to show that ||Tb(g) − Tb′(g)|| → 0 if |gb − gb′| → 0.

We have

||Tb(g) − Tb′(g)|| =

∫

R

|g(x − b) − g(x − b′)|2dx

=

∫

R

|g(X) − g(X + b − b′)|2dX < ε/2.

Since for n > n0, |gn(x) − gn0
(x)| < ε/2. It follows that Tb is continuous.

Now for dialation, we have for a > a′

||Da(g) − Da′(g)|| =

∫

R

||a|−1/2g(x/a) − |a′|−1/2g(x/a′)|2dx

=

∫

R

||a|−1/2g(X) − |a′|−1/2g(aX/a′)|2adX

=

∫

R

|g(X) − g(aX/a′)|2dX < ε/2

since for n > n0, |g(x/n) − g(x/n0)| < ε/2.

Hence the proof of (i) part is completed.

For (ii) and (iii) we have

|Wg[f ](a, b)| = | < f, DaTbg > | ≤ ||f ||2DaTbg||2 = ||f ||2||g||2,

Wgf is a bounded function of a, b. Since f and ga,b are continuous it follows that

Wg[f ](a, b) is also continuous. �

The wavelet transform Wg is a generalization of the ordinary L2-Fourier transform.

Wg would therefore like to have an inversion formula for the Wg-transform analogous

to that for the ordinary Fourier transform. If f ∈ L1(R) then it is not necessary that

f also belongs to L1(R). Therefore in view point of this problem we shall use the

approximate identity to define the inversion formula for Wg(f).

Theorem 2.1.2. Suppose g ∈ Lp(R) is admissible with Cg = 1. Let {ϕn}
∞
n=1 be

an approximate identity such that ϕn ∈ S(R) and ϕn(x) = ϕn(−x) for all x. Then

limn→∞ ||f − fn||p = 0 for all f ∈ Lp(R), where 1 ≤ p ≤ ∞,

fn(x) =

∫ ∞

−∞

∫ ∞

0

Wgf(a, b)(ϕn ∗ DaTb(g))(x)
dadb

a2
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and

f(x) =

∫ ∞

−∞

∫ ∞

0

Wgf(a, b)DaTb(g)(x)
dadb

a2
.

Proof. We have

(f ∗ ϕn)(x) =

∫

R

f(t)ϕn(x − t)dt =< f, Txϕn >=< Wgf, Wg(Txϕn) >

=

∫ ∞

−∞

∫ ∞

0

Wxf(a, b) < DaTb(g), Txϕn >
dadb

a2

=

∫ ∞

−∞

∫ ∞

0

Wxf(a, b)(ϕn ∗ DaTbg)(x)
dadb

a2
.

Since ϕn is an approximate identity so for f ∈ Lp(R), ϕn ∗ f → f ∈ Lp(R). If ga,b(x)

is the wavelet in Lp(R) then ϕn ∗ ga,b also a wavelet in Lp(R). So, in view of Remark

1.2.2., we get

lim
n→∞

||f ∗ ϕn − f ||p = 0

for f ∈ Lp(R). �

2.2. FEICHTINGER SPACE Sn. In this section we shall discuss the Feichtinger

space Sn which is dense in the space L2 of square integrable functions on R, but first

we introduce the following definition.

Definition 2.2.1. Functions defined on R that vanish outside a closed (finite) interval

are said to have compact support. If t stands for time and f(t) has compact support,

then we say f is time limited. For f ∈ L1(R), if f has compact support, we say that

f is band limited. Clearly, any function with compact support vanishes at infinity.

2.2.1. The Feichtinger Space. The Feichtinger space S0 shares several properties with

the Schwartz space S(R), yet S0 is much larger, it does not depend on differentia-

bility and it is a Banach space. Time frequency shifts and the Fourier transform are

isometrics on S0. It was introduced in Feichtinger [4], Reiter and Stegeman [14]. All

its members are continuous and integrable functions. S0 is the space of all functions

on R which are represented in the time-frequency domain by integrable functions

Feichtinger and Grochenig [5]. We say that the norm of a function f in S0 is the

L1-norm of its short time Fourier transform Vgf with respect to the Gaussian window

g, i.e.,

||f ||S0
=

∫ ∫

R2

|Vgf(x, ω)|dxdω,

where g(t) = e−πt2 and the short time Fourier transform is defined by

Vgf(x, ω) =

∫

R

f(t)g(t − x)e−2πiωtdt =< f, EωTx(g) > ,
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where x, ω ∈ R. Here the Gaussian function g is replaced by an arbitrary non-zero

function from S0. For example the triangle function, the trapezoidal function, or any

Schwartz function. The sufficient condition for f to be in S0 = S0(R) is that f, f ′ and

f ′′ are in L1, see Okoudjou [13]. Yet a function in S0 need not be differentiable. For

example, compactly supported function is in S0 if and only if its Fourier transform

is integrable. Because of the Fourier invariance of S0, any integrable band limited

function is in S0. We have proved that if ϕ ∈ L1(R) then ϕε is an approximate identity

with the property that ϕ̂ε ∈ L1(R) which implies that ϕε ∈ S0. We have also proved

that if ϕ ∈ S(R) then ϕε is an approximate identity. So if ϕε ∈ S(R) then ϕ̂ε ∈ S(R)

and S(R) is dense in Lp(R), p ≥ 1 it gives that ϕε ∈ L1(R) and hence ϕε ∈ S0

For more on S0, see Feichtinger and Grochenig [5], Feichtinger and Grochening [10],

Frazier and Jawerth [12].

Now we shall prove the following result.

Theorem 2.2.1. Let g, f ∈ S0. Then:

(i) The mapping (x, ω) → EωTx(g) : R × R → L1(R) is continuous.

(ii)The operator Vgf is continuous.

Proof. We have

EωTx(g) = g(t − x)e2πiωt .

EωTx is the composition of two functions transformation Tx and modulation Eω. To

prove the continuity of the mapping (x, ω) → EωTx it is sufficient to prove that both

functions Eω and Tx are continuous. We have already proved that Tx is continuous

so it remains to prove the continuity of Eω. For this we have to prove that

|Eω(g) − Eω′(g)| → 0, ω > ω′, if |ω − ω′| → 0.

=

∫

R

|(e2πiωt − e2πiω′t)g(t)|2dt

≤

∫
|(1 − e2πi(ω−ω′)tg(t)|dt < ε/2

as |ω − ω′| < ε/2.

(ii) Since f and EωTx(g) are continuous it follows that Vgf =< f, EωTxg > is also

continuous. �

Now we shall prove the inversion formula for Vgf .

Theorem 2.2.2. Suppose g ∈ S0 and ϕε be an approximate identity such that ϕε ∈ S0

and ϕε(x) = ϕε(−x) for all x. Then

||f − fε||2 → 0 as ε → 0 ,
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where

fε(t) =

∫

R

∫

R

Vgf(x, ω) < ϕε ∗ EωTx(g) > (t)dxdω

and

f(t) =

∫

R

∫

R

Vgf(x, ω)EωTx(g)(t)dxdω.

Proof. We have

f ∗ ϕε(x) =

∫

R

f(t)ϕε(x − t)dt

=< f, Txϕε >=< Vgf, Vg(Txϕε) >∫ ∫

R2

Vgf(x, ω) < EωTx(g), Txϕε > dxdω

∫ ∫

R2

Vgf(x, ω)(ϕε ∗ EωTx(g))(t)dxdω.

Since f ∗ ϕε → f in S0 and ϕε ∗ EωTx(g) → EωTx(g) ∈ S0 and S0 is sense in L2(R).

It gives that ||f ∗ ϕε − f ||2 → 0 as ε → 0.

The space S0 is a Banach algebra under convolution contains approximate units

obtained by dilation. �

Theorem 2.2.3. Suppose v ∈ S0 with v(0) = 1. Given r > 0, let vr(t) = v(t/r) for

t ∈ R. Then

||vr ∗ f − f ||S0
→ 0 as r → ∞,

for all f ∈ S0.

Proof. Let vr = ϕ̂n, r = 1/h, v(0) = 1 ⇒ ϕ̂(0) = 1. We have for g = ϕε ∈ S(R)

||vr ∗ f − f ||S0
=

∫ ∫

R2

|Vϕε
(vr ∗ f − f)|dxdω

|Vϕε
(vr ∗ f − f)| = |

∫

R

(vrf − f)(t)ϕε(t − x)e−2πiωtdt|

=

∫

R

|vr ∗ f(t) − f(t)ϕε(t − x)|dt

=

∫

R

dt|ϕε(t − x)

∫

R

vr(t − z)f(z)dz − f(t)|

=

∫

R

dt|ϕε(t − x)

∫

R

vr(z)f(t − z)dz − f(t)|

=

∫

R

dt|

∫

R

vr(z)f(t − z)dzϕε(t − z) −

∫

R

ϕε(t − x)f(t)dt|

= |

∫

R

vr(z)dz

∫

R

ϕε(t − x)f(t − z)dt − f(x)|

= |

∫

R

vr(z)dz

∫

R

ϕε(−y)f(x − y − z)dy − f(x)|

= |

∫

R

vr(z)dzf(x − z)dz − f(x)|
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= |

∫

R

v̂ϕ(z)dzf(x − z)dz − f(x)|

= |(ϕ̂h ∗ f)(x) − f(x)|.

Since ϕh ∈ S(R) ⇒ ϕ̂h ∈ S(R) and ϕ̂h ∗ f → f as h → 0 or r → ∞. Hence the above

expression tends to zero. Hence the proof is completed. �

Schoenberg’s quasi-interpolation is a general scheme in approximation theory. Now

we define the quasi-interpolation operator and its Fourier transform for f ∈ S0.

Definition 2.2.3. Given ϕ ∈ S0 and h > 0 let Qϕ
h denote the quasi-interpolation

operator, defined by discrete convolution for f ∈ S0 by

Qϕ
hf(t) = f ∗ ϕh(t) =

∑

k∈Z

f(hk)ϕ(t/h − k), t ∈ R .

Given v ∈ S0 and r > 0 the operator Q̂v
r for f ∈ S0 is defined as

Q̂v
r f̂(ω) = f ∗ ϕh(t) = v(ω/r)

∑

k∈Z

f̂(ω − rk).

Theorem 2.2.4. Let v ∈ ϕ̂ and r = 1/h. Then

Qbϕ
hf = Q̂v

r f̂ , f ∈ S0.

Proof. We have

Q̂ϕ
hf(t) =

∫

R

∑

k∈Z

f(hk)ϕ(t/h − k)e−2πiξtdt.

Let t/h − k = x, we get

=

∫

R

∑

k∈Z

f(hk)ϕ(x)e−2πiξ(hx+hk)hdx

=

∫

R

∑

k∈Z

f(hk)hϕ(x)e−2πiξhxe−2πiξhkdx

=
∑

k∈Z

f(hk)hϕ̂(hξ)e−2πiξhk

= hϕ̂(hξ)
∑

k∈Z

f(hk)e−2πiξhk

ϕ̂(ξ/r)
∑

k∈Z

f(k/r)e−2πiξk/r 1

r
.

In view of the Poisson summation formula and its Fourier transform for a > 0 and

f ∈ S0 ∑

k∈Z

f̂(ω − ka) =
1

a

∑

k∈Z

f(k/a)e−2πiωk/a, ω ∈ R,
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with absolute convergence of both series. We obtain

= v(ξ/r)
∑

k∈Z

f̂(ξ − rk) = Q̂v
r f̂ .

Remark 2.2.1. The quasi-interpolation converges for functions from S0 indeed in

the norm of S0.

Theorem 2.2.5. (i) Suppose that ϕ ∈ S0 satisfies ϕ̂(k) = δk,0, for k ∈ Z. Then for

all f ∈ S0 we have

||Qϕ
h(f) − f ||S0

→ 0, h → 0.

(ii) Suppose that v ∈ S0 satisfies v(k) = δk,0 for k ∈ Z. Then for all f ∈ S0, we

have

||Q̂v
r(f) − f ||S0

→ 0, r → ∞.

Remark 2.2.2. In the consequence of Theorem 2.2.4 the statement (i) and (ii) in

Theorem 2.2.5 are equivalent, since the Fourier transform is an isometry on S0.

Proof of Theorem 2.2.5. To prove (i) we have

||Qϕ
h(f) − f ||S0

=

∫ ∫

R2

|Vϕε
(f ∗ ϕh)(t) − f(t)|dxdω

|Vϕε
(f ∗ ϕh − f)(x, ω)| = |

∫

R

(f ∗ ϕh − f)(t)ϕε(t − x)e−2πiωtdt|

=

∫

R

|

(∑

k∈Z

f(hk)ϕ(t/h − k) − f

)
ϕε(t − x)dt|

= |
∑

k∈Z

∫

R

f(hk)ϕ(t/h − k)ϕ(t − x)dt −

∫

R

f(t)ϕε(t − x)dt|

= |

∫

R

ϕε(y)
∑

k∈Z

f(hk)ϕ

(
z − y − k

h

)
dy −

∫

R

f(z − y)ϕε(y)dy|

= |f ∗ ϕh(z − y) − f(z − y)| → 0, h → 0.

Hence the proof is completed.
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