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ABSTRACT: On the upper half space, we consider the two-phase Stefan problem ut = ∆α(u),
where α(u) = u + 1 for u < −1, α(u) = 0 for −1 ≤ u ≤ 1, and α(u) = u − 1 for u ≥ 1, taken in the
sense of conservation laws. We show that the Cauchy problem is solvable for function and measure
data which satisfy the proper growth condition at infinity.
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1. INTRODUCTION

In this paper we will discuss the Cauchy problem for the two-phase Stefan problem

on the upper half space R
n+1
+ = {(x, t)| x ∈ R

n, t > 0}. Define α(u) on R by α(u) = 0

if −1 ≤ u ≤ 1, α(u) = u− 1 for u > 1, and α(u) = u+ 1 for u < −1. The two-phase

Stefan problem can be stated classically as: Find u, defined on R
n × [0, T ), for some

T > 0, where u(x, 0) = u0(x) on R
n is given, such that u is piecewise smooth except

for discontinuities along a finite number of smooth surfaces Si so that away from the

discontinuities we have
∂u

∂t
= ∆α(u) ,

u(x, 0) = u0(x) ,

(1.1)

and along a surface Si we have

(∇xα(u+) −∇xα(u−)) · νx = (u+ − u−) · νt, (1.2)

where (νx, νt) is the normal to the surface and u+ and u− represent the values taken

from different sides.

In this paper we consider solutions taken in the sense of conservation laws. Given

f ∈ L1
loc(R

n) with appropriate growth at infinity (defined precisely below), we say
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that u, which is integrable on bounded measurable subsets of R
n × (0, T ), satisfies

the two-phase Stefan problem in the sense of conservation laws if
∫ T

0

∫

Rn

α(u)∆ϕ+ uϕt dx dt+

∫

Rn

ϕ(x, 0)u0(x) dx = 0, (1.3)

for every ϕ ∈ C∞(Rn × (−∞, T )) with compact support. A solution which satisfies

(1.1) and (1.2) satisfies (1.3) (see Ladyženskaja et al [7], Chapter 5, Section 9, or

Bouillet [2]). In the one-phase case, that is, if u0 ≥ 0, existence of a solution in the

sense of (1.3) was shown by Andreucci and Korten [1]. The proof we give below for

the two-phase case is somewhat similar to their proof, although in the two-phase case

we cannot utilize the monotonicity arguments they are able to use.

2. THE CAUCHY PROBLEM FOR FUNCTION DATA

Definition 2.1. We say that a function f ∈ L1
loc(R

n) belongs to Gc, c > 0 if
∫

Rn

e−c|x|2|f(x)| dx <∞.

We now come to our main result.

Theorem 2.2. Suppose u0 ∈ Gc. Then there exists a solution u of (1.3) on R
n×(0, T ),

where T = 1
4c
. Moreover, u is bounded on compact subsets of R

n × (0, T ).

Before proving this, we state two results from Korten and Moore [6]. Concerning

the classical (1.1), (1.2) or the conservation laws formulation (1.3), in general, we

do not expect any smoothness of solutions or any particularly good behavior. If, for

example, −1 < u0(x) < 1 for all x ∈ R
n, then the solution is just u(x, t) = u0(x),

so that if u0 lacks smoothness, then u(x, t) need not be any better. However, we can

expect more from α(u), namely, it is continuous. This was shown in the one-phase

case by Korten [5] and in the two-phase case in Korten and Moore [6]. The result

in Korten and Moore [6] makes use of the two theorems below as well as regularity

results of Caffarelli and Evans [3], DiBenedetto [4], Sacks [8] and Ziemer [9].

Theorem 2.3. Suppose Ω ⊆ R
n × (0, T ) and u ∈ L2

loc
(Ω) satisfies

∫ T

0

∫

Rn

α(u)∆ϕ+ uϕt dx dt = 0

for every ϕ ∈ C∞ which is compactly supported in Ω. Suppose r < R, T0 < t0 < T1,

set ω = (t0, T1) × B(x0, r) and ω̃ = (T0, T1) ×B(x0, R), and suppose the closure of ω̃

is contained in Ω. Then ∇α(u), α(u)t exist in L2(ω) and there exists a constant C,

depending only on ω and ω̃ such that
∫∫

ω

|∇α(u)|2 dx dt ≤ C

∫∫

ω̃

u2 dx dt
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and

∫∫

ω

∣

∣

∣

∣

∂

∂t
α(u)

∣

∣

∣

∣

2

dx dt ≤ C

∫∫

ω̃

u2 dx dt.

Theorem 2.4. Suppose Ω is as in the previous theorem. Then |α(u)| is weakly

subcaloric, that is, it satisfies

∫

Ω

−∇|α(u)|∇η + |α(u)|ηt dx dt ≥ 0

for any nonnegative η which is C∞ and compactly supported in Ω.

We can now prove Theorem 2.2.

Proof. For m = 1, 2, 3, . . . define

um
0 (x) =











0 , if |x| > m ,

u0(x) , if |x| ≤ m .

Let ρ be a nonnegative C∞ function on R
n, supported in the unit ball, radially

symmetric and with integral 1. For m = 1, 2, 3, . . . set ρm(x) = mρ(xm) and u0,m =

ρm ∗ um
0 .

Then for each m, u0,m is C∞ and of compact support on R
n. Let um(x, t) be the

solution to (1.3) with initial data um
0 (see Ladyženskaja et al [7], Chapter 5, Section

9, for the existence of such solutions). Furthermore, um(x, t) is defined on all of

R
n × (0,∞).

Let vm(x, t) be the solution to the heat equation with initial data |α(u0,m)|:

∆vm =
∂vm

∂t
, on R

n × (0,∞) ,

vm(x, 0) = |α(u0,m(x))| for x ∈ R
n.

Then vm = gt ∗ |α(u0,m)|, where gt(y) = (4πt)−
n
2 exp(− |y|2

4t
) is the Gauss kernel.

Since |α(um(x, t))| has initial values |α(u0,m(x))| and is subcaloric, then

|α(um(x, t))| ≤ vm(x, t) for (x, t) ∈ R
n × [0,∞).
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Consequently, for (x, t) ∈ R
n × (0, T ), where T = 1

4c
,

|α(um(x, t))| ≤ vm(x, t)

=

∫

Rn

gt(x− y) |α(u0,m)(y)| dy

≤

∫

Rn

gt(x− y)(|u0,m(y)|+ 1) dy

≤ 1 +

∫

Rn

gt(x− y)(ρm ∗ |um
0 |)(y) dy

≤ 1 +

∫

Rn

gt(x− y)(ρm ∗ |u0|)(y) dy

= 1 + ρm ∗ gt ∗ |u0|(x) .

(2.1)

Note that the last quantity is finite because |u0| ∈ Gc.

Consider any cylinder Q = B(x0, r) × (t0, t1) contained in R
n × (0, T ). Let Q̃ be

a slightly larger cylinder whose closure is still contained in R
n × (0, T ). Then on Q̃,

gt ∗ |u0(x)| as well as all its derivatives are bounded (of course, the bound depends on

Q̃). It follows then from (2.1) that the |α(um(x, t))| are uniformly bounded on Q for

sufficiently large m. Hence also, the |um| are uniformly bounded on Q. This holds

true on any cube slightly larger than Q so that then the energy estimates, Theorem

2.3, imply that the L2 norms of the derivatives of the α(um) are uniformly bounded

on Q.

Noticing that R
n×(0, T ) can be exhausted by a countable number of such cylinders

Q, by Rellich-Kondrachov there exists an h ∈ L2
loc(R

n × (0, T )) and a subsequence

α(umk
) of α(um) such that α(umk

) → h in L2(K) for every compact set K ⊂ R
n ×

(0, T ). By taking subsequences, if necessary, we can assume that α(umk
) → h a.e.

Since the um are uniformly bounded on each cylinder Q, we may further assume,

again by taking subsequences, that there exists a locally bounded function u such

that umk
→ u weakly in L2(K) for any compact K ⊂ R

n × (0, T ).

We first claim h = α(u). On the set, where h > 0, h = limα(umk
) a.e. so that

h + 1 = lim umk
a.e. on this set. Let F be a compact subset of the set h > 0. Then

∫∫

F
h + 1 dx dt = lim

∫

F
umk

dx dt =
∫

F
u dx dt. This is true for every such F and so

h+ 1 = u, that is, α(u) = h a.e. on the set, where h > 0. Similarly, α(u) = h a.e. on

the set, where h < 0. On the set, where h = 0, α(umk
) → 0 a.e., and hence −1 ≤

lim inf umk
(x, t) ≤ lim sup umk

(x, t) ≤ 1 a.e. there. Let F ⊂ {h = 0} be compact.

Then lim
∫∫

F
umk

(x, t) dx dt =
∫∫

F
u(x) dx dt and hence −|F | ≤

∫∫

F
u(x, t) dx dt ≤

|F |. Consequently, −1 ≤ u(x, t) ≤ 1 a.e. on the set, where h = 0 and thus h = α(u)

a.e. there.
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It remains to show that u(x, t) satisfies (1.3). Let ϕ ∈ C∞ have compact support

in R
n × (−∞, T ). Then for each mk,

∫ T

0

∫

Rn

α(umk
)∆ϕ+ umk

ϕt dx dt+

∫

Rn

ϕ(x, 0)u0,mk
(x) dx = 0 . (2.2)

We want to take limits in this expression. On compact sets of R
n, u0,mk

→ u0 in L1

so
∫

Rn

ϕ(x, 0)u0,mk
(x) dx→

∫

Rn

ϕ(x, 0)u0(x) dx. (2.3)

Now let B be a ball in R
n such that B × (−∞, T ) contains the support of ϕ.

First we observe that |u0| ∈ Gc implies that for d > c, ρm ∗ |u0| ∈ Gd for every m.

To see this, note that for |s − y| ≤ 1, elementary computations show that |s|2 ≤

1+1/γ2 +(1+ γ2)|y|2 for any γ > 0 and thus, choosing γ so that (1+ γ2)c = d, gives

exp(−d|y|2) ≤ C(γ) exp(−c|s|2). Then
∫

Rn

ρm ∗ |u0|(y)e
−d|y|2 dy

=

∫

Rn

∫

Rn

ρm(y − s)|u0|(s)e
−d|y|2 ds dy

≤ C(γ)

∫

Rn

∫

Rn

ρm(y − s)|u0|(s)e
−c|s|2 ds dy

= C(γ)

∫

Rn

|u0|(s)e
−c|s|2ds .

(2.4)

Next observe that for t small (say t < 1
32c

),

e2c|y|2 ≤ e4c(|x−y|2+|x|2) ≤ e
|x−y|2

8t e4c|x|2,

and consequently,

e2c|y|2gt(x− y) ≤ 2
n
2 e4c|x|2g2t(x− y).

Then for all m, and δ < 1
32c
,

∫ δ

0

∫

B

|α(um)| dx dt ≤

∫ δ

0

∫

B

(

1 +

∫

Rn

gt(x− y)(ρm ∗ |u0|)(y) dy

)

dx dt

= |B|δ +

∫ δ

0

∫

B

∫

Rn

e2c|y|2gt(x− y)(ρm ∗ |u0|)(y)e
−2c|y|2 dy dx dt

≤ |B|δ + 2
n
2 sup

x∈B

{e4c|x|2}

∫ δ

0

∫

Rn

∫

B

g2t(x− y)(ρm ∗ |u0|)(y)e
−2c|y|2 dx dy dt

≤ |B|δ + C(n, c, B) δ ,

where C(n, c, B) is a constant depending only on n, c and B. Here, the last inequality

also uses the fact that ρm ∗ |u0| ∈ G2c.
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Thus, given ε > 0, we can find δ > 0 so that

∫ δ

0

∫

Rn

|∆ϕα(umk
)| dx dt ≤ Cδ‖∆ϕ‖∞ < ε

for every mk. Similarly, since |u| ≤ |α(u)|+1, the above computation also shows that

we can assume δ is chosen so that
∫ δ

0

∫

Rn

|ϕtumk
| dx dt < ε.

Using these last two inequalities, (2.3), and the fact that α(umk
) → α(u) in L2(K)

and umk
→ u weakly in L2(K) for every compact set K ⊂ R

n × (0, T ), we may take

mk → ∞ in (2.2) to obtain

∫ T

0

∫

Rn

α(u)∆ϕ+ uϕt dx dt+

∫

Rn

ϕ(x, 0) u0(x) dx = 0. �

3. THE CAUCHY PROBLEM FOR MEASURE DATA

Using essentially the same proof, we next show existence of solutions for measure

data.

Definition 3.1. We say a Radon measure µ ∈ Gc, c > 0, if
∫

Rn

e−c|x|2 d|µ| <∞

where |µ| is the total variation measure of µ.

Definition 3.2. Given a Radon measure µ ∈ Gc for some c > 0, we say that u,

assumed integrable on any bounded measurable subset of R
n × (0, T ), solves the two

phase Stefan problem with initial data µ in the sense of conservation laws if

∫ T

0

∫

Rn

α(u)∆ϕ+ uϕt dx dt+

∫

Rn

ϕ(x, 0) dµ(x) = 0 (3.1)

for every ϕ ∈ C∞(Rn × (−∞, T )) with compact support.

Theorem 3.3. Suppose µ ∈ Gc. Then there exists a solution of (3.1) on R
n × (0, T ),

where T = 1
4c
.

Proof. The proof follows closely the proof of the previous theorem so we just give a

sketch.

As before, let ρ be a nonnegative C∞ function on R
n, supported in the unit ball,

radially symmetric and with integral 1, and for m = 1, 2, 3, . . . set ρm(x) = mρ(xm).

Set µm(x) = ρm ∗ µ(x) =
∫

Rn ρm(x− y) dµ(y).

Each µm(x) is a C∞ function on R
n and arguing as in (2.4), we can assert that

|µm|, and hence |α(µm)| belong to Gd for any d > c. By the previous theorem, there
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exists a solution, um(x, t) to (1.3) on R
n × (0, T ) with initial data µm(x). Let vm be

the solution to the Cauchy problem for the heat equation

∆vm =
∂vm

∂t
on R

n × (0,∞) ,

vm(x, 0) = |α(µm(x))| for x ∈ R
n.

Then, since |α(um(x, t))| is subcaloric, we have |α(um)| ≤ vm on R
n × (0, T ). Esti-

mating as before yields

|α(um(x, t))| ≤ 1 + gt ∗ |µm(x)| ≤ 1 + ρm ∗ gt ∗ |µ|(x).

Again, gt ∗ |µ|(x) as well as all its derivatives are bounded in any cylinder strictly

contained in R
n × (0, T ), and we may argue as in the previous theorem to produce a

subsequence umk
and a function u such that umk

→ u weakly in L2(K) and α(umk
) →

α(u) in L2(K) and a.e. for any compact set K ⊂ R
n × (0, T ). For each mk and

ϕ ∈ C∞(Rn × (−∞, T )) with compact support,
∫ T

0

∫

Rn

α(umk
)∆ϕ+ umk

ϕt dx dt+

∫

Rn

ϕ(x, 0)u0,mk
(x) dx = 0 . (3.2)

Again, we want to take limits in this expression. As before, given ε > 0, we may

choose δ small so that
∫ δ

0

∫

Rn

|∆ϕα(umk
)| dx dt ≤ Cδ‖∆ϕ‖∞ < ε ,

and
∫ δ

0

∫

Rn

|ϕtumk
| dx dt < ε.

Thus, as before,
∫ T

0

∫

Rn

α(umk
)∆ϕ + umk

ϕt dx dt→

∫ T

0

∫

Rn

α(u)∆ϕ+ uϕt dx dt.

Furthermore, straightforward computations show that
∫

Rn ϕ(x, 0)µmk
dx→

∫

Rn ϕ(x, 0) dµ.

Therefore we may take limits in (3.2) to complete the proof. �

Remark. Instead of solving the Cauchy problem in the sense of conservation laws

(3.1), one can also consider solutions u ∈ L1
loc(R

n × (0, T )) taken in the sense of

distributions:
∫ T

0

∫

Rn

α(u)∆ϕ+ uϕt dx dt = 0

for all compactly supported ϕ ∈ C∞(Rn × (0, T ))

lim
t→0

∫

Rn

ψ(x)u(x, t) dx =

∫

Rn

ψ(x)dµ

for all compactly supported ψ ∈ C∞(Rn).

(3.3)
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Suppose u solves the Cauchy problem with measure data µ ∈ Gc in the conservation

laws sense (3.1). We claim that then u is a solution in the sense of distributions. First

note that, in particular, (3.1) gives
∫ T

0

∫

Rn α(u)∆ϕ + uϕt dx dt = 0 for ϕ compactly

supported in R
n×(0, T ). Let η(t) be a C∞ function which is identically 1 for t < − 2

5
, is

identically 0 for t > 2
5

and decreasing and with η(0) = 1
2
. Fix t0 > 0. For m = 1, 2, . . .

set ηm(t) = η(mt). Let ψ be a C∞ function of compact support on R
n and set

ϕm(x, t) = ψ(x)ηm(t− t0). Then with this choice of ϕ, (3.1) becomes
∫ T

0

∫

Rn

∆ψ(x)ηm(t− t0)α(u(x, t)) + u(x, t)ψ(x)η′m(t− t0) dx dt

+

∫

Rn

ψ(x)ηm(0 − t0)dµ = 0.

(3.4)

Notice that for m sufficiently large,
∫

Rn

ψ(x)ηm(0 − t0)dµ =

∫

Rn

ψ(x)dµ.

Also,

[0, T ) ∩ supp ηm(t− t0) ⊂ [0, t0 +
1

2m
],

so that for t0 small and large m,
∫ T

0

∫

Rn

∆ψηm(t− t0)α(u(x, t)) dx dt

is small (since, by assumption, α(u) is integrable on any bounded measurable subset

of R
n × (0, T )). As m→ ∞, for a.e. t0,

∫ T

0

∫

Rn

u(x, t)ψ(x)η′m(t− t0) dx dt→

∫

Rn

u(x, t0)ψ(x)dx.

Consequently, (3.4) implies
∫

Rn

u(x, t)ψ(x) dx→

∫

Rn

ψ(x) dµ

as t0 → 0. Thus, if u solves the Cauchy problem in the sense of conservation laws,

(3.1), then u solves the Cauchy problem in the sense of (3.3).

Conversely, if we assume u ∈ L1 on bounded subsets of R
n × (0,∞), then a similar

argument shows that a solution in the sense of (3.3) will be a solution in the sense

of (3.1). This assumption is necessary for finiteness of the integrals in (3.1). In the

definition (3.3) we only require that u be integrable on compact sets contained within

R
n × (0, T ).

Remark. Regarding uniqueness of solutions, it would be desirable to show that if u

and v were two solutions of (1.3) or (3.1) on R
n × (0, T ) then u = v on R

n × (0, T ) if
∫ T

0

∫

Rn

α(u)∆ϕ+ uϕt dx dt =

∫ T

0

∫

Rn

α(v)∆ϕ+ vϕt dx dt
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for every compactly supported ϕ ∈ C∞(Rn × (−∞, T )). Reasoning as in the previous

remark, this is the same as the assumption that u and v are solutions to (1.3) or (3.1)

which satisfy
∫

Rn

(u(x, t) − v(x, t))ψ(x) dx→ 0 as t→ 0

for every ψ ∈ C∞(Rn) with compact support. We have not been able to show

uniqueness in this generality.

However, uniqueness results in this situation are known.

Theorem 3.4. (see Bouillet [2]) Let u and v be two solutions of (3.3) which belong

to Gc, for some c > 0. Then u = v a.e. on R
n × (0, T ) provided:

(i) ‖(u− v)(·, t)‖L1

loc

→ 0 as t→ 0+, or

(ii) n = 1 and

∫

Rn

(u(x, t) − v(x, t))ψ(x) dx→ 0 as t→ 0 for every ψ ∈ C∞(Rn) with

compact support.

Consequently, (ii) gives uniqueness for the Cauchy problem with function data (1.3)

or measure data (3.1) in the case n = 1. Unfortunately, the proof given there depends

on Sobolev imbedding estimates which depend on dimension. If the initial data is

nonnegative, then the solution to the Cauchy problem is nonnegative, and in this

situation, for all n, u = v a.e. if (ii) holds (see Korten [5]). It seems likely then, that

in the two-phase case, for all n we have uniqueness if (ii) holds, but we must leave

this as an open problem.
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