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1. INTRODUCTION

Let Ω be a bounded set in Rn(n ≥ 1) with smooth boundary ∂Ω and let A denote

the elliptic operator

A =
∑

1≤i,j≤n

ai,j(x)DiDj, (1.1)

where aij = aji∈ C∞(Ω̄).

We consider a semilinear elliptic boundary value problem under the Dirichlet bound-

ary condition

Au + bu+ − au− = h(x) in Ω, (1.2)

u = 0 on ∂Ω.

Here A is a second order elliptic differential operator and a mapping from L2(Ω)

into itself with compact inverse, with eigenvalues −λi, each repeated as often as

multiplicity. We denote φn to be the eigenfuction corresponding to λn(n = 1, 2, · · · ),

and φ1 is the eigenfuction such that φ1 > 0 in Ω and the set {φn| n = 1, 2, 3 · · · } is

an orthonormal set in H, where H is a Hilbert space with inner product

(u, v) =

∫

Ω

uv, u, v ∈ L2(Ω).
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We suppose that λ1 < a < λ2 < b < λ3. Under these assumptions, we have a concern

with the multiplicity of solutions of (1.2) when h is generated by two eigenfunctions

φ1 and φ2. Then equation (1.2) is equivalent to

Au + bu+ − au− = h in H, (1.3)

where h = t1φ1 + t2φ2(t1, t2 ∈ R). Hence we will study the equation (1.3). To study

equation (1.3), We use the contraction mapping principle to reduce the problem from

an infinite dimensional space in H to a finite dimensional one.

Let V be the two dimensional subspace of H spanned by {φ1, φ2} and W be the

orthogonal complement of V in H. Let P be an orthogonal projection H onto V.

Then every element u ∈ H is expressed as

u = v + w,

where v = Pu, w = (I − P )u. Hence equation (1.3) is equavelent to a system

Aw + (I − P )(b(v + w)+ − a(v + w)−) = 0 (1.4)

Av + P (b(v + w)+ − a(v + w)−) = t1φ1 + t2φ2. (1.5)

Here we look on (1.4) and (1.5) as a system of two equation in the two unknows v

and w.

For fixed v ∈ V, (1.4) has a unique solution w = θ(v). Furthermore, θ(v) is Lipschitz

continuous (with respect to the L2-norm) in terms of v.

The study of the multipicity of solution of (1.3) is reduced to the study of the

multipicity of solutions of an equivalent problem

Av + P (b(v + θ(v))+ − a(v + θ(v))−) = t1φ1 + t2φ2 (1.6)

defined on the two dimensional subspace V spanned by {φ1, φ2}.

While one feels intuively that (1.6) ought to be easier to solve than (1.3), there is

the disadvantage of an implicitly defined term θ(v) in the equation. However, in our

case, it turns out that we know θ(v) for some special v ′s.

If v ≥ 0 or v ≤ 0, then θ(v) ≡ 0. For example, let us take v ≥ 0 and θ(v) = 0.

Then equation (1.4) reduces to

A0 + (I − P )(bv+ − av−) = 0,

which is satisfied because v+ = v, v− = 0 and (I − P )v = 0, since v ∈ V. Since the

subspace V is spanned by {φ1, φ2} and φ1 is a positive eigenfuction, there exists a

cone C1 defined by

C1 = {v = c1φ1 + c2φ2 | c1 ≥ 0, |c2| ≤ qc1}

for some q > 0 so that v ≥ 0 for all v ∈ C1 and a cone C3 defined by

C3 = {v = c1φ1 + c2φ2 | c1 ≤ 0, |c2| ≤ q|c1|} ,
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so that v ≤ 0 for all v ∈ C3.

Thus, even if we do not know θ(v) for all v ∈ V , we know θ(v) ≡ 0 for v ∈ C1 ∪ C3.

Now we define a map Π : V → V given by

Π(v) = Av + P (b(v + θ(v))+ − a(v + θ(v))−), v ∈ V. (1.7)

2. THE NONLINEARITY CROSSES ONE EIGENVALUE

Theorem 2.1. Π(cv) = cΠ(v) for c ≥ 0.

Proof. Let c ≥ 0. If v satisfies

A(θ(v)) + (I − P )(b(v + θ(v))+ − a(v + θ(v))−) = 0,

then

A(cθ(v)) + (I − P )(b(cv + cθ(v))+ − a(cv + cθ(v))−) = 0

and hence θ(cv) = cθ(v). Therefore we have

Π(cv) = A(cv) + P (b(cv + θ(cv))+ − a(cv + θ(cv))−)

= cAv + P (b(cv + cθ(v))+ − a(cv + cθ(v))−)

= cΠ(v).

We investigate the image of the cones C1, C3 under Π. First, we consider the image

of cone C1. If v = c1φ1 + c2φ2 ≥ 0, we have

Π(v) = Av + P (b(v + θ(v))+ − a(v + θ(v))−)

= −c1λ1φ1 − c2λ2φ2 + b(c1φ1 + c2φ2)

= c1(b − λ1)φ1 + c2(b − λ2)φ2.

Thus the image of the rays c1φ1 ± qc1φ2(c1 ≥ 0) can explicitly caculated and they

are

c1(b − λ1)φ1 ± qc1(b − λ2)φ2 (c1 ≥ 0). (2.1)

Therefore If λ1 < a < λ2 < b < λ3, then Π maps C1 onto the cone

R1 =

{

d1φ1 + d2φ2

∣

∣

∣

∣

d1 ≥ 0, |d2| ≤ q

(

b − λ2

b − λ1

)

d1

}

.

Second, we consider the image of the cone C3. If

v = −c1φ1 + c2φ2 ≤ 0 (c1 ≥ 0, |c2| ≤ qc1),

the image of the rays −c1φ1 ± qc1φ2(c1 ≥ 0) are

c1(λ1 − a)φ1 ± qc1(λ2 − a)φ2 (c1 ≥ 0). (2.2)

Therefore, if λ1 < a < λ2 < b < λ3, then Π maps the cone C3 onto the cone

R3 =

{

d1φ1 + d2φ2

∣

∣

∣

∣

d1 ≤ 0, |d2| ≤ q

(

λ2 − a

λ1 − a

)

d1

}

.
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Now we set

C2 = {v = c1φ1 + c2φ2 | c2 ≥ 0, c2 ≥ q|c1|},

C4 = {v = c1φ1 + c2φ2 | c2 ≤ 0, |c2| ≥ q|c1|},

Then the union of C1, C2, and C3, C4 are the space V.

We remember the map Π : V → V given by

Π(v) = Av + P (b(v + θ(v))+ − a(v + θ(v))−), v ∈ V.

Let Ri (1 ≤ i ≤ 4) be the image of Ci(1 ≤ i ≤ 4) under Π.

Theorem 2.2. Let λ1 < a < λ2 < b < λ3. If h belongs to R1, then equation (1.2) has

a poitive solution and no negative solution. If h belongs to R3, then equation (1.2)

has a negative solution.

Proof. From (2.1) and (2.2), if h belongs to R1, the equation Π(v) = t1φ1 + t2φ2

has a positive solution in the cone C1, namely t1
b−λ1

φ1 + t2
b−λ2

φ2, and if h belongs to

R3, the equation Π(v) = t1φ1 + t2φ2 has a negative solution in C3, namely − t1
λ1−a

φ1 −
t2

λ2−a
φ2. �

Lemma 2.1 means that the images Π(C2) and Π(C4) are the cones in the plane V.

Before we investigate the images Π(C2) and Π(C4), we set

R∗
2 =

{

d1φ1 + d2φ2

∣

∣

∣

∣

d2 ≥ 0,−q−1 | λ1−a
λ2−a

| d2 ≤ d1 ≤ q−1 | b−λ1

b−λ2

| d2

}

,

R∗
4 =

{

d1φ1 + d2φ2

∣

∣

∣

∣

d2 ≤ 0,−q−1 | λ1−a
λ2−a

| |d2| ≤ d1 ≤ q−1 | b−λ1

b−λ2

| |d2|

}

.

Then the union of R1, R
∗
2, R3, R

∗
4 is the plane V.

To investigate a relation between the multiplicity of solutions and source terms in

a nonlinear elliptic differential equation

Au + bu+ − au− = h in H,

we consider the restriction Π|Ci
(1 ≤ i ≤ 4) of Π to the cone Ci. Let Πi = Π|Ci

, i.e.,

Πi : Ci → V.

Theorem 2.3. For i = 1, 3, the image of Πi is Ri and Πi : Ci → Ri is bijective.

Proof. We consider the restriction Π1. By (2.4), the restriction Π1 maps C1 onto R1.

Let l1 be the segment defined by

l1 =

{

φ1 + d2φ2

∣

∣

∣

∣

|d2| ≤ q

(

b − λ2

b − λ1

)}

.

Then the inverse image Π−1
1 (l1) is a segment

L1 =

{

1

b − λ1

(φ1 + c2φ2)

∣

∣

∣

∣

|c2| ≤ q

}

.

It follows from Theorem 2.1 that Π1 : C1 → R1 is bijective.

Similarly, Π3 : C3 → R3 is also a bijection. �
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We have investigated next lemma in [5].

Lemma 2.4. Let Q2 be one of the sets R1 ∪ R∗
4 or R∗

2 ∪ R3 such that it is contained

in Π(C2) and let Q4 be one of the sets R1 ∪R∗
2 or R3 ∪R∗

4 such that it is contained in

Π(C4). Let γi(i = 2, 4) be any simple path in Qi with end points on ∂Qi, where each

ray (starting from the origin) in Qi intersects only one point of γi. Then the inverse

image Π−1
i (γi) of γi is a simple path in Ci with end points on ∂Ci, where any ray

(starting from the origin) in Ci intersects only one point of this path.

By Lemma 2.4, we have the following theorem.

Theorem 2.5. For i = 2, 4, if we let Πi(Ci) = Ri, then R2 is one of the sets R1 ∪R∗
4

or R∗
2 ∪R3, and R4 is one of the sets R3 ∪R∗

4 or R1 ∪R∗
2. Furthermore the restriction

Πi maps Ci onto Ri.

3. SOLUTIONS AND APPLICATIONS OF CRITICAL POINTS

THEORY

We investigate the multipicity of solutions of a nonlinear elliptic differential equa-

tion

Au + bu+ − au− = tφ1 in H, (3.1)

where λ1 < a < λ2 < b < λ3 and t > 0.

Henceforth, let F denote the functional defined by

F (u) =

∫

Ω

[

1

2
|∇u|2 − G(u) + tφ1u

]

dx, (3.2)

where G(u) = 1

2
(b(u+)2 + a(u−)2) and u ∈ E. Then,

DF (u)y = F ′(u)y =

∫

Ω

(∇u · ∇y − g(u)y + tφ1y) dx for all y ∈ E

and solutions of (3.1) coincide with solutions of

DF (u) = 0, (3.3)

where g(u) = G′(u) = bu+ − au−.

Therefore, we shall investigate critical points of F.

Theorem 3.1. Let λ1 < a < λ2 < b < λ3, h ∈ V. Let v ∈ V be given. Then there

exists a unique solution z ∈ W of the equation

Az + (I − P )(b(v + z)+ − a(v + z)− − h) = 0 in W. (3.4)

If z = θ(v), then θ is continuous on V and we have DF (v + θ(v))(w) = 0 for all

w ∈ W. In particular θ(v) satisfies a uniform Lipschitz in v with respect to the L2-

norm. If F̃ : V → R is defined by F̃ (v) = F (v + θ(v)), then F̃ the has continuous

Frechét derivative DF̃ with respect to v and

DF̃ (v)(r) = DF (v + θ(v))(r) for all r ∈ V.
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If v0 is a critical point of F̃ , then v0 +θ(v0) is a solution of (3.1) and conversely every

solution of (3.1) is DF̃ (v0) = 0.

Proof. Let λ1 < a < λ2 < b < λ3, α = 1

2
(a + b), and g(u) = bu+ − au−. If

g1(u) = g(u) − αu, then equation (3.4) is equavalent to

z = (−A − α)−1(I − P )(g1(v + w)). (3.5)

The right hand side of (3.5) defines, for fixed v ∈ V, a Lipschitz mapping of (I −P )H

into itself with Lipschitz cosntant γ < 1. Therefore, by the contraction mapping

principle, for given v ∈ V, there exists a unique z ∈ (I − P )H which satisfies (3.5).

If θ(v) denotes the unique ∈ (I − P )H which solves (3.5) then θ is continuous (with

respect to the L2-norm) in V. In fact, z1 = θ(v1) and z2 = θ(v2), then we have

z1 − z2 = (−A − α)−1(I − P )[(g1(v1 + z1) − g2(v2 + z2)]

= (−A − α)−1(I − P )[(g1(v1 + z1) − (g1(v1 + z2)]

+(−A − α)−1(I − P )[(g1(v1 + z2) − (g1(v2 + z2)] .

Since |g1(u1)− g1(u2)| ≤ (b−α)|u1 −u2|, it follows that if β = max{(λm −α)−1| m ≥

3, m ∈ N} = (λ3 − α)−1 = ||(−A − δ)−1(I − P )||, and γ = β(b − α) < 1, then

||z1 − z2|| ≤ γ (||v1 − v2|| + ||z1 − z2||) .

Hence

||z1 − z2|| ≤ k||v1 − v2||, k =
γ

1 − γ
,

which shows that θ(v) satisfies a uniform Lipschitz condition in v with respect to the

L2 norm. Since θ is continuous on V , F̃ is C1 with respect to v and

DF̃ (v)(r) = DF (v + θ(v))(r) for all r ∈ V. (3.6)

Suppose that there exists v0 ∈ V such that DF̃ (v0) = 0. From (3.3) and (3.6) it

follows that DF̃ (v0)(v) = DF (v0 + θ(v0))(v) = 0 for all v ∈ V. Since
∫

Ω

∇v · ∇w = 0 for all w ∈ W,

we have

DF (v + θ(v))(w) = 0 for all w ∈ W.

Since H is direct sum of V and W, it follows that DF (v0 +θ(v0)) = 0 in H. Therefore,

u = v0 + θ(v0) is a solution of (3.1).

Conversely our reasoning shows thet if u is a solution of (3.1) and v = Pu, then

DF̃ (v) = 0 in V . �

Let λ1 < a < λ2 < b < λ3 and h belongs to the cone R1. Then equation (3.1)

has a positive solution up in the cone C1. By Theorem 3.1, up can be written by

up = vp + θ(vp). Since vp ∈ C1, θ(vp) = 0. Therefore we have up = vp. Similary, if

h ∈ R3, then (3.1) has a negative solution un and un = vn + θ(vn), where θ(vn) = 0.
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Theorem 3.2. Let λ1 < a < λ2 < b < λ3. Then we have:

(a) Let t = b − λ1(h = (b − λ1)φ1). Then equation (3.1) has a positive solution vp

and there exists a small open neighborhood Bp of vp in C1 such that in Bp, vp is a

strict local point of maximum of F̃ .

(b) t = λ1 − a(h = (λ1 − a)φ1). Then equation (3.1) has a negative solution vn and

there exists a small open neighborhood Bn of vn in C3 such that in Bn, vn is a saddle

point of F̃ .

Proof. (a) Let t = b − λ1(h = (b − λ1)φ1). Then equation (3.1) has a up = φ1

which is of the form up = vp + θ(vp) (in this case θ(vp) = 0) and I + θ, where I is

an identity map on V, is continuous. Since vp is in the interior of C1, there exists a

small open neighborhood Bp of vp in C1. We note that θ(v) = 0 in Bp. Therefore, if

v = vp + v∗ ∈ Bp, then we have

F̃ (v) = F̃ (vp + v∗)

=

∫

Ω

[

1

2
(|∇(vp + v∗)|2 − b((vp + v∗)+)2 − a((vp + v∗)−)2) + h(vp + v∗)

]

dx

=
1

2

∫

Ω

(|∇v∗|2 − bv∗2)dx +

∫

Ω

[∇vp · ∇v∗ − bvpv
∗ + hv∗] dx

+

∫

Ω

[

1

2
(|∇vp|

2 − bv2
p) + hvp

]

dx

=
1

2

∫

Ω

(|∇v∗|2 − bv∗2)dx +

∫

Ω

[∇vp · ∇v∗ − bvpv
∗ + hv∗] dx + C,

where C =
∫

Ω

[

1

2
(|∇vp|

2 − bv2
p) + hvp

]

dx = F (up) = F̃ (vp).

If v ∈ V and v = c1φ1 + c2φ2, then we have

||v||20 =

∫

Ω

|∇v|2dx =

2
∑

i=1

c2
i λi < λ2

2
∑

i=1

c2
i

= λ2

∫

Ω

v2dx = λ2||v||
2. (3.7)

Let v∗ = c1φ1 + c2φ2 and let v = vp + v∗ ∈ Bp. Then
∫

Ω

[∇vp · ∇v∗ − bvpv
∗ + hv∗] dx = 0.

By (3.7),

F̃ (v) − F̃ (vp) =
1

2

∫

Ω

(|∇v∗|2 − bv∗2)dx < (λ2 − b)

∫

Ω

v2dx.

Since λ2 < b, it follows that for t = b − λ1, vp is a strict local point of maximum for

F̃ (v).

(b) Let t = λ1 − a(h = (λ1 − a)φ1). Then equation (3.1) has a negative solution

un = −φ1 which is of the form un = vn + θ(vn), where θ(vn) and −I + θ is continuous
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in V. Since vn is the interior, IntC3, of C3. We note that θ(v) = 0 in Bn. Therefore, if

v = vn + v∗ ∈ Bn, then we have

F̃ (v) = F̃ (vn + v∗)

=

∫

Ω

[

1

2
(|∇(vn + v∗)|

2 − a((vn + v∗)
−)2) + h(vn + v∗)

]

dx

=
1

2

∫

Ω

(|∇v∗|
2 − av2

∗)dx +

∫

Ω

[∇vn · ∇v∗ − avnv∗ + hv∗] dx + F̃ (vn) .

Let v∗ = c1φ1 + c2φ2. Then for v = vn + v∗, we have
∫

Ω

[∇vn · ∇v∗ − avnv∗ + hv∗] dx = 0.

Therefore,

F̃ (v) − F̃ (vn) =
1

2

∫

Ω

(|∇v∗|
2 − av2

∗)dx

=
1

2
(c2

1(λ1 − a) + c2
2(λ2 − a)).

The above equation implies that vn is a saddle point of F̃ . �

Theorem 3.3. Let h ∈ V and let λ1 < a < λ2 < b < λ3. For fixed t the functional

F̃ , defined on V, satisfies the Palais-Smale condition: Any sequence {vn}
∞
1 ⊂ V for

which F̃ (vn) is bounded and DF̃ (vn) → 0 possesses a convergent subsequence.

Proof. It is enought to show that if {vn}
∞
1 is a sequence in V such that {DF̃ (vn)}∞1 is

bounded, then the sequence of norms {||vn||0}
∞
1 is bounded. Assuming the contrary,

we may suppose that {DF̃ (vn)}∞1 is bounded and ||vn||0 → ∞ as n → ∞. Since

all norms on the finite dimensional space V equivalent it follows that ||vn|| → ∞

as n → ∞, where || · || is L2(Ω) norm. If for each n ≥ 1 we set zn = θ(vn) and

un = vn + θ(vn), then ||un|| → ∞ as n → ∞. Therefore, since ||vn||/||un||
2 → 0 as

n → ∞, F̃ (vn)(vn)/||vn||
2 → 0 as n → ∞. Since F̃ (vn)(v) = F (un)(v) for all v ∈ V,

so setting wn = un/||un||. We conclude that

∫

Ω

[

(∇wn · ∇vn − bw+
n vn + aw−

n vn + tφ1(vn/||un||))/||un||
]

dx → 0 (3.8)

as n → ∞.

We see that
∫

Ω

(∇un · ∇zn − bu+
n zn + au−

n zn + tφ1zn)dx = 0 for all n. (3.9)

Dividing the left-hand side (3.9) by ||un||
2, adding to the left-hand side of (3.8) and

using wn = vn/||un|| + zn/||un||, we see that (3.8) can be rewritten in the form
∫

Ω

[

|∇wn|
2 − b(w+

n )
2
− a(w−

n )
2
+ tφ1wn/||un||

]

dx → 0 as n → ∞.
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Since ||wn|| = 1 for all this implies that

||wn||
2
0 =

∫

Ω

|∇wn|
2dx

is bounded independently of n. Therefore, we may assume, without loss of generality,

that {wn}
∞
1 converges weakly to w ∈ W. Since the injection from H into L2(Ω) is

compact, it follows that {wn}
∞
1 converges strongly in L2(Ω) and ||w|| = 1. If z ∈ W,

then, by the proof of Theorem 3.1,
∫

Ω

(∇un · ∇z − bu+
n z + au−

n z + tφ1z)dx = 0.

Dividing by ||un|| we have
∫

Ω

(∇wn · ∇z − bw+
n z + aw−

n z + tφ1z/||un||)dx = 0 (3.10)

for all n. Letting n → ∞ in the last equation, we conclude that
∫

Ω

(∇w · ∇z − bw+z + aw−z)dx = 0. (3.11)

Let v ∈ V. We see that

DF̃ (vn)(v) =

∫

Ω

(∇un · ∇v − bu+
n v + au−

n v + tφ1v)dx .

Dividing by ||un||, using the fact {DĨ(vn)}∞1 is bounded, and letting n → ∞, we can

obtain
∫

Ω

(∇w · ∇v − bw+v + aw−v)dx = 0. (3.12)

Since (3.11) holds for arbitray z ∈ W and (3.12) holds for arbitrary v ∈ V and H is

direct sum of V and W, we conclude that
∫

Ω

(∇w · ∇y − bw+y + aw−y)dx = 0 for all y ∈ H .

By (3.3), w is a solution of

Aw + bw+ − aw− = 0, w|∂Ω = 0. (3.13)

Since ||w|| = 1, this contradicts the assumption that (3.13) has only the trivial solution

(cf. [9]). Hence the sequence {Vn}
∞
1 is bounded and the lemma is proved. �

Let V̂ be the vector space spanned by an eigenfunction φ2. Let Ŵ denote the

orthogonal complement of V̂ and let P̂ : H → V̂ denote the orthogonal projection

of H onto V̂ . By the use of (3.1), (3.2) and Theorem 3.1, we have the following

statements.

Given v̂ ∈ V̂ and t ∈ R, there exists a unique solution ẑ = θ̂(v̂) of

Aẑ + (I − P̂ )g(v̂ + ẑ) = tφ1, ẑ|∂Ω = 0,

where ẑ ∈ Ŵ .
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If ẑ = θ̂(v̂), then θ̂ is continuous on V̂ . Let F̂0(v̂) denote the functional defined by

F̂0(v̂) = F (v̂+ θ̂(v̂)). Then F̂0 has a continuous Frechét derivative DF̂0 with respect to

v̂ and u is a solution of equation (3.1) if and only if u = v̂+θ̂(v̂) and DF̂0(v̂) = 0, where

v̂ = P̂u. By Theorem 3.3, for each fixed t the functional F̂0 satisfies the Palais-Smale

condition.

By Theorem 3.1, the functional F̂0(v̂) satisfy the following lemma.

Lemma 3.4. If t > 0 there exists α = α(t) > 0 such that if v̂ ∈ V̂ and ‖v̂‖0 < α(t),

then θ̂(v̂) = tφ1/(b − λ1) for t > 0 and the point v̂ = 0 is a stric local point of

maximum for F̂0.

Lemma 3.5. For k > 0 and t = 0, F̂0(kv̂) = k2F̂0(v̂).

Proof. Since g is positively homogeneous of degree one, it follows that if v̂ ∈ V̂ , ẑ ∈ Ŵ

and Aẑ + (I − P̂ )g(v̂ + ẑ) = 0, ẑ|∂Ω = 0, then A(kẑ) + (I − P̂ )g(kv̂ + kẑ) = 0.

Therefore, θ̂(kv̂) = kθ̂(v̂). We see that F0(ku) = k2F (u) for u ∈ H and k > 0. Hence,

F̂0(kv̂) = F (kv̂ + θ̂(kv̂)) = k2F (v̂ + θ̂(v̂)) = k2F̂0(v̂). �

Lemma 3.6. Let λ1 < a < λ2 < b < λ3. Then we have:

(a) For t = 0, F̂0(v̂) > 0 for all v̂ ∈ V̂ with v̂ 6= 0.

(b) For t > 0, F̂0(v̂) → ∞ as ‖v̂‖0 → ∞.

(c) For fixed t > 0, F̃ (v) → ∞ along a φ2-axis.

Proof. With Lemma 3.5 and [7], we have (a) and (b).

(c) For fixed t we see that F (v̂ + θ̂(v̂)) = F (v + θ(v)). Let F̃ |V̂ be the restriction of

F̃ to the V̂ . Then F̃ |V̂ = F̂0. By (b), if t > 0, then F̃ (v) → ∞ as along a φ2-axis. �

Lemma 3.7. Let λ1 < a < λ2 < b < λ3 and t = b − λ1 and q2 | λ2 − a |>| λ1 − a | .

Then we have F̃ (v) → +∞ as ‖v‖0 → ∞ along a boundary ray of C3.

Proof. Let v = vp + v∗ ∈ C3 and v∗ = c1φ1 + c2φ2. Then we have

F̃ (v) =

∫

Ω

[

1

2
(|∇(vp + v∗)|

2 − a((vp + v∗)−)2) + (b − λ1)φ1(vp + v∗)

]

dx.

We note that vp + v∗ ∈ ∂C3 if and only if c2 = q(c1 + 1), c1 ≤ −1. It can be shown

easily the following holds

F̃ (v) =
1

2
((λ1 − a)c2

1 + q2(λ2 − a)c2
1)

+ (q2(λ2 − a) + (b − a))c1 +
1

2
((λ2 − a)q2 + (b − a)) + C,

where C =
∫

Ω

[

1

2
(|∇vp|

2 − bv2
p) + (b − λ1)φ1vp

]

dx. Hence if v ∈ ∂C3, then we have

F̃ (v) → +∞ as c1 → −∞. �

Theorem 3.8. Let λ1 < a < λ2 < b < λ3 and t = b − λ1. Then F̃ (v) has a critical

point in IntC1, and at least one critical point in IntC2, and at least one critical point

in IntC4.

Proof. We denote that −F̃ (v) = F̃∗(v). By Theorem 3.2 (a), if t = b − λ1, then

there exists a small open neighborhood Bp of vp in C1 such that in Bp, vp = φ1 is a
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strict local point of maximum for F̃ (v). Hence vp is a stric local point of minimum

for F̃∗(v) in C1. By Lemma 3.6 (c), F̃∗(v) → −∞ as ‖v‖0 → ∞ along a φ2-axis. and

F̃∗ ∈ C1(V,R) satisfies the Palais-Smale condition.

Since F̃∗(v) → −∞ as ‖v‖0 → ∞ along a φ2-axis, we can choose v0 on φ2-axis such

that F̃∗(v0) < F̃∗(vp). Let Γ be the set of all paths in V joining vp and v0. We write

c = inf
γ∈Γ

sup
γ

F̃∗(v).

The fact that in Bp, vp is a strict local point of minimum of F̃∗, the fact that F̃∗(v) →

−∞ as ‖v‖0 → ∞ along a φ2-axis, the fact F̃∗ satisfies the Palais-Smale condition,

and the Mountain Pass Theorem imply that

c = inf
γ∈Γ

sup
γ

F̃∗(v)

is a critical value of F̃∗ (see Mountain Pass Theorem and [3, 9]). When λ1 < a <

λ2 < b < λ3 and t = b − λ1, equation (3.1) has a unique positive solution vp and no

negsative solution. Hence there exists a criticl point v3, in Int(C2 ∪ C4), of F̃∗ such

that

F̃∗(v3) = c.

We prove that if v3 ∈ IntC4 such that F̃∗(v3) = c, then there exists another critical

point v ∈ IntC2 of F̃∗. Suppose v3 ∈ IntC4. Since F̃∗(v) → −∞ as ‖v‖0 → ∞ along

a φ2-axis, we can choose v1 on this φ2-axis such that F̃∗(v1) < F̃∗(vp). Let Γ1 be the

set of all paths in C1 ∪ C2 ∪ C3 joining vp and v1. We write

c′ = inf
γ∈Γ1

sup
γ

F̃∗(v).

We note that F̃∗(v) → ∞ as ‖v‖0 → ∞ along a negative φ1-axis or along a boundary

ray, c2 = q(c1 + 1)(c1 ≥ −1), of C1, where v = vp + c1φ1 + c2φ2 ∈ ∂C1.

Let us fix ε, η as in Deformation Lemma with E = V, F = F̃∗, c = c′, Kc′ = φ and

taking ε < 1

2
(c′ − F̃∗(vp)). Taking γ ∈ Γ1 such that supγF̃∗ ≤ c′. From Deformation

Lemma (see [3]), η(1, ·) ◦ γ ∈ Γ1 and

sup F̃∗(η(1, ·) ◦ γ) ≤ c′ − ε < c′,

which is a contradiction. Therefore there exists a critical point v4 of F̃∗ at leval c′

such that v4 ∈ C1∪C2∪C3 and F̃∗(v4) = c′. Since equation (3.1) has a unique positive

solution vp and no negative solution when λ1 < a < λ2 < b < λ3 and t = b−λ1(> 0),

the critical point v4 belongs to IntC2.

Similarly, we have that if v3 ∈ IntC2 with F̃∗(v3) = c, then F̃∗(v) has another

critical point in IntC4. The crical point of F̃∗ if and only if the critcal point of F̃ .

Hence this completes the theorem. �

Theorem 3.9. Let λ1 < a < λ2 < b < λ3. For 1 ≤ i ≤ 4, let Π(Ci) = Ri. Then

R2 = R1 ∪ R∗
4 and R4 = R1 ∪ R∗

2.
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Proof. Let h ∈ V. We note that v is a solution of the equation

Π(v) = Av + P (b(v + θ(v))+ − a(v + θ(v))−) = h in V

if and only if v is a critical point of F̃ . Hence it follows from Theorem 3.8 that

R2 ∩ R1 6= ∅. Since R2 is one of sets R1 ∪ R∗
4 or R3 ∪ R∗

2, R2 must be R1 ∪ R∗
4.

On the other hand, it follows from Theorem 3.8 that R4 ∩ R1 6= ∅. Since R4 is one

of sets R1 ∪ R∗
2 or R3 ∪ R∗

4, R4 must be R1 ∪ R∗
2. �

By Theorem 2.2, Theorem 2.3, Theorem 2.4 and Theorem 3.9, we obtain the main

theorem of the equation (1.2).

Theorem 3.9. Let λ1 < a < λ2 < b < λ3. Then we have the following:

(a) If h ∈ IntR1, then equation (1.2) has a positive solution and at least two change

sign solutions.

(b) If h ∈ ∂R1, then equation (1.2) has a positive solution and at least one change

sign solution.

(c) If h ∈ IntR∗
i (i = 2, 4), then equation (1.2) has at least one change sign solution.

(d) If h ∈ IntR∗
3, then equation (1.2) has only the negative solution.

(e) If h ∈ ∂R3, then equation (1.2) has a negative solution.
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