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1. INTRODUCTION

This paper deals with the existence of solutions as well as the existence of extremal

solutions for initial value problems (IVP for short) for perturbed fractional order

functional differential equations

(1.1) Dαy(t) = f(t, yt) + g(t, yt), for each t ∈ J = [0, b], 0 < α < 1,

(1.2) y(t) = φ(t), t ∈ [−r, 0],

where Dα is the Riemman-Liouville fractional derivative, f, g : J ×C([−r, 0], R) → R

are given functions and φ ∈ C([−r, 0], R) with φ(0) = 0. For any continuous function

y defined on [−r, b] and any t ∈ J , we denote by yt the element of C([−r, 0], R) defined

by

yt(θ) = y(t + θ), θ ∈ [−r, 0].

Here yt(·) represents the history of the state from time t− r up to the present time t.

Functional differential equations arise in a variety of areas of biological, physi-

cal, and engineering applications, see, for example, the books of Kolmanovskii and

Myshkis [20], and Hale and Verduyn Lunel [14] and the references therein. Differ-

ential equations of fractional order have recently proved to be valuable tools in the
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modeling of many phenomena in various fields of science and engineering. Indeed,

we can find numerous applications in viscoelasticity, electrochemistry, control, porous

media, electromagnetic, etc. (see [4, 11, 13, 17, 21, 22, 26]). For three noteworthy pa-

pers dealing with the integral operator and the arbitrary fractional order differential

operator, see [7, 8, 10]. There has been a significant development in fractional differ-

ential equations in recent years; see the monographs of Kilbas et al. [19], Miller and

Ross [23], Podlubny [27], Samko et al. [29] and the papers of Delbosco and Rodino

[2], Diethelm et al. [4, 5, 6], El-Sayed [9], Kilbas and Marzan [18], Mainardi [21],

Momani and Hadid [24], Momani et al. [25], Podlubny et al. [28], Yu and Gao [30]

and the references therein.

In this paper, we shall prove the existence of solutions, as well as, the existence

of extremal solutions for the problem (1.1)- (1.2). Our approach is based, for the

existence of solutions, on a new fixed point theorem of Burton and Kirk BuKi1, and

for the existence of extremal solutions, on the concept of upper and lower solutions

combined with a fixed point theorem on ordered Banach spaces established recently

by Dhage and Henderson [3]. These results can be considered as a contribution to

this emerging field.

2. PRELIMINARIES

In this section, we introduce notations, definitions, and preliminary facts which

are used throughout this paper.

By C(J, R) we denote the Banach space of all continuous functions from J into

R with the norm

‖y‖∞ := sup{|y(t)| : t ∈ J}.

Also, C([−r, 0], R) is endowed with the norm ‖ · ‖C defined by

‖φ‖C := sup{|φ(θ)| : −r ≤ θ ≤ 0}.

Definition 2.1. The fractional primitive of order α > 0 of a function h : (0, b] → R

is defined by

Iα
0 h(t) =

∫ t

0

(t − s)α−1

Γ(α)
h(s)ds,

provided the right side is pointwise defined on (0, b] and Γ is the gamma function.

For instance, Iαh exists for all α > 0 when h ∈ C((0, b], R) ∩ L1((0, b], R); note

also that when h ∈ C([0, b], R) then Iαh ∈ C([0, b], R) and moreover Iαh(0) = 0.
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Definition 2.2. The fractional derivative of order α > 0 of a continuous function

h : (0, b] → R is given by

dαh(t)

dtα
=

1

Γ(1 − α)

d

dt

∫ t

a

(t − s)−αh(s)ds

=
d

dt
I1−α
a h(t).

More details on fractional integrals and fractional derivatives can be found in

[19, 23, 27, 29].

3. EXISTENCE OF SOLUTIONS

Let us start by defining what we mean by a solution of the problem (1.1)–(1.2).

Definition 3.1. A function y ∈ C([−r, b], R) is said to be a solution of (1.1)–(1.2) if

y satisfies the equation Dαy(t) = f(t, yt)+ g(t, yt) on J and the condition y(t) = φ(t)

on [−r, 0].

For existence results for the problem (1.1)-(1.2) we need the following auxiliary

lemma.

Lemma 3.2. ([2]) Let 0 < α < 1 and let h : (0, b] → R be continuous and

limt→0+ h(t) = h(0+) ∈ R. Then y is a solution of the fractional integral equation

y(t) = 1
Γ(α)

∫ t

0
(t − s)α−1h(s)ds,

if and only if, y is a solution of the initial value problem for the fractional differential

equation

Dαy(t) = h(t), t ∈ (0, b],

y(0) = 0.

We state the following generalization of Gronwall’s lemma for singular kernels,

whose proof can be found in [16], will be essential for the main result of this section.

Lemma 3.3. Let v : [0, b] → [0,∞) be a real function and w(·) is a nonnegative,

locally integrable function on [0, b] and let be the constants a > 0 and 0 < α < 1 such

that

v(t) ≤ w(t) + a

∫ t

0

v(s)

(t − s)α
ds.

Then, there exists a constant K = K(α) such that

v(t) ≤ w(t) + Ka

∫ t

0

w(s)

(t − s)α
ds,

for every t ∈ [0, b].
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Our first existence result for the IVP (1.1)–(1.2) is based on the following fixed

point theorem due to Burton and Kirk [1]:

Theorem 3.4. Let X be a Banach space, and A, B two operators satisfying:

(i) A is a contraction, and

(ii) B is completely continuous.

Then either

(a) the operator equation y = A(y) + B(y) has a solution, or

(b) the set E =
{

u ∈ X : λA
(

u
λ

)

+ λB(u) = u
}

is unbounded for λ ∈ (0, 1).

Let us introduce the following hypotheses witch are assumed hereafter:

(H1) The function f : J × C([−r, 0], R) → R is continuous.

(H2) There exists a constant k > 0 such that

|g(t, u)− g(t, u)| ≤ k‖u − u‖C , for each t ∈ J, and all u, u ∈ C([−r, 0], R).

(H3) There exists a constant M > 0 such that

|f(t, u)| ≤ M for each t ∈ J and all u ∈ C([−r, 0], R).

Theorem 3.5. Assume that hypotheses (H1)-(H3) hold. If

(3.1)
bαk

Γ(α + 1)
< 1,

then the IVP (1.1)-(1.2) has at least one solution on [−r, b].

Proof. Consider the operators:

F, G : C([−r, b], R) → C([−r, b], R)

defined by

F (y)(t) =







φ(t), if t ∈ [−r, 0],

1
Γ(α)

∫ t

0
(t − s)α−1f(s, ys)ds, if t ∈ [0, b],

and

G(y)(t) =







0, if t ∈ [−r, 0],

1
Γ(α)

∫ t

0
(t − s)α−1g(s, ys)ds, if t ∈ [0, b].

Then the problem of finding the solutions of the IVP (1.1)-(1.2) is reduced to finding

the solutions of the operator equation F (y)(t) + G(y)(t) = y(t), t ∈ J. We shall show

that the operators F and G satisfy all the conditions of Theorem 3.4. The proof will

be given in several steps.

Step 1: F is continuous.
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Let {yn} be a sequence such that yn → y in C([−r, b], R). Let η > 0 such that

‖yn‖∞ ≤ η.

Then

|F (yn)(t) − F (y)(t)| ≤
1

Γ(α)

∫ t

0

(t − s)α−1|f(s, yns) − f(s, ys)|ds

≤
1

Γ(α)

∫ t

0

(t − s)α−1 sup
s∈[0,b]

|f(s, yns) − f(s, ys)|ds

≤
‖f(·, yn.) − f(·, y.)‖∞

Γ(α)

∫ t

0

(t − s)α−1ds

≤
bα‖f(·, yn.) − f(·, y.)‖∞

αΓ(α)
.

Since f is a continuous function, then we have

‖F (yn) − F (y)‖∞ ≤
bα‖f(·, yn.) − f(·, y.)‖∞

Γ(α + 1)
→ 0 as n → ∞.

Step 2: F maps bounded sets into bounded sets in C([−r, b], R).

Indeed, it is enough to show that for any η∗ > 0, there exists a positive constant `

such that for each y ∈ Bη∗ = {y ∈ C([−r, b], R) : ‖y‖∞ ≤ η∗}, we have ‖F (y)‖∞ ≤ `.

By (H3) we have for each t ∈ [0, b],

|F (y)(t)| ≤
1

Γ(α)

∫ t

0

(t − s)α−1|f(s, ys)|ds

≤
M

Γ(α)

∫ t

0

(t − s)α−1ds

≤
M

αΓ(α)
bα.

Thus

‖F (y)‖∞ ≤
M

Γ(α + 1)
bα := `.

Step 3: F maps bounded sets into equicontinuous sets of C([−r, b], R).

Let t1, t2 ∈ (0, b], t1 < t2, Bη∗ be a bounded set of C([−r, b], R) as in Step 2, and

let y ∈ Bη∗ . Then

|F (y)(t2) − F (y)(t1)| =
∣

∣

∣

1
Γ(α)

∫ t1

0
[(t2 − s)α−1 − (t1 − s)α−1]f(s, ys)ds

+ 1
Γ(α)

∫ t2

t1
(t2 − s)α−1f(s, ys)ds

∣

∣

∣

≤ M
Γ(α)

∫ t1

0
[(t1 − s)α−1 − (t2 − s)α−1]ds

+ M
Γ(α)

∫ t2

t1
(t2 − s)α−1ds

≤ M
Γ(α+1)

[(t2 − t1)
α + tα1 − tα2 ] + M

Γ(α+1)
(t2 − t1)

α

≤ M
Γ(α+1)

(t2 − t1)
α + M

Γ(α+1)
(tα1 − tα2 ).
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As t1 −→ t2, the right-hand side of the above inequality tends to zero. The equicon-

tinuity for the cases t1 < t2 ≤ 0 and t1 ≤ 0 ≤ t2 is obvious.

As a consequence of Steps 1 to 3 together with the Arzelá-Ascoli theorem, we

can conclude that F : C([−r, b], R) −→ C([−r, b], R) is continuous and completely

continuous.

Step 4: G is a contraction.

Let x, y ∈ C([−r, b], R). Then, for each t ∈ J we have

|G(x)(t) − G(y)(t)| ≤
1

Γ(α)

∫ t

0

(t − s)α−1|g(s, xs) − g(s, ys)|ds

≤
1

Γ(α)

∫ t

0

(t − s)α−1k‖x − y‖∞ds

≤
k‖x − y‖∞

Γ(α)

∫ t

0

(t − s)α−1ds

≤
bαk

αΓ(α)
‖x − y‖∞.

Thus,

‖G(x) − G(y)‖∞ ≤
bαk

Γ(α + 1)
‖x − y‖∞,

and consequently G is a contraction, since by (3.1), bαk
Γ(α+1)

< 1.

Step 5: A priori bounds.

Now it remains to show that the set

E =
{

y ∈ C(J, R) : y = λF (y) + λG
(y

λ

)

for some 0 < λ < 1
}

is bounded.

Let y ∈ E ; then y = λF (y) + λG
(

y

λ

)

for some 0 < λ < 1. Thus, for each t ∈ J

we have

y(t) = λ

[

1

Γ(α)

∫ t

0

(t − s)α−1f(s, ys)ds +
1

Γ(α)

∫ t

0

(t − s)α−1g
(

s,
ys

λ

)

ds

]

.
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This implies by (H2) and (H3) that for each t ∈ J we have

|y(t)| ≤
M

Γ(α)

∫ t

0

(t − s)α−1ds

+
λ

Γ(α)

∫ t

0

(t − s)α−1
∣

∣

∣
g

(

s,
ys

λ

)

− g(s, 0)
∣

∣

∣
ds

+
λ

Γ(α)

∫ t

0

(t − s)α−1|g(s, 0)|ds

≤
M

Γ(α)

∫ t

0

(t − s)α−1ds

+
k

Γ(α)

∫ t

0

(t − s)α−1‖ys‖Cds +
bαg∗

Γ(α + 1)
,

where

g∗ = sup
s∈J

|g(s, 0)|.

We consider the function µ defined by

µ(t) = sup{|y(s)| : 0 ≤ s ≤ t}, 0 ≤ t ≤ b.

Let t∗ ∈ [−r, t] be such that µ(t) = |y(t∗)|. If t∗ ∈ [0, b], then by the previous inequality

we have for t ∈ [0, b]

µ(t) ≤
bα(M + g∗)

Γ(α + 1)
+

k

Γ(α)

∫ t

0

(t − s)α−1µ(s)ds.

If t∗ ∈ [−r, 0], then µ(t) = ‖φ‖C and the previous inequality holds.

Then, from Lemma 3.3, there exists K̃ = K̃(α) such that we have

‖µ‖∞ ≤
bα(M + g∗)

Γ(α + 1)
+ K̃

k

Γ(α)

∫ t

0

(t − s)α−1Rds

≤
bα(M + g∗)

Γ(α + 1)
+ K̃

kbα

Γ(α + 1)
R := R̃,

where

R =
bα(M + g∗)

Γ(α + 1)
.

Since for every t ∈ [0, b], ‖yt‖∞ ≤ µ(t), we have

‖y‖∞ ≤ max(‖φ‖C , R̃) := A.

This shows that the set E is bounded. As a consequence of Theorem 3.4, we deduce

that F (y) + G(y) has a fixed point which is a solution of the problem (1.1) − (1.2).
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4. EXISTENCE OF EXTREMAL SOLUTIONS

In this section, we shall prove the existence of minimal and maximal solutions for

the IVP (1.1)-(1.2) under suitable monotonicity conditions on the functions involved.

Definition 4.1. A nonempty closed subset C of a Banach space X is said to be a

cone if

(i) C + C ⊂ C,

(ii) λC ⊂ C, and

(iii) {−C} ∩ {C} = {0}.

A cone C is called normal if the norm ‖ · ‖ is semi-monotone on C, i.e., there

exists a constant N > 0 such that ‖x‖ ≤ N |y‖, whenever x ≤ y. We equip the space

X = C([−r, b], R) with the order relation ≤ induced by a regular cone in E, that is

for all y, y ∈ X : y ≤ y if and only if y(t) − y(t) ≥ 0, ∀t ∈ [−r, b]. Cones and their

properties are detailed in [12, 15]. Let α, β ∈ X be such that α ≤ β. Then, by an

order interval [α, β] we mean a set of points in X given by

[α, β] = {x ∈ X | α ≤ x ≤ β}.

Definition 4.2. Let X be an ordered Banach space. A mapping T : X → X is called

isotone increasing if T (x) ≤ T (y) for any x, y ∈ X with x < y. Similarly, T is called

isotone decreasing if T (x) ≥ T (y) whenever x < y.

Definition 4.3. ([15]) We say that x ∈ X is the least fixed point of G in X if x = Gx

and x ≤ y whenever y ∈ X and y = Gy. The greatest fixed point of G in X is defined

similarly by reversing the inequality. If both a least and greatest fixed point of G in

X exist, we call them extremal fixed points of G in X.

We need the following fixed point theorem in the sequel.

Theorem 4.4. ([3]) Let [α, β] be an order interval in a Banach space and let B1, B2 :

[α, β] → X be two functions satisfying:

(a) B1 is a contraction,

(b) B2 is completely continuous,

(c) B1 and B2 are strictly monotone increasing, and

(d) B1(x) + B2(x) ∈ [α, β], for all x ∈ [α, β].

Furthermore, if the cone C in X is normal, then the equation x = B1(x) + B2(x) has

a least fixed point x∗ and a greatest fixed point x∗ ∈ [α, β]. Moreover x∗ = lim
n to∞

xn

and x∗ = lim
n→∞

yn, where {xn} and {yn} are the sequences in [α, β] defined by

xn+1 = B1(xn) + B2(xn), x0 = α and yn+1 = B1(yn) + B2(yn), y0 = β.
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We adopt the following definitions.

Definition 4.5. A function v ∈ C([−r, b], R) is called a lower solution of the IVP

(1.1)-(1.2) if Dαv(t) ≤ f(t, vt) + g(t, vt), for each t ∈ J and v(t) ≤ φ(t) if t ∈ [−r, 0].

Similarly an upper solution w of IVP (1.1)-(1.2) is defined by reversing the order of

the above inequalities.

Definition 4.6. A solution xM of the IVP (1.1)-(1.2) is said to be maximal if for

any other solution x of the IVP (1.1)-(1.2) on [−r, b] we have x(t) ≤ xM(t) for each

t ∈ [−r, b].

Similarly a minimal solution of IVP (1.1)-(1.2) is defined by reversing the order of

the inequalities.

Definition 4.7. A function f(t, x) is called strictly monotone increasing in x almost

everywhere for t ∈ J , if f(t, x) ≤ f(t, y) for each t ∈ J and all x, y ∈ C([−r, 0], R)

with x < y. Similarly f(t, x) is called strictly monotone decreasing in x almost

everywhere for t ∈ J , if f(t, x) ≥ f(t, y) a.e. t ∈ J for all x, y ∈ C([−r, 0], R) with

x < y.

We need the following assumptions in the sequel.

(H4) The functions f(t, y) and g(t, y) are strictly monotone nondecreasing in y for

each t ∈ J .

(H5) The IVP (1.1)-(1.2) has a lower solution v and an upper solution w with v ≤ w.

Theorem 4.8. Assume that assumptions (H1)-(H5) hold. Then the IVP (1.1)-(1.2)

has minimal and maximal solutions on [−r, b].

Proof. It can be shown, as in the proof of Theorem 3.5, that F is completely con-

tinuous and G is a contraction on [v, w]. We shall show that F and G are isotone

increasing on [v, w]. Let y, y ∈ [v, w] be such that y ≤ y, y 6= y. Then by (H4), we

have for each t ∈ J

F (y)(t) =
1

Γ(α)

∫ t

0

(t − s)α−1f(s, ys)ds

≤
1

Γ(α)

∫ t

0

(t − s)α−1f(s, ys)ds

= F (y)(t).

Similarly, G(y) ≤ G(y). Therefore F and G are isotone increasing on [v, w]. Finally,

let x ∈ [v, w] be any element. By (H5), we deduce that

v ≤ F (v) + G(v) ≤ F (x) + G(x) ≤ F (w) + G(w) ≤ w,

which shows that F (x)+G(x) ∈ [v, w] for all x ∈ [v, w]. Thus, the functions F and G

satisfy all the conditions of Theorem 4.4, and hence the IVP (1.1)-(1.2) has minimal

and maximal solutions on [−r, b]. This completes the proof.
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5. AN EXAMPLE

In this section we give an example to illustrate the usefulness of our main results.

Let us consider the fractional functional differential equation,

(5.1) D(α)y(t) =
cet‖yt‖

(et + e−t)(1 + ‖yt‖)
+

e−t

1 + ‖yt‖
, t ∈ J := [0, b], α ∈ (0, 1),

(5.2) y(t) = φ(t), t ∈ [−r, 0],

where φ(0) = 0, cΓ(α) = c0

∫ b

0
sα−1e−sds, and c0 > 1 fixed. Set

f(t, x) =
etx

c(et + e−t)(1 + x)
, (t, x) ∈ J × [0,∞),

and

g(t, x) =
e−t

1 + x
, (t, x) ∈ J × [0,∞).

Let x, y ∈ [0,∞) and t ∈ J. Then we have

|f(t, x) − f(t, y)| =
et

c(et + e−t))

∣

∣

∣

x

1 + x
−

y

1 + y

∣

∣

∣

=
et|x − y|

c(et + e−t)(1 + x)(1 + y)

≤
et

c(et + e−t)
|x − y|

≤
1

c
|x − y|,

Hence the condition (H2) holds. Also, the function g is continuous on J × [0,∞) and

|g(t, x)| ≤ 1, for each (t, x) ∈ J × [0,∞).

Thus conditions (H1) and (H3) hold. Assume that bα

cΓ(α+1)
< 1, then by Theorem 3.4

the problem (5.1)-(5.2) has at least one solution on [−r, b].
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