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Abstract: In this paper, we are concerned with the asymptotic stability of the trivial
solution of third order nonlinear delay differential equations of the form

By constructing a Lyapunov functional, we establish some new sufficient conditions which
insure that the trivial solution of this equation is the asymptotically stable. In particular, an
example is given to illustrate the importance of our result.
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It is well-known that the systems with aftereffect, with time lag or with delay are of
great theoretical interest and form an important class as regards their applications. This class
of systems is described by functional differential equations, which are also called differential
equations with deviating arguments. Among functional differential equations one may
distinguish some special classes of equations, retarded functional differential equations,
neutral functional differential equations and advanced functional differential equations. In
particular, retarded functional differential equations describe those systems or processes
whose rate of change of state is determined by their past and present states. Such equations
are frequently encountered as mathematical modes of most dynamical process in mechanics,
control theory, physics, chemistry, biology, medicine, economics, atomic energy, information
theory, etc. Especially, since 1960s many good books, most of them are in Russian literature,
have been published concerning to the delay differential equations (see for example the
books of Burton ([1], [2]), El'sgol'ts [3], El'sgol'ts and Norkin [4], Gopalsamy [5], Hale
[6], Hale and Verduyn Lunel [7], Kolmanovskii and Myshkis [8], Kolmanovskii and Nosov
[9], Krasovskii [10] and Yoshizawa [20] and the references listed in these books). As it is
also known, the investigation of qualitative properties of solutions, in particular, the stability
of solutions is a very important problem in the theory and applications of the differential
equations. The most efficient tool for the study of the stability of a given nonlinear system is
provided by Lyapunov theory [11]. The Lyapunov's theory [11] is based on the use of
positive functions that are non-increasing along the solutions of the considered differential
system. But, finding an appropriate positive definite Lyapunov function is a difficult task for
higher order nonlinear differential equations. However, up to now, the second method of
Lyapunov [11] for asymptotic stability has been very successful when applied third order
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nonlinear differential equations satisfying the Routh-Hurwitz criteria. For the works
achieved on third order nonlinear ordinary differential equations without delay one can
refer to the book of Reissig et al. [13] as a survey and the papers of Tun~ ([17], [18]) and
the references citied in these sources. Since the use of Lyapunov's second method [II]
for investigation of stability criteria of equations with delay encountered some principal
difficulties, Krasovskii [10] achieved the use of functionals, which are now called
Lyapunov functionals, defined on equations' trajectories instead of Lyapunov functions.
It is worthy mentioning that, with respect to our observation, finding an appropriate
positive definite Lyapunov functional for higher order nonlinear delay differential
equations is a more difficult task than that of Lyapunov function for nonlinear differential
equations without delay. At the same time, one can recognize that so far only a few
significant theoretical results concerning stability of trivial solution of third order
nonlinear differential equations with delay have been achieved, see for example the
papers of Sadek [14], Sinha [15], Tejumola and Tchegnani [16], Tun~ [19], Zhu [21] and
the references listed in these papers. Meanwhile, it should be noted that, in 1969,
Palusinski et al. [12] applied an energy metric algorithm for the generation of a Lyapunov
function for third order ordinary nonlinear differential equation of the form:

x"'(t) + a1x"'(t) + /2 (x'(t))x'(t) + a3x(t) = O.

a1 > 0, /2 (x') > a3 > 0 .

In this paper we consider the third order ordinary nonlinear delay differential
equations of the type

whose associated system is

x'(t) = y(t) , y'(t) = z(t) ,
1

l(t) = - qJ(x(t), y(t))z(t) -1II(x(t), y(t)) - h(x(t)) + Jill. (x(s), y(s))y(s)ds
l-r(/)

1 1

+ Jllly (x(s), y(s))z(s)ds + Jh'(x(s))y(s)ds,
I-r(t) I-r(t)

where r is a bounded delay, 0:5; r(t) :5;r, r'(t):5; Cf, 0 < Cf < 1, rand Cf are some positive
constants, r will be determined later; the functions qJ, III and h depend only on the
arguments displayed explicitly and the primes in equation (1) denote differentiation with
respect to t, t E [0,00). It is principally assumed that the functions qJ, III and h are
continuous for all values their respective arguments on 9{2 and 9{, respectively. Besides, it is

a
also supposed that lII(x,O) = h(O) = 0 , and the derivatives qJ.(x, y) == ax qJ(x,y)

a a ( d h'() dh . d .1II.(x,y) == ax lII(x,y), lIIy(x,y) == dy III x,y) an x == dx eXIst an are contlOuous;

throughout the paper x(t), y(t) and z(t) are, respectively, abbreviated as x, y and z. All
solutions considered are also assumed to be real valued.



The motivation for the present work has been inspired basically by the paper of
Palusinski et al. [12] and the papers mentioned above. Our aim here is to improve the results
verified by Palusinski et at. [12] to nonlinear delay equation (1) for the asymptotic stability of
trivial solution of this equation. We also give an explanatory example related to the
asymptotic stability of the trivial solution of (1). All of the papers mentioned above were
published without including an explanatory example on the stability of solutions of third
order nonlinear differential equations with delay or without delay.

In order to reach the main result of this paper, we will give some important basic
information for the general autonomous delay differential system. Now, we consider the
general autonomous delay differential system

where f :eH ~ ~ n is a continuous mapping, f (0) = 0, and we suppose that f takes closed
bounded sets into bounded sets of ~n. Here (e, 11.11) is the Banach space of continuous

function ¢': [- r, 0] ~ ~n with supremum norm, r > 0, CHis the open H -ball in e;
eH := W>E (e[- r,Ol ~n): M< H}. Standard existence theory, see Burton [1], shows that if

¢' E CHand t ~ 0, then there is at least one continuous solution x(t,to' ¢') such that on
[to' to + a) satisfying equation (3) for t > to ' x, (t, ¢') = ¢' and a is a positive constant. If
there is a closed subset Bee H such that the solution remains in B, then a = 00. Further,

the symbol 1.1will denote the norm in ~n with I~= maxl,;;,;nlx;l.

Definition 1. (See [1].) Let f(O) = O. The zero solution of equation (3) is:

(a) stable if for each tl ~ to and e > 0 there exists b > 0 such that [ II¢III ~ 0, t ~ tl]

imply that Ix(t,tl'¢')1 < e.
(b) asymptotically stable if it is stable and if for each t) ~ to there is an TJ such that

II¢III ~ TJ implies that x(t,to'¢') ~ 0 as t ~ 00.

Definition 2. (See [1].) A continuous positive definite function W: ~n ~ [0,00) is
called a wedge.

Definition3. (See [1].) A continuous function W:[O,oo)~[O,oo) with W(O)=O,

W(s) > 0 if s > 0, and W strictly increasing is a wedge. (We denote wedges by W or Wi'

where i an integer.)

Definition 4. (See [1].) Let D be an open set in ~n with OE D. A function
V :D ~ [0,00) is called

(a) positive definite if V (0) = 0 and if there is a wedge WI with V (x) ~ WI (I~) ,

(b) decresent if there is a wedge W2 with Vex) ~ W2 (Ixl).



Definition 5. (See [1].) If V is a continuous scalar function in CH' we define the
derivative of V along the solutions of (3) by the following relation

V· (At) -1' V(xh (iP» - V (iP»
(3) 'I' - Imsup .

h...•O· h

Lemma. (See [15].) Suppose f (0) = O. Let V be a continuous functional defined on
CH = C with V(O) = 0, and let u(s) be a function, non-negative and continuous for
O:S:s<oo, u(s)~oo as u~oo with u(O)=O.Ifforall iPeC, u(liP(O)I):s:V(iP), V(iP)~O,

V(3) (iP) :S:0 , then the solution x, = 0 of (3) is stable.

If we define Z = f9; e CH : V(3) (iP) = O}, then the solution x, = 0 of (3) is asymptotically

stable, provided that the largest invariant set in Z is Q = {O}.

Theorem. In addition to the basic assumptions imposed on the functions rp, If/ and h
that appeared in equation (1), we assume that there are positive constants a\, az' a3 ' A, a,
f3, e, p, r, Land M, such that the following conditions hold for all x, y and z:

(ii) rp(x, y) ~ a\ + 2A and yrpx(x, y :S:0 .

(iii) If/(x,O)=O, If/(x,y) ~az +2p, (y*O), -L:S:lf/x(x,y):S:O and 1V//x,y)!:S:M.
y

(iv) h(O) = 0 and 0 < h'(x) :S:a3•

Proof: To achieve the proof of the theorem, we define a new Lyapunov functional. V =
V(x"y"z,). Namely, we impose some assumptions on Lyapunov functional V and its time

derivative ~ V (x" y" z,) which both imply the asymptotic stability of trivial solution of
dt

equation (1). We define our Lyapunov functional V as the following:



y y

+aZ JIf/(x,;)d; +a3 Jq>(x,;);d;
o 0

o 1 0 1

+a J Jl(8)d8is+fJ J JZZ(8)d8is,
-r(l) I+s -r(l) '+s

where az, a3, a and fJ are some positive constants and the constants a and fJ will be
determined later in the proof.
Making use of the assumptions h(O) = 0 and 0 < h'(x) ~ a3, it follows that

Now, taking into consideration this last inequality, one can rearrange the Lyapunov
functional V = V(X"Y"Z,), which is defined by (4), in the form:

o 1 0 ,

+a J Jl(8)d8is+ fJ J Jzz(8)d8is.
-r(t) t+s -r(t) t+s

The assumptions q>(x,y) ~ at + 2A and If/(x, y) ~ az + 2f1 imply that
Y

By (5) and (6) we observe that

V(x"Y"z,l 2~++::YJ+~(2a, [h(qJdq -a,I~J



o , 0 t

+ a f f l (fJ)dfMs + /3 f fZ2 (fJ)dfMs .
-r(/) t+s -r(l) t+s

Note that one may show from the terms of this inequality that there exist sufficiently small
positive constants Di, (i = 1,2,3) , such that

o , 0 ,

V(x"y"z,) ~ DIX2+D2l+D3z2+a f fy2(fJ)dfMs+/3 f fZ2(fJ)dfMs. (7)
-r(t) t+s -r(1) t+s

Therefore, subject to the above discussion, the existence of a continuous function u(I(i>(O)I)

with u(I(i>(O)I) ~ 0, which satisfies the inequality u(I(i>(O)I):::; V ((i», can be easily verified, since
o t

the integrals f fy 2 (fJ)d fMs and
-r(/) t+s

o tf fZ2(fJ)dfMs are non-negative.
-r(l) t+s

Now, calculating the time derivative of the functional V(x"Yt,z,)in (4) along the
system (2), we have

d ( If/(x, y) h'()) 2 ( ) 2-V(x"y"z,)= - a3----a2 x Y - a2qJ(x,y)-a3 Z
dt y

y y

+a3y fqJx(x,;)gJ;+a2y flf/x(x,;)d;
o 0

, t

+ a3y flf/x (x(s), yes»)y(s)ds + a3y flf/y (X(S), y(s»z(s)ds
t-r(t) t-r(t)

, ,
+ a2z flf/x(x(s), y(s))y(s)ds + a2z flf/y (x(s), y(s»)z(s)ds

'-r(t) '-r(t)

t ,

+ a3y fh'(x(s))y(s)ds +a2z fh'(x(s)y(s)ds +ar(t)y2
t-r(t) t-r(t)

t t

-a(l-r'(t) fl(s)ds+/3r(t)z2_/3(l-r'(t») fZ2(s)ds.
t-r(t) ,-r(t)

Employing the assumptions qJ(x,y)~al +2,1" yqJx(x,y:::;O, If/(x,y) ~a2 +2p.,
y

-L:::;lf/x(x,y):::;O, Ilf/y(x,y)I:::;M, O<h'(x):::;a3, O:::;r(t):::;y, r'(t):::;a and the

inequality 21abl:::;a 2 + b 2, we obtain the following inequalities for all terms contained in (8):

(
If/(x, y) h'») 2 2 2- a3--
y
--a2 (x y:::;- f.Ja3Y'



y y

a3y f<J'x(x,q)qdq ~ 0, a2y fV'x (X, q)dq ~ 0,
o 0

'f aL aL Ia3y V'x(x(s),y(s))y(s)ds ~_3_ r(t)y2(t) +_3_ fl(s)ds
/-r(l) 2 2 /-r(l)

a'lL aL 'f~_3_{_~y2(t)+_3_ y2(s)ds,
2 2 l-r(1)

I M M I

a3y fV'y (x(s), y(s))z(s)ds ~ a32 r(t)y2 (t) +~ f Z2 (s)ds
/-r(l) 2 I-r(/)

'f aL 2 aL 'fa2z V'x(x(s), y(s))y(s)ds ~ T r(t)z (t) +_2_ y\s)ds
/-r(l) 2 /-r(l)

/ M M I

a2z fV'y (x(s), y(s))z(s)ds ~ a22 r(t)z2 (t) +~ f Z2 (s)ds
I-r(/) 2 I-r(l)

afM aM 'f~_2_ Z2(t) +_2_ z2(s)ds,
2 2 /-r(l)

/ 2 2 I

a3y fh'(x(s))y(s)ds ~ a~ r(t)y2(t)+ a~ fy2(S)ds
/-r(l) I-r(l)

2 a2 t

~J!!.Ll(t) +_3 fl(s)ds,
2 2 /-r(l)

I /

a2z fh'(x(s))y(s)ds ~ a2;3 r(t)z2 (t) + a2;3 f y2 (s)ds
/-r(1) l-r(1)

I

1iJa aa f~_/~_2_3 Z2(t)+-L2. y2(s)ds,
2 2 I-r(l)

I /

ar(t)y2-a(1-r'(t)) fy\s)ds ~ a~2-a(l-0") fy\s)ds,
/-r(l) /-r(l)

I /

fJr(t)z2-fJ(1-r'(t)) fZ2(s)ds ~fJ'}'!.2_fJ(l-0") fZ2(s)dso
/-r(l) /-r(l)



!!.-Y( )<-[(2 )_(2a+a3L+a3M+a~)] 2dt X"y"Z, - J1a3 2 r y

1 '
+2"[(a2L+a3L+a~ +a2a3)-2a(l-CT)] jy2(s)ds

'-r(t)

1 '
+2"[(a2 +a3)M -2jJ(1-CT)] jz2(s)ds.

'-r(t)

(a2 +a3)L+a~ +a2a3 d jJ (a2 +a3)M . (9) hBy choosing a = -------- an = ---- III , we ave
2(1- CT) 2(1- CT)

!!.-Y( ) < -[(2 )_(2a+a3L+a3M +a~) ] 2dt x"y"Z, - J1a3 2 r y

Clearly, it follows from (10) for some positive constants k1 and k2 that

!!.-Y(x"y"z,) $-k1l-k2z
2 $0.

dt

It is also obvious that the largest invariant set in Z is Q = {O}, where
Z = {¢E CH : V(~) = O}. Namely, the only solution of equation (1) for which

!!.-Y(x" y" z,) = 0 is the solution x, == O. Thus, under the above discussion, one can say that
dt
the trivial solution of equation (1) is asymptotically stable. The proof of the theorem is now
complete.

x"'(t) + (4 + 1, 2 )X'(t) + 4x'(t - r(t)) + sin x'(t - r(t)) + 2arctgx(t - r(t)) = 0, (11)
1+ (x (t))



x'(t) = y(t), y'(t) = z(t),

z'(t) = - (4 + _1_2 )Z(t) - (4y(t) + sin y(t») - 2arctgx(t)
1+ y

I 1 '
+2 f 2 y(s)ds+ f(4+cosy(s»)z(s)ds,

'-r(1) 1+ (x(s» '-r(t)

where 0 ~ r(t) ~ r, r'(t) ~ a, 0 < a < 1, r and a are some positive constants, r will be
determined later.
Now, it is clear that

tp(y) = 4+-1-2 ~ 4,
1+ y

V/(y)=4y(t) + sin y(t), V/(O) =0, V/(y)=4+Siny , (y:;t:O ,Iyl<lr),
y y

sin y(t) , 2
4 + -- ~ 3, h(x) = 2arctgx, h(O) = 0, h (x) = --2

yOO l+x

o , 0 I

+a f fy2(8)dffis+fJ f fZ2(8)dffis.
-r(t) t+s -r(t) t+s

It may be observed that the functional VI (x" y" Z,) is a special case of the functional
V(x"y"z,) in (4). By an elementary calculation, one can show that there exist sufficiently
small positive constants Di, (i = 4,5,6), such that

o ,
VI(xt'Yt'z,)~D4X2+D5y2+D6Z2+fJ f fZ2(8)dffis,

-r(t) t+s

and hence VI (t;) ~ u(It;(O)I) ~ O.

Now, calculating the time derivative of the functional VI (x" y" z,) along the system
(12), we obtain

d (sin y 2a2 ) 2-V1(xl,y"z,)= - 4a3 +a3-----2 -ar(t) y
dt y l+x



-(4a +~-a - Rr(t))z22 l+l 3 JJ'

I I

+a2Z f(4+cosY(S))Z(s)ds+a3y f(4+cosY(S))Z(s)ds
I-r(l) I-r(l)

I 1 I 1
+2a2z f 2 y(s)ds+2a3y f 2 y(s)ds

I-r(l) 1+ x (s) l-r(1) 1+ x (s)

I I

-a(l- r'(t)) fy2(S)ds- 13(1- ,'(t)) fZ2(s)ds.
I-r(l) I-r(l)

Making use of the facts 0 ~ r(t) ~ r, r'(t) ~ (T, 0 < (T < 1, 14 + cas yl ~ 5,

\
sin y! ~ 1, _1_ ~ 1 and the inequality 21abj ~ a2 + b2 , we obtain the following

y l+x2

inequalities for all terms included in (14):

(
sin y 2a2 ) 2 ( ) 2- 4a3 + a3-y- - 1+ x2 - ar(t) y ~ - 3a3 - 2a2 - ar y ,

-( 4a2 +1:> -a3 - f3r(t)}2
~ -(4a2 -a3 - f3r)z2,

I 5 5 I

a2z f(4 + cas y(s))z(s)ds ~ ~2 r(t)z2(t)+ ~2 fZ2(s)ds
l-r(1) I-r(l)

5a r 5a 'f~_2_ Z2(t) +_2 z2(s)ds,
2 2 I-r(l)

'f 5a3 2 5a3 'f 2a3y (4+cas y(s))z(s)ds ~ 2 r(t)y (t) +2 z (s)ds
I-r(l) I-r(1)

5a r 5a 'f~_3_y2(t)+_3 z2(s)ds,
2 2 I-r(l)

1

~ a21Z2(t)+ a2 fy2(S)ds,
I-r(l)

I 1 1

2a3y f 2 y(s)ds~a3r(t)y2(t)+a3 fl(s)ds,
l-r(1) 1+ x (s) I-r(l)



I

~a3~2(t)+a3 fy2(s)ds,
l-r(1)

I I

-a(l- r'(t» fl(s)ds ~-a(l-O") fl(s)ds,
l-r(1) I-r(t)

I I

- 13(1- r'(t» f Z2(s)ds ~ - 13(1- 0") f Z2(s)ds.
I-r(t) I-r(t)

I

-(a(l-0")-(a2 +a3») fl(s)ds.
I-r(t)

a +a 5(a +a ) .Let us choose a = _2 __ 3 and 13 = 2 3. Then, It follows from (15) that
1-0" 2-20"

Now, taking into account equation (11), we can choose a\ = 3 , a2 = 2 and a3 = 2. On the

other hand, it is easy to check that a = _4_ > 0, 13 = ~ > 0, a\a2 - a3 = 4 > 0 and
1-0" 1-0"

d ( (4 ) ) 2 ( (17-70")) 2dt V\(X"Y"Z,) ~ - 2- 1-0" +7 r Y - 6- 1-0" r Z .



r < min{_2_-_2_CT_,_6_-_6_CT_} .
11-7CT 17-7CT

The rest of the proof is the same as in the above theorem, and hence is omitted.

This shows that the trivial solution of equation (11) is asymptotically stable.
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