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ABSTRACT. Criteria for boundedness of solutions to the nonlinear third order delay differential

equation

x′′′(t) + ϕ(x(t),x′(t), x′′(t))x′′(t) + ψ(x(t − r(t)), x′(t− r(t))) + h(x(t− r(t)))

= p(t, x(t), x(t − r(t)), x′(t), x′(t− r(t)), x′′(t))

are obtained by Lyapunov’s second method. By introducing a Lyapunov functional, sufficient con-

ditions are established that guarantee that all solutions of this equation are bounded. An example

is also given to illustrate the importance of result obtained. Our findings improve a result existing

in the literature to boundedness of solutions for this delay differential equation.

AMS (MOS) Subject Classification. 34K20.

1. Introduction

The area of differential equations has played a central role in the development

of mathematics and its applications since 1660s, yet it still displays an unabated vi-

tality. At the end of 19th century, a Russian mathematician, Aleksandr Mikhailovich

Lyapunov, laid the foundation for modern stability theory of differential equations in

a lengthy monograph published in Russian. In his work published in 1892, Lyapunov

dealt with stability by two distinct methods. His so-called first method presupposes

an explicit solution known and is only applicable to some restricted but important

cases. As against this, the second or direct method of Lyapunov [11] is of great

generality and power and above all does not require the great knowledge of the so-

lutions themselves. Briefly, the central idea of Lyapunov’s second (or direct) method

[11] is to detect stability, in addition, boundedness of solutions for a differential sys-

tem by means of properties of a Lyapunov function or functional and to do this,

not directly from a knowledge of solutions, but indirectly from the differential sys-

tem under consideration. Meanwhile, it is worth mentioning that, beginning in the
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1960s, the stability and boundedness of solutions to delay differential systems has

been considered in the literature, intensively. Up to now, many books and papers

deal with stability and boundedness of solutions to delay differential equations, and

many good results on the stability and boundedness of solutions of these equations

have been obtained. See, for example, Burton [1], Èl’sgol’ts [2], Èl’sgol’ts and Norkin

[3], Gopalsamy [4], Hale ([6], [7]), Kolmanovskii and Myshkis [8], Kolmanovskii and

Nosov [9], Krasovskii [10], Sadek [14], Tunç ([15], [16], [17]), Yoshizawa [18] and the

references citied in these sources. It should be noted that delay differential equations,

or more generally functional differential equations, are used as models to describe

many physical and biological systems. Hereby, in fact, many actual systems have

the property of aftereffect, i.e., the future states depend not only on the present, but

also on the past history. Aftereffect is believed to occur in mechanics, control theory,

physics, chemistry, biology, medicine, economics, atomic energy, information theory,

etc. This wide appearance of aftereffect is reason to regard it as a universal prop-

erty of the surrounding world. In particular, for a comprehensive treatment of the

subject we refer the reader to the book by Kolmanovskii and Myshkis [8] and those

mentioned above. Moreover, if the solutions of a differential equation describing a

dynamical system or of any differential equation under consideration are known in

closed form, one can determine the boundedness properties of system or the solutions

of differential equation, appealing directly the definitions of boundedness. But, it is

well-known in general, it is not possible to find the solution of all linear and nonlinear

differential equations, except numerically. This case is also very difficult and some

times become impossible for delay differential equations. Therefore, it is very im-

portant to interpret the qualitative behaviors of solutions without solving differential

equations. This fact shows the importance and applicability of Lyapunov’s second

(or direct) method [11]. Now, after a literature survey about nonlinear equations of

third order with bounded delay, one can conclude that there are not so many results

on the boundedness of solutions of higher order nonlinear delay differential equations.

At the same time, we should recognize that some significant theoretical results con-

cerning boundedness of solutions of nonlinear third order differential equations with

delay have been achieved; see, for example, the paper of Tunç ([15], [16], [17]) and

the references citied in that papers. At the same time, it should be noted that, in

1969, Palusinski et al. [12] applied an energy metric algorithm for the generation of

a Lyapunov function to third order ordinary nonlinear differential equation without

delay:

x′′′ + a1x
′′ + f2(x

′)x′ + a3x = 0.

They found conditions for the stability of zero solution of this equation as follows:

a1 > 0, a3 > 0, f2(x
′) >

a3

a1

.
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Later, in 2007, based on the result of Palusinski et al. [12], Tunç [17] improved the

result established by Palusinski et al [12] to the third order nonlinear delay differential

equation

x′′′(t) + ϕ(x(t), x′(t))x′′(t) + ψ(x(t− r(t)), x′(t− r(t))) + h(x(t− r(t))) = 0

and proved a result related to the asymptotic stability of trivial solution of this

equation. In this paper, we will be concerned with the following third order nonlinear

differential equation with finite lag

x′′′(t) + ϕ(x(t), x′(t), x′′(t))x′′(t) + ψ(x(t− r(t)), x′(t− r(t))) + h(x(t− r(t)))

= p(t, x(t), x(t− r(t)), x′(t), x′(t− r(t)), x′′(t)) (1.1)

whose associated system is

x′(t) = y(t), y′(t) = z(t),

z′(t) = −ϕ(x(t), y(t), z(t))z(t) − ψ(x(t), y(t)) − h(x(t))

+

t
∫

t−r(t)

ψx(x(s), y(s))y(s)ds+

t
∫

t−r(t)

ψy(x(s), y(s))z(s)ds

+

t
∫

t−r(t)

h′(x(s))y(s)ds+ p(t, x(t), x(t− r(t)), y(t), y(t− r(t)), z(t)), (1.2)

where r is a bounded delay, 0 ≤ r(t) ≤ γ, r′(t) ≤ σ, 0 < σ < 1, γ and σ are some

positive constants and γ will be determined later; the functions ϕ, ψ, h and pdepend

only on the arguments displayed explicitly and the primes in equation (1.1) denote

differentiation with respect to t ∈ ℜ+, ℜ+ = [0,∞). It is principally assumed that the

functions ϕ and ψ, h and p are continuous for all values their respective arguments

on ℜ3, ℜ2, ℜ and ℜ+ × ℜ5, respectively. Besides, it is also supposed that ψ(x, 0) =

h(0) = 0, and the derivatives ϕx(x, y, z) ≡ ∂
∂x
ϕ(x, y, z), ϕz(x, y, z) ≡ ∂

∂z
ϕ(x, y, z),

ψx(x, y) ≡ ∂
∂x
ψ(x, y), ψy(x, y) ≡ ∂

∂y
ψ(x, y) and h′(x) ≡ dh

dx
exist and are continuous;

throughout this paper x(t), y(t) and z(t) are, respectively, abbreviated as x, y and z.

All solutions considered are also assumed to be real valued.

2. Main result

We prove the following theorem, which is our main result.

Theorem 2.1. In addition to the basic assumptions imposed on the functions ϕ, ψ,

h and p appearing in equation (1.1), we assume that there are positive constants a1,

a2, a3, λ, α, β, ε, µ, γ, L and M , such that the following conditions hold for all x,

y and z:
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(i) a1a2 − a3 ≥ ε > 0.

(ii) ϕ(x, y, z) ≥ a1 + 2λ, yϕx(x, y, 0) ≤ 0 and yϕz(x, y, z) ≥ 0.

(iii) ψ(x, 0) = 0, ψ(x,y)
y

≥ a2 + 2µ, (y 6= 0), −L ≤ ψx(x, y) ≤ 0 and |ψy(x, y)| ≤M .

(iv) h(0) = 0 and 0 < h′(x) ≤ a3.

(v) |p(t, x(t), x(t− r(t)), y(t), y(t− r(t)), z(t))| ≤ q(t) for all t, x(t), x(t−r(t)), y(t),

y(t − r(t)) and z(t), where max q(t) < ∞ and q ∈ L1(0,∞), L1(0,∞) is space

of integrable Lebesgue functions.

Then, there exists a finite positive constant K such that the solution x(t)of equation

(1.1) defined by the initial functions

x(t) = φ(t), x′(t) = φ′(t), x′′(t) = φ′′(t)

satisfies the inequalities

|x(t)| ≤ K, |x′(t)| ≤ K, |x′′(t)| ≤ K

for all t ≥ t0 , where φ ∈ C2 ([t0 − r, t0] ,ℜ), provided that

γ < min

{

4µa3

2α+ a3L+ a3M + a2
3

,
2ε+ 4λa2

a2(L+M) + a2a3 + 2β

}

.

Remark 2.2. When r(t) = 0 in (1.1), then equation (1.1) reduces to the following

third order ordinary nonlinear differential equation without delay:

x′′′(t) + ϕ(x(t), x′(t), x′′(t))x′′(t) + ψ(x(t), x′(t)) + h(x(t)) = p(t, x(t), x′(t), x′′(t))

This equation includes some third order ordinary differential equation discussed in

Greguš [5] and Reissig et al. [13]. Thus, our result is more general than that obtained

in Greguš [5] and Reissig et al. [13] on the subject.

Proof. To prove this theorem, the following differentiable Lyapunov functional V =

V (xt, yt, zt) is introduced:

V (xt, yt, zt) = a3

x
∫

0

h(η)dη + a2yh(x) +
1

2
a2z

2 + a3yz + a2

y
∫

0

ψ(x, ξ)dξ

+ a3

y
∫

0

ϕ(x, ξ, 0)ξdξ + α

0
∫

−r(t)

t
∫

t+s

y2(θ)dθds+ β

0
∫

−r(t)

t
∫

t+s

z2(θ)dθds,

(2.1)

where a2, a3, α and β are some positive constants, α and β will be determined later

in the proof. The assumptions h(0) = 0 and 0 < h′(x) ≤ a3 imply that

h2(x) = 2

∫ x

0

h(η)h′(η)dη ≤ 2a3

∫ x

0

h(η)dη.
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Hence,

a2yh(x) ≥ −

√

2a2
2a3

∫ x

0

h(η)dη |y| .

Now, making use of the last inequality, one can recast the Lyapunov functional V =

V (xt, yt, zt), which is defined by (2.1), as:

V (xt, yt, zt) ≥
1

2
a2

(

z +
a3

a2

y

)2

+
1

2







√

√

√

√

√2a3

x
∫

0

h(η)dη − a2 |y|







2

+

y
∫

0

[

a3ϕ(x, ξ, 0) − a2
2 −

a2
3

a2

+ a2
ψ(x, ξ)

ξ

]

ξdξ

+ α

0
∫

−r(t)

t
∫

t+s

y2(θ)dθds+ β

0
∫

−r(t)

t
∫

t+s

z2(θ)dθds. (2.2)

The assumptions ϕ(x, y, z) ≥ a1 + 2λ and ψ(x,y)
y

≥ a2 + 2µ yield that

y
∫

0

[

a3ϕ(x, ξ, 0) − a2
2 −

a2
3

a2
+ a2

ψ(x, ξ)

ξ

]

ξdξ

≥

y
∫

0

[

a1a3 −
a2

3

a2
+ 2(a3λ+ a2µ)

]

ξdξ

=

(

a1a2a3 − a2
3 + 2a2(a3λ+ a2µ)

2a2

)

y2 > 0. (2.3)

Now, taking into account (2.2) and (2.3) together, it follows that

V (xt, yt, zt) ≥
1

2
a2

(

z +
a3

a2

y

)2

+
1

2







√

√

√

√

√2a3

x
∫

0

h(η)dη − a2 |y|







2

+

(

a1a2a3 − a2
3 + 2a2(a3λ+ a2µ)

2a2

)

y2

+ α

0
∫

−r(t)

t
∫

t+s

y2(θ)dθds+ β

0
∫

−r(t)

t
∫

t+s

z2(θ)dθds.

By noting this inequality, it can be easily obtained that there exist sufficiently small

positive constants Di, (i = 1, 2, 3), such that

V (xt, yt, zt) ≥ D1x
2 +D2y

2 +D3z
2 + α

0
∫

−r(t)

t
∫

t+s

y2(θ)dθds+ β

0
∫

−r(t)

t
∫

t+s

z2(θ)dθds

≥ D1x
2 +D2y

2 +D3z
2 ≥ D4(x

2 + y2 + z2), (2.4)



6 CEMIL TUNÇ

where D4 = min {D1, D2, D3}, since the integrals
0
∫

−r

t
∫

t+s

y2(θ)dθds and
0
∫

−r

t
∫

t+s

z2(θ)dθds

are non-negative. Let (x(t), y(t), z(t)) be a solution of system (1.2). Differentiating

the functional V (xt, yt, zt) along this solution, we obtain

d

dt
V (xt, yt, zt) = −a3

(

ψ(x, y)

y
− a2

)

y2 − (a1a2 − a3) z
2 + a2y

y
∫

0

ψx(x, ξ)dξ

+ (a2z + a3y)p(t, x(t), x(t− r(t)), y(t), y(t− r(t)), z(t))

− a3 (ϕ(x, y, z) − ϕ(x, y, 0)) yz

+ a3y

t
∫

t−r(t)

ψx(x(s), y(s))y(s)ds+ a3y

t
∫

t−r(t)

ψy(x(s), y(s))z(s)ds

+ a2z

t
∫

t−r(t)

ψx(x(s), y(s))y(s)ds+ a2z

t
∫

t−r(t)

ψy(x(s), y(s))z(s)ds

+ ρr(t)y2 − ρ(1 − r′(t))

t
∫

t−r(t)

y2(s)ds+ µr(t)z2 − µ(1 − r′(t))

t
∫

t−r(t)

z2(s)ds

= −

(

a3
ψ(x, y)

y
− a2a3 − ρr(t)

)

y2 − (a1a2 − a3 − µr(t)) z2

+ a2y

y
∫

0

ψx(x, ξ)dξ − a3 (ϕ(x, y, z) − ϕ(x, y, 0)) yz

+ (a2z + a3y)p(t, x(t), x(t− r(t)), y(t), y(t− r(t)), z(t))

+ a3y

t
∫

t−r(t)

ψx(x(s), y(s))y(s)ds+ a3y

t
∫

t−r(t)

ψy(x(s), y(s))z(s)ds

+ a2z

t
∫

t−r(t)

ψx(x(s), y(s))y(s)ds+ a2z

t
∫

t−r(t)

ψy(x(s), y(s))z(s)ds

− ρ(1 − r′(t))

t
∫

t−r(t)

y2(s)ds− µ(1 − r′(t))

t
∫

t−r(t)

z2(s)ds. (2.5)

In the light of the assumptions of the theorem and the inequality 2 |uv| ≤ u2 + v2, an

argument similar to the as in Tunç [17], one can easily conclude from (2.5) that, for

some positive constants α and σ,

d

dt
V (xt, yt, zt) ≤− αy2 − σz2 − a3 (ϕ(x, y, z) − ϕ(x, y, 0)) yz

+ (a2z + a3y)p(t, x(t), x(t− r(t)), y(t), y(t− r(t)), z(t)) (2.6)
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provided

γ < min

{

4µa3

2α+ a3L+ a3M + a2
3

,
2ε+ 4λa2

a2(L+M) + a2a3 + 2β

}

.

We now consider the terms

a3 (ϕ(x, y, z) − ϕ(x, y, 0)) yz

and

(a2z + a3y)p(t, x(t), x(t− r(t)), y(t), y(t− r(t)), z(t)),

which are contained in (2.6). By using the mean value theorem (for derivatives), we

have

a3 (ϕ(x, y, z) − ϕ(x, y, 0)) yz = a3

[

ϕ(x, y, z) − ϕ(x, z, 0)

z

]

yz2

= a3yz
2ϕz(x, y, θz), 0 ≤ θ ≤ 1.

Making use of assumption (ii), it also follows that

a3yz
2ϕz(x, y, θz) ≥ 0, 0 ≤ θ ≤ 1.

Next, assumption (v) implies that

(a2z + a3y)p(t, x(t), x(t− r(t)), y(t), y(t− r(t)), z(t))

≤ |a2z + a3y| |p(t, x(t), x(t− r(t)), y(t), y(t− r(t)), z(t))|

≤ D5 (|y| + |z|) q(t) ≤ D5

(

2 + y2 + z2
)

q(t)

since |u| < 1 + u2, where D5 = max {a2, a3}. In view of the above discussion, it

follows from (2.6) that

d

dt
V (xt, yt, zt) ≤ D5

(

2 + y2 + z2
)

q(t). (2.7)

Inequality (2.4) implies that

(

y2 + z2
)

≤ D−1
4 V (xt, yt, zt).

Using this fact into (2.7), we have

d

dt
V (xt, yt, zt) ≤ D5

(

2 +D−1
4 V (xt, yt, zt)

)

q(t)

= 2D5q(t) +D5D
−1
4 V (xt, yt, zt)q(t). (2.8)
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Now, integrating (2.8) from 0 to t, using the assumption that q ∈ L1(0,∞) and the

Gronwall-Reid-Bellman inequality, we obtain

V (xt, yt, zt) ≤ V (x0, y0, z0) + 2D5A+D5D
−1
4

t
∫

0

(V (xs, ys, zs))q(s)ds

≤ (V (x0, y0, z0) + 2D5A) exp



D5D
−1
4

t
∫

0

q(s)ds





≤ (V (x0, y0, z0) + 2D5A) exp
(

D5D
−1
4 A

)

= K1 <∞, (2.9)

where K1 > 0 is a constant, K1 = (V (x0, y0, z0) + 2D5A) exp
(

D5D
−1
4 A

)

, and A =
∞
∫

0

q(s)ds. Now, the inequalities (2.4) and (2.9) together imply that

x2(t) + y2(t) + z2(t) ≤ D−1
4 V (xt, yt, zt) ≤ K,

where K = K1D
−1
4 . Thus, we conclude that

|x(t)| ≤ K, |y(t)| ≤ K, |z(t)| ≤ K

for all t ≥ t0. That is,

|x(t)| ≤ K, |x′(t)| ≤ K, |x′′(t)| ≤ K

for all t ≥ t0. The proof of theorem is now complete.

Example 2.3. We consider the following third order nonlinear delay differential

equation

x′′′(t) +

(

4 +
1

1 + (x′2

)

x′′(t) + 4x′(t− r(t)) + sin x′(t− r(t)) + 2arctgx(t− r(t))

=
1

1 + t2 + x2(t) + x2(t− r(t)) + x′2(t) + x′2(t− r(t)) + x′′2(t)
, (2.10)

whose associated system is

x′(t) = y(t), y′(t) = z(t),

z′(t) = −

(

4 +
1

1 + y2

)

z(t) − (4y(t) + sin y(t)) − 2arctgx(t)

+ 2

t
∫

t−r(t)

1

1 + (x(s))2
y(s)ds+

t
∫

t−r(t)

(4 + cos y(s)) z(s)ds

+
1

1 + t2 + x2(t) + x2(t− r(t)) + y2(t) + y2(t− r(t)) + z2(t)
. (2.11)
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Now, it is clear that

ϕ(y) = 4 +
1

1 + y2
≥ 4 = a1 + 2λ,

ψ(y) = 4y(t) + sin y(t), ψ(0) = 0,

ψ(y)

y
= 4 +

sin y

y
, (y 6= 0, |y| < π),

4 +
sin y(t)

y(t)
≥ 3 = a2 + 2µ,

h(x) = 2arctgx,

h(0) = 0, h′(x) =
2

1 + x2
, 0 < h′(x) ≤ 2 = a3,

a1a2 > 2,

p(t, x(t), x(t− r(t)), y(t), y(t− r(t)), z(t))

=
1

1 + t2 + x2(t) + x2(t− r(t)) + y2(t) + y2(t− r(t)) + z2(t)
≤

1

1 + t2

and
∞

∫

0

q(s)ds =

∞
∫

0

1

1 + s2
ds =

π

2
<∞,

that is, q ∈ L1(0,∞). Hence, the above facts show that all the conditions (i) to (v)

of theorem are satisfied. We also introduce the following Lyapunov functional

V1(xt, yt, zt) = 2a3

x
∫

0

arctgηdη + 2a2yarctgx+
1

2
a2z

2 + a3yz

+ 2a2y
2 + a2(1 − cos y) + 2a3y

2 +
a3

2
ln(1 + y2)

+ α

0
∫

−r(t)

t
∫

t+s

y2(θ)dθds+ β

0
∫

−r(t)

t
∫

t+s

z2(θ)dθds. (2.12)

By an elementary calculation from (2.12), it can be shown that all solutions of equa-

tion considered are bounded. We omit the details of the related operations.
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