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ABSTRACT. In this paper, we discuss the existence and uniqueness of the solution of the forced

Duffing equation with m-point boundary conditions. A monotone sequence of approximate solutions

converging uniformly and quadratically to the unique solution of the problem is obtained by applying

a generalized quasilinearization technique.
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1. INTRODUCTION

Duffing equation is a well known nonlinear equation of applied science which

is used as a powerful tool to discuss some important practical phenomena such as

periodic orbit extraction, nonuniformity caused by an infinite domain, nonlinear me-

chanical oscillators, etc. Another important application of Duffing equation is in the

field of the prediction of diseases. A careful measurement and analysis of a strongly

chaotic voice has the potential to serve as an early warning system for more serious

chaos and possible onset of disease. This chaos is stimulated with the help of Duffing

equation. In fact, the success at analyzing and predicting the onset of chaos in speech

and its simulation by equations such as the Duffing equation has enhanced the hope

that we might be able to predict the onset of arrhythmia and heart attacks some-

day. However, such predictions are based on the numerical solutions of the Duffing

equation.

The monotone iterative technique coupled with the method of upper and lower

solutions [1–7] manifests itself as an effective and flexible mechanism that offers theo-

retical as well as constructive existence results in a closed set, generated by the lower

and upper solutions. In general, the convergence of the sequence of approximate so-

lutions given by the monotone iterative technique is at most linear [8, 9]. To obtain

a sequence of approximate solutions converging quadratically, we use the method of

quasilinearization [10]. This method has been developed for a variety of problems

Received March 9, 2008 1083-2564 $15.00 c©Dynamic Publishers, Inc.



12 B. AHMAD

[11–20]. In view of its diverse applications, this approach is quite an elegant and

easier for application algorithms.

The subject of multi-point nonlocal boundary value problems, initiated by Ilin

and Moiseev [21,22], has been addressed by many authors, for instance, [23–30].

The multi-point boundary conditions appear in certain problems of thermodynamics,

elasticity and wave propagation, see [31] and the references therein. The multi-point

boundary conditions may be understood in the sense that the controllers at the end

points dissipate or add energy according to censors located at intermediate positions.

To the best of our knowledge, the method of quasilinearization has not been developed

for Duffing equation with multi-point boundary conditions.

In this paper, we apply a quasilinearization technique to obtain the analytic

approximation of the solution of the forced Duffing equation with m-point boundary

conditions. In fact, a sequence of approximate solutions converging monotonically

and quadratically to the unique solution of the problem is presented. The results

obtained in this paper offer an algorithm to study the various practical phenomena

such as prediction of the possible onset of vascular diseases, onset of chaos in speech,

etc.

2. PRELIMINARIES

Consider the following boundary value problem






u′′(t) + σu′(t) + f(t, u) = 0, 0 < t < 1, σ ∈ R − {0},

u(0) − µ1u
′(0) =

m−2
∑

i=1

piu(ηi), u(1) + µ2u
′(1) =

m−2
∑

i=1

qiu(ηi),
(1.1)

where f : [0, 1] × R → R, pi, qi (i = 1, 2, . . . , m − 2) are nonnegative real constants

such that
m−2
∑

i=1

pi < 1,
m−2
∑

i=1

qi < 1, ηi ∈ (0, 1), and µ1, µ2 are nonnegative constants. It

can easily be verified that the homogeneous problem associated with (1.1) has only

the trivial solution. Therefore, by Green’s function method, the solution of (1.1) can

be written as

u(t) =
−(1 − σµ2)e

−σ + e−σt

(1 + σµ1) − (1 − σµ2)e−σ
(

m−2
∑

i=1

piu(ηi))

+
(1 + σµ1) − e−σt

(1 + σµ1) − (1 − σµ2)e−σ
(

m−2
∑

i=1

qiu(ηi)) +

∫ 1

0

G(t, s)f(s, u(s))ds,

where

G(t, s) = Λ

{

[(1 − σµ2) − eσ(1−s)][(1 + σµ1) − e−σt], 0 ≤ t ≤ s,

[(1 − σµ2) − eσ(1−t)][(1 + σµ1) − e−σs], s ≤ t ≤ 1,

Λ =
eσs

σ[(1 − σµ2) − (1 + σµ1)eσ]
.
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We note that G(t, s) > 0 on (0, 1) × (0, 1).

Definition 2.1. A function α ∈ C2[0, 1] is a lower solution of (1.1) if







α′′(t) + σα′(t) + f(t, α(t)) ≥ 0, 0 < t < 1,

α(0) − µ1α
′(0) ≤

m−2
∑

i=1

piα(ηi), α(1) + µ2α
′(1) ≤

m−2
∑

i=1

qiα(ηi).

Similarly, β ∈ C2[0, 1] is an upper solution of (1.1) if the inequalities in the definition

of lower solution are reversed.

Theorem 2.1. Let α and β be lower and upper solutions of the boundary value

problem (1.1) respectively. Let f : [0, 1] × R → R be such that fu(t, u) < 0. Then

α(t) ≤ β(t), t ∈ [0, 1].

Proof. Set x(t) = α(t) − β(t), t ∈ [0, 1] so that














x(0) − µ1x
′(0) ≤

m−2
∑

i=1

pix(ηi)

x(1) + µ2x
′(1) ≤

m−2
∑

i=1

qix(ηi).
(2.2)

For the sake of contradiction, suppose that x(t) > 0 for every t ∈ [0, 1]. Then x(t)

has a positive maximum at some t0 ∈ [0, 1]. If t0 ∈ (0, 1), then x(t0) > 0, x′(t0) = 0

and x′′(t0) ≤ 0. In view of the decreasing property of the function f(t, u) in u, it

follows that

x′′(t0)+σx′(t0) = α′′(t0)+σα′(t0)−(β ′′(t0)+σβ ′(t0)) ≥ −f(t0, α(t0))+f(t0, β(t0)) > 0,

which is a contradiction. If t0 = 0, then x(0) > 0, x′(0) = 0 and from (2.2), we obtain

x(0) = x(0) − µ1x
′(0) ≤

m−2
∑

i=1

pix(ηi) ≤
m−2
∑

i=1

pix(0),

that is,

(

1 −
m−2
∑

i=1

pi

)

x(0) ≤ 0 which contradicts the assumption that
m−2
∑

i=1

pi < 1.

We have a similar contradiction at t0 = 1. Hence our claim that x(t) > 0 for every

t ∈ [0, 1] is false. Thus, we can find t1 ∈ [0, 1] such that x(t1) ≤ 0 with t0 < t1 (the

case t0 > t1 is similar) and there exists t2 ∈ (t0, t1) such that x(t2) = 0 and x(t) > 0

for every t ∈ [t0, t2). Then, using the assumption that f(t, u) is strictly decreasing in

u, we find that

x′′(t) + σx′(t) ≥ −f(t, α(t)) + f(t, β(t)) > 0,

which can alternatively be written as (x′(t)eσt)′ > 0. Integrating from t0 to t, and

using x′(t0) = 0, we obtain x′(t) > 0 for every t ∈ [t0, t2) which together with

x′(t0) = 0 implies that x′(t) ≥ 0 for every t ∈ [t0, t2). Thus, x(t) is nondecreasing on

[t0, t2) which is a contradiction as x(t) has a positive maximum value at t = t0. Similar

contradiction occurs at t0 = 0, 1. Thus, we conclude that α(t) ≤ β(t), t ∈ [0, 1].
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Theorem 2.2. Let f : [0, 1] × R → R be a continuous function with fu(t, u) < 0,

and α, β are respectively lower and upper solutions of the boundary value problem

(1.1) such that α(t) ≤ β(t). Then there exists a solution u(t) of (1.1) such that

α(t) ≤ u(t) ≤ β(t), t ∈ [0, 1].

Proof. Let us define

F (t, u) =



















f(t, β(t)) − u−β(t)
1+|u−β|

, if u > β,

f(t, u), if α ≤ u ≤ β,

f(t, α(t)) − u−α(t)
1+|u−α|

, if u < α.

Since F (t, u) is continuous and bounded, it follows that there exists a solution u(t)

of the problem






u′′(t) + σu′(t) + F (t, u) = 0, 0 < t < 1,

u(0) − µ1u
′(0) =

m−2
∑

i=1

piu(ηi), u(1) + µ2u
′(1) =

m−2
∑

i=1

qiu(ηi).
(2.3)

In relation to (2.3), we have






α′′(t) + σα′(t) + F (t, α(t)) = α′′(t) + σα′(t) + f(t, α(t)) ≥ 0, 0 < t < 1,

α(0) − µ1α
′(0) =

m−2
∑

i=1

piα(ηi), α(1) + µ2α
′(1) =

m−2
∑

i=1

qiα(ηi)

and






β ′′(t) + σβ ′(t) + F (t, β(t)) = β ′′(t) + σβ ′(t) + f(t, β(t)) ≤ 0, 0 < t < 1,

β(0) − µ1β
′(0) =

m−2
∑

i=1

piβ(ηi), β(1) + µ2β
′(1) =

m−2
∑

i=1

qiβ(ηi),

which imply that α and β are lower and upper solutions of (2.3) respectively. By

definition of F (t, u), it follows that any solution u ∈ [α, β] of (2.3) is indeed a solution

of (1.1). Thus, we just need to show that any solution u(t) of (2.3) satisfies α(t) ≤

u(t) ≤ β(t), t ∈ [0, 1]. Let us assume that α(t) > u(t) on [0, 1]. Then the function

y(t) = α(t)− u(t) has a positive maximum at some t = t0 ∈ [0, 1]. If t0 ∈ (0, 1), then

y(t0) > 0, y′(t0) = 0, y′′(t0) ≤ 0. On the other hand,

y′′(t0) + σy′(t0) = α′′(t0) + σα′(t0) − [u′′(t0) + σu′(t0)]

≥ −F (t0, α(t0)) + F (t0, u(t0))

= −f(t0, α(t0)) + f(t0, α(t0)) −
u − α(t0)

1 + |u − α0|
> 0,

which contradicts our assumption. If t0 = 0, then y(0) > 0, y′(0) = 0 and

y(0) = y(0) − µ1y
′(0) ≤

m−2
∑

i=1

piy(ηi) ≤
m−2
∑

i=1

piy(0),

that is,

(

1 −
m−2
∑

i=1

pi

)

y(0) ≤ 0 which contradicts the assumption that
m−2
∑

i=1

pi < 1.

Similarly, t0 = 1 yields a contradiction. As in the proof of Theorem 2.1, we also obtain
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the contradiction in the neighbourhood of the point t0 ∈ [0, 1]. Thus, α(t) ≤ u(t),

t ∈ [0, 1]. In a similar manner, it can be shown that u(t) ≤ β(t), t ∈ [0, 1]. Hence we

conclude that α(t) ≤ u(t) ≤ β(t), t ∈ [0, 1].

Corollary 2.3. Assume that f : [0, 1] × R → R is continuous with fu(t, u) < 0 on

[0, 1] × R. Then the solution of boundary value problem (1.1) is unique.

3. MAIN RESULT

Theorem 3.1. Assume that

(A1) α, β ∈ C2[0, 1] are respectively lower and upper solutions of (1.1) such that

α(t) ≤ β(t), t ∈ [0, 1];

(A2) f ∈ C2([0, 1]×R) be such that fu(t, u) < 0 and (fuu(t, u)+φuu(t, u)) ≥ 0, where

φuu(t, u)) ≥ 0 for some continuous function φ(t, u) on [0, 1] × R.

Then, there exists a sequence {αn} of approximate solutions converging monotonically

and quadratically to the unique solution of the problem (1.1).

Proof. Let F : [0, 1] × R → R be defined by F (t, u) = f(t, u) + φ(t, u) so that

Fuu(t, u) ≥ 0. Using the generalized mean value theorem together with (A2), we

obtain

f(t, u) ≥ f(t, v) + Fu(t, v)(u − v) + φ(t, v) − φ(t, u). (3.1)

Setting

g(t, u, v) = f(t, v) + Fu(t, v)(u − v) + φ(t, v) − φ(t, u), (3.2)

we note that gu(t, u, v) = [Fu(t, v)−φu(t, u)] ≤ [Fu(t, u)−φu(t, u)] = fu(t, u) < 0 and
{

f(t, u) ≥ g(t, u, v),

f(t, u) = g(t, u, u).
(3.3)

Now, we fix α0 = α and consider the problem






u′′(t) + σu′(t) + g(t, u, α0) = 0, 0 < t < 1,

u(0) − µ1u
′(0) =

m−2
∑

i=1

piu(ηi), u(1) + µ2u
′(1) =

m−2
∑

i=1

qiu(ηi).
(3.4)

Using (A1) and (3.3), we obtain






α′′
0(t) + σα′

0(t) + g(t, α0, α0) = α′′
0(t) + σα′

0(t) + f(t, α0) ≥ 0, 0 < t < 1,

α(0) − µ1α
′(0) ≤

m−2
∑

i=1

piα(ηi), α(1) + µ2α
′(1) ≤

m−2
∑

i=1

qiα(ηi)

and






β ′′(t) + σβ ′(t) + g(t, β, α0) ≤ β ′′(t) + σβ ′(t) + f(t, β) ≤ 0, 0 < t < 1,

β(0) − µ1β
′(0) =

m−2
∑

i=1

piβ(ηi), β(1) + µ2β
′(1) =

m−2
∑

i=1

qiβ(ηi),
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which imply that α0 and β are respectively lower and upper solutions of (3.4). It

follows by Theorems 2.1 and 2.2 that there exists a unique solution α1 of (3.4) such

that

α0(t) ≤ α1(t) ≤ β(t), t ∈ [0, 1].

Next, we consider






u′′(t) + σu′(t) + g(t, u, α1) = 0, 0 < t < 1,

u(0) − µ1u
′(0) =

m−2
∑

i=1

piu(ηi), u(1) + µ2u
′(1) =

m−2
∑

i=1

qiu(ηi).
(3.5)

Using the earlier arguments, it can be shown that α1 and β are lower and upper

solutions of (3.5) respectively and hence by Theorems 2.1 and 2.2, there exists a

unique solution α2 of (3.5) such that α1(t) ≤ α2(t) ≤ β(t), t ∈ [0, 1].

Continuing this process successively yields a sequence {αn} of solutions satisfying

α0(t) ≤ α1(t) ≤ α2(t) ≤ · · · ≤ αn ≤ β(t), t ∈ [0, 1],

where the element αn of the sequence {αn} is a solution of the problem






u′′(t) + σu′(t) + g(t, u, αn−1) = 0, 0 < t < 1,

u(0) − µ1u
′(0) =

m−2
∑

i=1

piu(ηi), u(1) + µ2u
′(1) =

m−2
∑

i=1

qiu(ηi)

and is given by

αn(t) =
−(1 − σµ2)e

−σ + e−σt

(1 + σµ1) − (1 − σµ2)e−σ
(

m−2
∑

i=1

piαn(ηi))

+
(1 + σµ1) − e−σt

(1 + σµ1) − (1 − σµ2)e−σ

(

m−2
∑

i=1

qiαn(ηi)

)

+

∫ 1

0

G(t, s)g(s, αn(s), αn−1(s))ds. (3.6)

Using the fact that [0, 1] is compact and the monotone convergence of the sequence

{αn} is pointwise, it follows by the standard arguments (Arzela Ascoli convergence

criterion, Dini’s theorem [19, 29]) that the convergence of the sequence is uniform. If

u(t) is the limit point of the sequence, taking the limit n → ∞ in (3.6), we obtain

u(t) =
−(1 − σµ2)e

−σ + e−σt

(1 + σµ1) − (1 − σµ2)e−σ
(

m−2
∑

i=1

piu(ηi))

+
(1 + σµ1) − e−σt

(1 + σµ1) − (1 − σµ2)e−σ
(

m−2
∑

i=1

qiu(ηi)) +

∫ 1

0

G(t, s)f(s, u(s))ds.

Thus, u(t) is a solution of (1.1). Now, we show that the convergence of the sequence

is quadratic. For that we set en(t) = (u(t) − αn(t)) ≥ 0, t ∈ [0, 1] so that

en(0) − µ1e
′
n(0) =

m−2
∑

i=1

pien(ηi), en(1) + µ2e
′
n(1) =

m−2
∑

i=1

qien(ηi).
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In view of (A2) and (3.2), it follows by Taylor’s theorem that

e′′n(t) + σe′n(t) = u′′ + σu′ − (α′′
n + σα′

n) = −f(t, u) + g(t, αn, αn−1)

= −f(t, u) + f(t, αn−1) + Fu(t, αn−1)(αn − αn−1) + φ(t, αn−1) − φ(t, αn)

= −fu(t, c1)(u − αn−1) − Fu(t, αn−1)(u − αn) + Fu(t, αn−1)(u − αn−1)

−φu(t, c2)(αn − αn−1)

= [−fu(t, c1) + Fu(t, αn−1) − φu(t, c2)]en−1 + [−Fu(t, αn−1) + φu(t, c2)]en

= [−Fu(t, c1) + Fu(t, αn−1) + φu(t, c1) − φu(t, c2)]en−1

+[−Fu(t, αn−1) + φu(t, c2)]en

≥ [−Fu(t, u) + Fu(t, αn−1) + φu(t, αn−1) − φu(t, αn)]en−1

+[−Fu(t, αn−1) + φu(t, αn−1)]en

= [−Fuu(t, c3) − φuu(t, c4)]e
2
n−1 − fu(t, αn−1)en

≥ −[A + B]e2
n−1

= −M‖en−1‖
2,

where αn−1 ≤ c1, c3 ≤ u, αn−1 ≤ c2, c4 ≤ αn, A is a bound on ‖Fuu‖, B is a bound on

‖φuu‖ for t ∈ (0, 1) and M = A + B. Thus, we have

en(t) =
−(1 − σµ2)e

−σ + e−σt

(1 + σµ1) − (1 − σµ2)e−σ

(

m−2
∑

i=1

pien(ηi)

)

+
(1 + σµ1) − e−σt

(1 + σµ1) − (1 − σµ2)e−σ

(

m−2
∑

i=1

qien(ηi)

)

+

∫ 1

0

G(t, s)[f(s, u(s)) − g(t, αn, αn−1)]ds

≤
−(1 − σµ2)e

−σ + e−σt

(1 + σµ1) − (1 − σµ2)e−σ

(

m−2
∑

i=1

pien(ηi)

)

+
(1 + σµ1) − e−σt

(1 + σµ1) − (1 − σµ2)e−σ

(

m−2
∑

i=1

qien(ηi)

)

−

∫ 1

0

G(t, s)[e′′n(s) + σe′n(s)]ds

≤ λ

(

m−2
∑

i=1

pi +

m−2
∑

i=1

qi

)

‖en‖ + M1‖en−1‖
2, (3.7)

where M1 provides a bound on M
∫ 1

0
G(t, s), λ = max{λ1, λ2}, and

|
−(1 − σµ2)e

−σ + e−σt

(1 + σµ1) − (1 − σµ2)e−σ
| ≤ λ1, |

(1 + σµ1) − e−σt

(1 + σµ1) − (1 − σµ2)e−σ
| ≤ λ2
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on [0, 1]. Taking the maximum over the interval [0, 1] and solving (3.7) algebraically,

we obtain

‖en‖ ≤ M2‖en−1‖
2,

where

M2 =

[

1 − λ

(

m−2
∑

i=1

pi +

m−2
∑

i=1

qi

)]−1

,

and ‖u‖ = {|u(t)| : t ∈ [0, 1]}. This establishes the quadratic convergence of the

sequence of iterates.

Example. Consider the boundary value problem
{

u′′(t) + σu′(t) − teu(t)−1 − 2(u(t) − 1) = 0, σ < 0, 0 < t < 1,

u(0) − µ1u
′(0) = 1

7
u(3

4
) + 1

9
u(4

5
), u(1) + µ2u

′(1) = 1
3
u(3

4
),

(3.8)

where 0 ≤ µ1 ≤ 11/20, µ2 ≥ 0. Let α(t) = 0 and β(t) = 1 + t be respectively lower

and upper solutions of (3.8). Clearly α(t) and β(t) are not the solutions of (3.8) and

α(t) < β(t), t ∈ [0, 1]. Moreover, the assumption (A2) of Theorem 3.1 is satisfied by

choosing φ(t, u) = Mu2, M ≥ e/2. Thus, the conclusion of Theorem 3.1 applies to

the problem (3.8).
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