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1. Introduction

It is well known that the most used techniques in the study of the effect of pertur-

bations of dynamic systems are the Lyapunov method and the nonlinear variation of

parameters. In this paper, using the calculus on time scales and employing variation

of Lyapunov’s method and a family of perturbing Lyapunov functions, we prove a

new comparison theorem that connects the solutions of perturbed and unperturbed

dynamic systems on time scales in a manner useful to the theory of perturbations.

Different from the proof of theorems in [1], here we verify the stability of trivial so-

lution in terms of two measures, which unify varieties of stability notions and offer a

general framework for investigation. This comparison result provides a flexible mech-

anism for preserving the nature of perturbation and shows the advantage of employing

a family of Lyapunov functions than a single one in the study of stability properties.

In section 2, we introduce the notions of strict stability in terms of two measures as

well as strict boundedness concepts, which firstly introduced in [4]. Also, we develop

the method of variation of parameters and Lyapunov-like functions. In section 3,

we establish several stability criteria in terms of two measures for perturbed system

which employs the interplay of the solution of unperturbed system and comparison

system.
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2. Preliminaries

Let us list the following definitions and classes of functions for convenience.

K = {σ ∈ C[R+, R+] : σ(u) is strictly increasing and σ(0) = 0}.

CK = {σ ∈ C[R2
+, R+] : σ(t, u) ∈ K for each t ∈ R+}.

Γ = {h ∈ C[R+ × R
n, R+] : inf

x∈Rn

h(t, x) = 0 for each t ∈ R+}.

Definition 2.1. Let h0, h ∈ Γ. Then we say that h0 is finer than h if there exists

a ρ > 0 and a function φ ∈ K such that

h0(t, x) < ρ implies h(t, x) ≤ φ(h0(t, x)).

Definition 2.2. Let V ∈ C[R+ × R
n, R+] and h ∈ Γ. Then V is said to be (i) h-

positive definite if there exists a ρ > 0 and a function b ∈ K such that h(t, x) < ρ

implies b(h(t, x)) ≤ V (t, x); (ii) h-decrescent if there exists a ρ0 > 0 and a function

a ∈ K such that h0(t, x) < ρ0 implies V (t, x) ≤ a(h0(t, x)); (iii) weakly h-decrescent

if there exists a ρ0 > 0 and a function a ∈ CK such that h(t, x) < ρ0 implies

V (t, x) ≤ a(t, h0(t, x)).

As the introduction in [2], let T be a time scale (an arbitrary closed set of R)

with t0 ≥ 0 as a minimal element. If a time scale has a maximal element which

is also left-scattered, it is called a degenerate point. Let T
k represent the set of all

non-degenerate points of T.

Definition 2.3. The mapping f : T × R
n × R

n → R
n is said to be right-dense

(rd) continuous and is denoted by f ∈ Crd[T × R
n × R

n, Rn] if

(i) it is continuous at each (t, x, y) with right-dense or maximal t and

(ii) the limits f(t−, x, y) = lim(s,u,v)→(t−,x,y) f(s, u, v) and lim(u,v)→(x,y) f(t, u, v) exists

at each (t, x, y) with left-dense t.

Consider the two dynamic systems

y△ = f(t, y, L1y), y(t0) = x0, (2.1)

and

x△ = F (t, x, L2x), x(t0) = x0, (2.2)

where f, F ∈ Crd[T
k × R

n × R
n, Rn], Lix =

∫ t

t0
Ki(t, s, x(s))∆s, Ki : T

k × T
k ×

R
n → R

n is such that Ki ∈ Crd[T
k × T

k × R
n, Rn] is continuous at each (t, s, x)

with right-dense or maximal t and Ki(t
−, s−, x) = lim(p,q,u)→(t−,s−,x) f(p, q, u) and

limu→x Ki(t, s, u) exists at each (t, s, x) with left-dense t and s, and f(t, 0) ≡ 0,

F (t, 0) ≡ 0, Ki(t, s, 0) ≡ 0. Specially, when F (t, x, L1x) = f(t, x, L1x) + R(t, x, Lx),

R(t, x, Lx) being the perturbation term. Relative to the system (2.1), let us assume

that the following assumption (H) holds:
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(H) The solutions y(t, t0, x0) of (2.1) exists for all t ≥ t0, unique and rd-continuous

with respect to the initial data, and ‖y(t, t0, x0)‖ is locally Lipschitzian in x0.

For any V ∈ Crd[T
k × R

n, R+] and any fixed t ∈ T. Let µ∗(t) be defined as in [2],

then we define

D−V △(s, y(t, s, x))

≡ lim inf
µ∗(s)→0

V (s, y(t, s, x)) − V (s − µ∗(s), y(t, s− µ∗(s), x − µ∗(s)F (s, x, L2x)))

µ∗(s)

D+V △(s, y(t, s, x))

≡ lim sup
µ∗(s)→0

V (s + µ∗(s), y(t, s + µ∗(s), x + µ∗(s)F (s, x, L2x))) − V (s, y(t, s, x))

µ∗(s)

for t0 < s ≤ t and x ∈ R
n.

The following comparison result in [1] which relates the solutions of (2.2) to the

solutions of (2.1) is an important tool in the subsequent discussion. We state it here.

Theorem 2.1 ([1]). Assume that the assumption (H) holds, and

(i) V ∈ Crd[T
k × R

n, R+], V (t, s) is locally Lipschitzian in x and for t0 < s ≤

t, x ∈ R
n,

D−V △(s, y(t, s, x)) ≤ g(s, V (s, y(t, s, x)));

(ii) g ∈ Crd[T
k × R+, R], g(t, u)µ∗(t) is nondecreasing in u for each t ∈ T, and

the maximal solution r(t, t0, u0) of

u△ = g(t, u), u(t0) = u0 ≥ 0,

exists for t ∈ T
k.

Then, if x(t) = x(t, t0, x0) is any solution of (2.2) we have

V (t, x(t, t0, x0)) ≤ r(t, t0, u0), t ∈ T
k,

provided V (t0, y(t, t0, x0)) ≤ u0.

Definition 2.4. The system (2.1) is said to be (h0, h)-equistable, if given ε > 0

and t0 ∈ R+ there exists a δ = δ(t0, ε) that is continuous in t0 for each ε such that

h0(t0, x0) < δ implies h(t, y(t)) < ε, t ≥ t0.

Definition 2.5. Let h0, h ∈ Γ. Then system (1) is said to be

(1) strictly (h0, h)-bounded if for any α1, α2 > 0, α1 > α2, t0 ∈ R+, there exist

positive functions β1 = β1(t0, α1) and β2 = β2(t0, α2) which are continuous in (t0, α1)

and (t0, α2), respectively, such that

α2 ≤ h0(t0, x0) < α1 implies β2 ≤ h(t, y(t)) < β1, t ≥ t0,

where y(t) = y(t, t0, x0) is any solution of system (2.1);
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(2) uniformly strictly (h0, h)-bounded if β1 and β2 in (1) are independent of t0;

(3) strictly (h0, h)-stable if in (1), limα1→0 β1(t0, α1) = 0 and limα2→0 β2(t0, α2) = 0;

(4) uniformly strictly (h0, h)-stable if in (2), limα1→0 β1(α1) = 0 and limα2→0 β2(α2) =

0.

3. Main Results

We begin by proving a result on nonuniform stability in terms of two measures

under weaker assumptions.

Theorem 3.1. Assume that (H) holds, and

(A0) h0, h ∈ Γ and h0 is finer than h;

(A1) V1 ∈ Crd[T × R
n, R+], V1(t, y) is locally Lipschitzian in y for each t ∈ T,

weakly h0-decrescent, and

D−V △

1 (s, y(t, s, x)) ≤ g1(s, V (s, y(t, s, x))), (t, x) ∈ T × R
n,

V1(s, y(t, s, x)) ≤ a(h(s, y(t, s, x))),

where g1 ∈ Crd[T
k × R+, R], g1(t, u)µ∗(t) is nondecreasing in u for each t ∈ T

k, and

g1(t, 0) ≡ 0;

(A2) for every η > 0, there exists a V2η ∈ Crd[T × R
n, R+], V2η is locally Lips-

chitzian in y,

D−V △

1 (s, y(t, s, x)) + D−V △

2η(s, y(t, s, x))

≤ g2(s, V1(s, y(t, s, x))) + V2η(s, V (s, y(t, s, x))),

b(h(s, y(t, s, x))) ≤ V2η(s, y(t, s, x) ≤ a(h0(s, y(t, s, x)));

where g2 ∈ Crd[T
k × R+, R], g2(t, u)µ∗(t) is nondecreasing in u for each t ∈ T

k, and

g2(t, 0) ≡ 0;

(A3) suppose that the trivial solution of (2.1) is (h0, h)-equistable, the trivial so-

lution is equistable relative to the differential equation

u△ = g1(t, u), u(t0) = u0, (3.1)

and uniformly stable with respect to the differential equation

w△ = g2(t, w), w(t0) = w0, (3.2)

then the differential system (2.2) is (h0, h)-equistable.

Proof. Since V1 is weakly h0-decrescent, there exists a 0 < ρ1 ≤ ρ and a φ0 ∈ CK

such that

V1(s, y(t, s, x)) ≤ φ0(s, h0(s, y(t, s, x))) if h0(s, y(t, s, x)) < ρ1, (3.3)
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Also, h0 is finer than h implies that there exists a 0 < ρ0 ≤ ρ1 and a φ1 ∈ K such

that

h(s, y(t, s, x)) ≤ φ1(h0(s, y(t, s, x))) provided h0(s, y(t, s, x)) < ρ0, (3.4)

where ρ0 is such that φ1(ρ0) < ρ1.

Let 0 < ε < ρ and t0 ∈ T be given. Since the trivial solution of (3.2) is uniformly

stable, given b(ε) > 0 and t0 ∈ T, there exists a δ0 = δ0(ε) such that

w(t, t0, w0) < b(ε), t ≥ t0, if w0 < δ0, (3.5)

where w(t, t0, w0) is any solution of (3.2). Since a, φ1 ∈ K, we can find a δ1 = δ1(ε) > 0

such that

a(δ1) <
δ0

2
and φ1(δ1) < ε, (3.6)

the equistability of the trivial solution of (3.1) implies that given δ0
2

> 0 and t0 ∈ T,

there exists a t0, such that

u0 ≤ δ∗ implies u(t, t0, u0) <
δ0

2
, t ≥ t0, (3.7)

where u(t, t0, u0) is any solution of (3.1).

Let δ2 = a−1(δ∗), since y = 0 of (2.1) is (h0, h)-equistable, given δ2 > 0, t0 ∈ T,

there exists a δ0 = δ0(t0, ε) such that

h(t, y(t, t0, x0)) < δ2, t ≥ t0, if h0(t0, x0) < δ0

Choose u0 = V1(t0, y(t, t0, x0)). Since φ0 ∈ CK and (3.3) holds, there exists a δ3 =

δ3(t0, ε) > 0 such that δ3 ∈ (0, min(δ1, ρ1)), and

h0(t0, x0) < δ3 implies V1(t0, y(t, t0, x0)) ≤ φ0(t0, h0(t0, y(t, t0, x0))) < δ∗ (3.8),

We set δ = min(δ1, δ3, δ
0) and suppose that h0(t0, x0) < δ,

h0(t0, x0) ≤ φ1(h0(t0, x0)) ≤ φ1(δ) ≤ φ1(δ1) < ε, (3.9)

We claim that h0(t0, x0) < δ implies h(t, x(t, t0, x0)) < ε, t ≥ t0. If this is not

true, because of (3.9), there exists a solution x(t) of (2.2) with h0(t0, x0) < δ and

t2 > t1 > t0 such that

h(t1, x(t1, t0, x0)) = δ1, h(t2, x(t2, t0, x0)) = ε. (3.10)

Setting η = δ1(ε), we see by (A2), there exists a V2η and hence letting m(s) =

V1(s, y(t, s, x)) + V2η(s, y(t, s, x)), t ∈ [t1, t2], we obtain the differential inequality

D+m(s) ≤ g2(s, m(s)),

Hence by the comparison Theorem 2.1, we have

m(s) ≤ r2(s, t1, m(t1)), t ∈ [t1, t2] (3.11)
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where r2(s, t1, m(t1)) is the maximal solution of (3.2). Also, we can obtain similarly

the estimate

V1(t, x(t, t0, x0)) ≤ r1(t, t0.u0), t ∈ [t1, t2]

where r1(t, t0, u0) is the maximal solution of (3.1). Hence by (3.7) and (3.8), we have

V1(t1, x(t1, t0, x0))≤ r1(t1, t0, V1(t0, y(t, t0, x0))) ≤ r1(t1, t0, a(h(t0, y(t, t0, x0))))

≤ r1(t1, t0, a(δ2)) = r1(t1, t0, δ
∗) < δ0

2
.

Also by (A2) and (3.6), we get

V2η(t1, x(t1, t0, x0)) ≤ a(h0(t1, x(t1, t0, x0))) = a(δ1) <
δ0

2
.

Since

m(t) = V1(t, y(t, t, x)) + V2η(t, y(t, t, x)) = V1(t, x(t, t0, x0)) + V2η(t, x(t, t0, x0))

so

m(t1) = V1(t1, x(t1, t0, x0)) + V2η(t1, x(t1, t0, x0)) <
δ0

2
,

Therefore (3.5) and (3.11) imply that

m(t2) ≤ r2(t2, t1, m(t1)) < b(ε).

But

m(t2) ≥ V2η(t2, x(t2, t0, x0)) ≥ b(h(t2, x(t2, t0, x0))) = b(ε),

which leads to a contradiction. Hence the proof is complete.

Theorem 3.2. Assume that

(i) h0, h ∈ Γ and h0 is finer than h;

(ii) V1 ∈ Crd[T × R
n, R+], V1(t, y) is locally Lipschitzian in y for each t ∈ T and

weakly h0-decrescent and

V1(s, y(t, s, x)) ≤ a(h(s, y(t, s, x)));

(iii) for every η > 0, there exists a V2η ∈ Crd[T × R
n, R+], V2η is locally Lips-

chitzian in y,

D−V △

1 (s, y(t, s, x)) + D−V △

2η(s, y(t, s, x))

≤ g(s, V1(s, y(t, s, x))) + V2η(s, V (s, y(t, s, x))),

b(h(s, y(t, s, x))) ≤ V2η(s, y(t, s, x) ≤ a(h0(s, y(t, s, x))),

where g ∈ Crd[T × R+, R] with g(t, 0) ≡ 0;

(iv) the trivial solution of u△ = g(t, u), u(t0) = u0 ≥ 0 is uniformly stable;

(v) there exist two functions V3, V4 ∈ Crd[T × R
n, R+] such that V1 = V3 + V4,

where V3 is h-positive definite and

D−V △

1 (s, y(t, s, x)) ≤ −λ(t)C(V3(s, y(t, s, x))),
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where C ∈ K and λ ∈ C[T, Rn] is integrally positive, that is,
∫

I
λ(s)ds = ∞, whenever

I = ∪∞
i=1[αi, βi], αi < βi < αi+1, and βi − αi ≥ δ > 0;

(vi) for every function y ∈ Crd[T, Rn], the function
∫ t

0
[D−V △

4 (s, y(t, s, x))]±ds is

uniformly continuous on T, where [·]± means that either the positive or negative part

is considered for all s ∈ T.

Then the trivial solution of (2.1) is (h0, h)-equistable implies the trivial solution

of (2.2) is (h0, h)-equi-asymptotically stable.

Proof. Since (v) implies that D−V1(t, x) ≤ 0, the assumptions (i) to (iv) yield

by Theorem 3.1 that the differential system (2.2) is (h0, h)-equistable. Choose ε = ρ

and designating by δ0 = δ0(t0, ρ), it is clear that we have

h0(t0, x0) < δ0 implies h(t, x(t, t0, x0)) < ρ, t ≥ t0 (3.12)

Let x(t) be any solution of (2.2) satisfying (3.12). Define the functions m1(s) =

V1(s, y(t, s, x)), m3(s) = V3(s, y(t, s, x)), m4(s) = V4(s, y(t, s, x)), so that

m1(t) = V1(t, y(t, t, x)) = V1(t, x(t, t0, x0)),

m3(t) = V3(t, x(t, t0, x0)),

m4(t) = V4(t, x(t, t0, x0)),

Since m1(s) = m3(s)+m4(s), we have m1(t) = m3(t)+m4(t). The same as the proof

of Theorem 3.2 in [3], we get limt→∞ m3(t) = 0, which means lims→∞ m3(s) = 0.

That is lims→∞ V3(s, y(t, s, x)) = 0.

Since V3 is h-positive, i.e.

h0(t0, x0) < δ0 implies b(h(s, y(t, s, x))) ≤ V3(s, y(t, s, x))

We get in turn

lim
s→0

h(s, y(t, s, x)) = 0,

hence

lim
t→0

h(t, x(t, t0, x0)) = 0.

The proof is complete.

Remark. From this theorem, we can see the advantage of employing a family of

Lyapunov functions even clearly. We need only the stability of unperturbed system

to proof the asymptotical stability of the perturbed system.

The next result is on uniform asymptotic stability for (2.2). We also need only

the strict stability of (2.1) but a single Lyapunov function to do that. So we can see

the advantage of introducing the concept of strict (h0, h) stability.
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Theorem 3.3. Assume that

(i) h0, h1, h2 ∈ Γ and h2 is uniformly finer than h1, V ∈ Crd[T × R
n, R+], h1(t, x)

is nondecreasing in t for each fixed x and there exists a function b ∈ K such that

V (t, x) ≥ b(h2(t, x)), (t, x) ∈ T × R
n;

(ii) h0 is locally Lipschitzian in x and

D+
y h△

0 (t, y) ≤ 0;

(iii) h0 is uniformly finer than h2 and

V (t, x) ≤ a1(h1(t, x)) + a0(h0(t, x)), (t, x) ∈ T × R
n,

where a1, a0 ∈ K;

(iv)

D−V △(s, y(t, s, x)) ≤ g(s, V (s, y(t, s, x))), t0 ≤ s ≤ t, (t, x) ∈ T × R
n,

(v) system (2.1) is strictly uniformly (h0, h1)-stable.

Then the uniformly asymptotical stability of differential equation

u△ = g(t, u), u(t0) = u0, (3.13)

implies the uniformly asymptotically (h0, h2)-stability of (2.2).

Proof. Since h0 is uniformly finer than h2, there exist ϕ ∈ K and δ0 > 0 such

that

h2(t, x) ≤ ϕ(t, h0(t, x)), if h0(t, x) < δ0, (3.14)

Let ε > 0 and t0 ∈ T. There exist η > 0 and δ1 > 0 such that

a1(t0, η) + a0(t0, δ1) < δ∗, (3.15)

and

ϕ(t0, δ1) < ε. (3.16)

Since system (2.1) is uniformly (h0, h1)-stable, it follows that there exists δ2 = δ2(ε) >

0 such that

h0(t0, x0) < δ2 implies h1(t, y(t, t0, x0)) < η, t ≥ t0, (3.17)

where y(t) = y(t, t0, x0) is any solution of system (2.1).

Now choose δ = min{δ0, δ1, δ2} and let x(t) = x(t, t0, x0) be a solution of sys-

tem (2.2) with h0(t0, x0) < δ. By the choice of δ and (3.14), (3.16), we see that

h2(t0, x0(t)) < ε. We claim that

h2(t, x(t)) < ε, t ≥ t0,
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If this is not true, then there exists a t1 > t0 such that

h2(t1, x(t1)) = ε and h2(t, x(t)) < ε, t ∈ [t0, t1).

For t ∈ [t0, t1], define m(s) = V (s, y(t, s, x(s))), s ∈ [t0, t]. Then we get

D+m(s) ≤ g(s, m(s)), t0 ≤ s ≤ t ≤ t1,

Let m(t0) = u0, by Theorem 2.1, we get

m(s) ≤ r(s, t0, m(t0)), t0 ≤ s ≤ t ≤ t1, (3.18)

where r(s, t0, m(t0)) is the maximal solution of (3.13).

Since (3.13) is uniformly asymptotically stable, give b(ε) > 0 and t0 ∈ T, for δ∗,

we have

u0 < δ∗ implies u(t, t0, u0) < b(ε), t ≥ t0, (3.19)

By condition (iii) we have

u0 = m(t0) = V (t0, y(t, t0, x0))

≤ a1(t0, h1(t0, y(t, t0, x0))) + a0(t0, h0(t0, y(t, t0, x0)))
(3.20)

In view of condition (i) and (ii), we obtain

h1(t0, y(t, t0, x0)) ≤ h1(t, y(t, t0, x0)), (3.21)

and

h0(t0, y(t, t0, x0)) ≤ h0(t0, x0), (3.22)

Then from (3.15), (3.17) and (3.20)-(3.22),we obtain

m(t0) < δ∗

Then by (3.18), (3.19)

V (t1, x(t1)) ≤ r(t1, t0, m(t0)) < b(ε)

But in view of condition (i)

V (t1, x(t1)) ≥ b(h2(t1, x(t1))) = b(ε)

which is a contradiction, hence system (2.2) is uniformly (h0, h2) stable.

Next we will prove the attractivity of (2.2). Since system (2.1) is strictly uniformly

(h0, h1)-stable, there exist δ3 > 0 and η1 > 0 such that

δ0 ≤ h0(t0, x0) < δ3 implies η1 ≤ h1(t, y(t)) < η, t ≥ t0,

Choose σ = min{δ, δ3}. For any t0 ∈ T, let x(t) = x(t, t0, x0) be any of system (2.2)

with h0(t0, x0) < σ, we are going to prove

h2(t, x(t)) < ε, t ≥ t0 + T.
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By uniform (h0, h)-stability, it is sufficient to show that there exists a t∗ ∈ [t0, t0 + T ]

such that

h0(t
∗, x(t∗)) < δ0.

If this is not true, then there exists a solution x(t) = x(t, t0, x0) of (2.2) with

h0(t0, x0) < σ such that

h0(t, x(t)) ≥ δ0, t ∈ [t0, t0 + T ],

Since h2 is uniformly finer than h1, there exists a ϕ2 ∈ K such that

h1(t, x) ≤ ϕ(h2(t, x)) (3.23)

For given ε > 0,we let

ϕ(t + T, η1) < ε. (3.24)

So in view of condition (i) and (3.23), (3.24)

V (t0 + T, x(t0 + T ))≥ b(h2(t0 + T, x(t0 + T )))

≥ b(ϕ(t0 + T, h1(t0 + T, x(t0 + T ))))

≥ b(ϕ(t0 + T, η1)) ≥ b(ε),

But

V (t0 + T, x(t0 + T )) = m(t0 + T ) ≤ r(s, t0, m(t0)) < b(ε).

This is a contradiction and the theorem is proved.
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