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ABSTRACT. This paper discusses acyclic maps between topological spaces and we present a

definition of an essential map in this setting. In addition we show that if F is essential and F ∼= G
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1. INTRODUCTION

The notion of an essential map in a Banach (or Fréchet) space setting introduced

by Granas in [2] is more general than the notion of degree. In [2] he showed for single

valued maps that if F is essential and F ∼= G then G is essential. In this paper we

extend this notion to acyclic maps between topological spaces. Also in this general

setting we show that if F is essential and F ∼= G then G is essential. In particular

we note that the result holds for maps between Hausdorff topological spaces (i.e. the

spaces need not be vector spaces).

Let X and Z be subsets of Hausdorff topological spaces. We will consider maps

F : X → K(Z); here K(Z) denotes the family of nonempty compact subsets of Z.

A nonempty topological space is said to be acyclic if all its reduced C̆ech homology

groups over the rationals are trivial. Now F : X → K(Z) is acyclic if F is upper

semicontinuous with acyclic values.

2. CONTINUATION THEORY

Throughout this section Y will be a completely regular topological space and U

will be an open subset of Y .

Definition 2.1. We say F ∈ AC(U, Y) if F : U → K(Y ) is an acyclic compact map;

here U denotes the closure of U in Y .

Definition 2.2. We say F ∈ AC∂U(U, Y ) if F ∈ AC(U, Y ) with x /∈ F (x) for

x ∈ ∂U ; here ∂U denotes the boundary of U in Y .
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Definition 2.3. Let F, G ∈ AC∂U(U, Y ). We say F ∼= G in AC∂U(U, Y ) if there exists

a upper semicontinuous compact map Ψ : U × [0, 1] → K(Y ) with Ψt ∈ AC∂U(U, Y )

for each t ∈ [0, 1], Ψ1 = F and Ψ0 = G (here Ψt(x) = Ψ(t, x)).

Notice ∼= is an equivalence relation in AC∂U(U, Y ).

Definition 2.4. We say a map F ∈ AC∂U(U, Y ) is essential in AC∂U(U, Y ) if every

map G ∈ AC∂U(U, Y ) with G|∂U = F |∂U and with G ∼= F in AC∂U(U, Y ) has a fixed

point in U . Otherwise F is inessential in AC∂U(U, Y ) i.e. there exists a fixed point

free map G ∈ AC∂U(U, Y ) with G|∂U = F |∂U and G ∼= F in AC∂U(U, Y ).

Theorem 2.5. Let Y be a completely regular topological space, U an open subset of

Y , and let F ∈ AC∂U(U, Y ). Then the following are equivalent:

(i). F is inessential in AC∂U(U, Y );

(ii). there exists a fixed point free map G ∈ AC∂U(U, Y ) with G ∼= F in AC∂U(U, Y ).

Proof. (i) implies (ii) is immediate. Now we prove (ii) implies (i). Let H : U×[0, 1] →

K(Y ) be a upper semicontinuous compact map with Ht ∈ AC∂U(U, Y ) for each

t ∈ [0, 1] and with H0 = F and H1 = G. Let

B =
{

x ∈ U : x ∈ Ht(x) for some t ∈ [0, 1]
}

.

If B = ∅ then in particular x /∈ H(x, 0) = F (x) for x ∈ U so F is inessential in

AC∂U(U, Y ). Now suppose B 6= ∅. Clearly B is closed (note H is upper semicontin-

uous) and in fact compact (note H is compact). Also note x /∈ Ht(x) for x ∈ ∂U and

t ∈ [0, 1] so B ∩ ∂U = ∅. Now since Y is completely regular there exists a continuous

map µ : U → [0, 1] with µ(B) = 1 and µ(∂U) = 0. Define a map R : U → K(Y )

by R(x) = H(x, µ(x)). Clearly R ∈ AC∂U(U, Y ) since R|∂U = H0|∂U = F |∂U . Also

x /∈ R(x) for x ∈ U since if x ∈ R(x) for some x ∈ U then x ∈ B so µ(x) = 1 i.e.

x ∈ H(x, 1) = G(x), a contradiction. We claim

R ∼= F in AC∂U(U, Y ). (2.1)

If (2.1) is true then (i) holds, so it remains to check (2.1). Let Q : U × [0, 1] → K(Y )

be given by

Q(x, t) = H(x, t µ(x)).

Now Q0 = H0 = F and Q1(x) = H(x, µ(x)) = R(x) and clearly Q : U×[0, 1] → K(Y )

is an upper semicontinuous compact map with Qt ∈ AC(U, Y ) for each t ∈ [0, 1].

Also Qt is fixed point free on ∂U for each t ∈ [0, 1] since if there exists t ∈ [0, 1] and

x ∈ ∂U with x ∈ Qt(x) then x ∈ H(x, tµ(x)) so x ∈ B and as a result µ(x) = 1 i.e.

x ∈ H(x, t), a contradiction. Thus (2.1) holds.

Now Theorem 2.5 immediately guarantees the following continuation theorem.
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Theorem 2.6. Let Y be a completely regular topological space and U an open subset

of Y . Suppose F and G are two maps in AC∂U(U, Y ) with F ∼= G in AC∂U(U, Y ).

Then F is essential in AC∂U(U, Y ) iff G is essential in AC∂U(U, Y ).

Proof. F is inessential in AC∂U(U, Y ) iff there exists a fixed point free map Φ ∈

AC∂U(U, Y ) with F ∼= Φ in AC∂U(U, Y ) iff (since ∼= is an equivalence relation in

AC∂U(U, Y )) there exists a fixed point free map Φ ∈ AC∂U(U, Y ) with G ∼= Φ in

AC∂U(U, Y ) iff G is inessential in AC∂U(U, Y ).

In particular we mention two special cases of Theorem 2.6. We say F ∈ C(U, Y )

if F : U → Y is a continuous single valued compact map. We can also write the

analogue of C∂U(U, Y ), essential in C∂U(U, Y ) and ∼= in C∂U(U, Y ).

Theorem 2.7. Let Y be a completely regular topological space and U an open subset

of Y . Suppose F and G are two maps in C∂U(U, Y ) with F ∼= G in C∂U(U, Y ). Then

F is essential in C∂U(U, Y ) iff G is essential in C∂U(U, Y ).

Next we suppose Y is a convex subset of a locally convex linear topological space

(so in particular Y is completely regular). We say F ∈ K(U, Y ) if F : U → CK(Y )

is a upper continuous compact map; here CK(Y ) denotes the family of nonempty,

convex, compact subsets of Y . We can also write the analogue of K∂U (U, Y ), essential

in K∂U(U, Y ) and ∼= in K∂U(U, Y ).

Theorem 2.8. Let Y be a a convex subset of a locally convex linear topological space

and U an open subset of Y . Suppose F and G are two maps in K∂U(U, Y ) with F ∼= G

in K∂U(U, Y ). Then F is essential in K∂U(U, Y ) iff G is essential in K∂U(U, Y ).

An obvious question is if the condition F ∼= G in AC∂U(U, Y ) automatically

satisfied in Definition 2.4 i.e. if F and G are in AC∂U(U, Y ) with G|∂U = F |∂U is

F ∼= G in AC∂U(U, Y )? If the maps are in K∂U(U, Y ) and Y is a convex subset of

locally convex linear topological space then it is easy to see that

Ψ(x, t) = t F (x) + (1 − t) G(x)

guarantees that F ∼= G in K∂U(U, Y ). However the acyclic map case seems to be

much more difficult. Let Y be a infinite dimensional normed linear space and U an

open convex subset of Y with 0 ∈ U . Let F, G be in AC∂U(U, Y ) with G|∂U = F |∂U .

We know [1] there exists a continuous retraction r : U → ∂U . Let the map F ⋆ be

given by F ⋆(x) = F (r(x)) for x ∈ U . Of course F ⋆(x) = G(r(x)) for x ∈ U since

G|∂U = F |∂U . With

H(x, λ) = G(2 λ r(x) + (1 − 2 λ) x) = G ◦ j (x, λ) for (x, λ) ∈ U ×

[

0,
1

2

]
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(here j : U ×
[

0, 1

2

]

→ U is given by j(x, λ) = 2λ r(x) + (1 − 2λ)x) it is easy to see

that

G ∼= F ⋆ in AC∂U(U, E); (2.2)

notice if there exists x ∈ ∂U and λ ∈
[

0, 1

2

]

with x ∈ Hλ(x) then since r(x) = x we

have x ∈ G(2λx + (1 − 2λ)x) = G(x), a contradiction. Similarly with

Q(x, λ) = F ((2 − 2 λ) r(x) + (2 λ − 1) x) for (x, λ) ∈ U ×

[

1

2
, 1

]

it is easy to see that

F ⋆ ∼= F in AC∂U(U, E). (2.3)

Combining (2.2) and (2.3) gives G ∼= F in AC∂U(U, E).

It is possible to we generalize the above by considering a subclass of the U
k

c maps

of Park. Let X and Y be Hausdorff topological spaces. Given a class X of maps,

X(X, Y ) denotes the set of maps F : X → 2Y (nonempty subsets of Y ) belonging to

X, and Xc the set of finite compositions of maps in X. We let

F(X) = {Z : FixF 6= ∅ for all F ∈ X(Z, Z)}

where Fix, F denotes the set of fixed points of F .

The class U of maps is defined by the following properties:

(i). A contains the class C of single valued continuous functions;

(ii). each F ∈ Ac is upper semicontinuous and compact valued; and

(iii). Bn ∈ F(Ac) for all n ∈ {1, 2, . . .}; here Bn = {x ∈ R
n : ‖x‖ ≤ 1}.

We say F ∈ U
k
c
(X, Y ) if for any compact subset K of X there is a G ∈ Uc(K, Y )

with G(x) ⊆ F (x) for each x ∈ K.

Recall U
k
c is closed under compositions. Finally we consider a subclass A of the

U
k
c maps. The following condition will be assumed:











for Hausdorff topogical spaces X1, X2 and X3,

if F ∈ A(X1, X3) and f ∈ C(X2, X1),

then F ◦ f ∈ A(X2, X3).

(2.4)

Definition 2.9. We say F ∈ A(U, Y ) if F ∈ A(U, Y )) is a upper semicontinuous

compact map.

Definition 2.10. We say F ∈ A∂U (U, Y ) if F ∈ A(U, Y ) with x /∈ F (x) for x ∈ ∂U .

Definition 2.11. Let F, G ∈ A∂U(U, Y ). We say F ∼= G in A∂U (U, Y ) if there exists

a upper semicontinuous compact map Ψ : U × [0, 1] → 2Y with Ψt ∈ A∂U(U, Y ) for

each t ∈ [0, 1], Ψ1 = F and Ψ0 = G (here Ψt(x) = Ψ(t, x)).
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Definition 2.12. We say a map F ∈ A∂U(U, Y ) is essential in A∂U(U, Y ) if every

map G ∈ A∂U(U, Y ) with G|∂U = F |∂U and with G ∼= F in A∂U (U, Y ) has a fixed

point in U . Otherwise F is inessential in A∂U(U, Y ) i.e. there exists a fixed point free

map G ∈ A∂U (U, Y ) with G|∂U = F |∂U and G ∼= F in A∂U(U, Y ).

The following condition will be assumed:

∼= is an equivalence relation in A∂U(U, Y ). (2.5)

Essentially the same reasoning as in Theorem 2.5 and Theorem 2.6 yield the

following result.

Theorem 2.13. Suppose (2.4) and (2.5) hold. Let Y be a completely regular topolog-

ical space and U an open subset of Y . Suppose F and G are two maps in A∂U(U, Y )

with F ∼= G in A∂U(U, Y ). Then F is essential in A∂U(U, Y ) iff G is essential in

A∂U(U, Y ).

We now discuss essential maps in a little more detail.

Definition 2.14. We say F ∈ AC(Y, Y ) if F : Y → K(Y ) is an acyclic compact

map.

Definition 2.15. If F ∈ AC(Y, Y ) and p ∈ Y then we say F ∼= {p} in AC(Y, Y )

if there exists an upper semicontinuous compact map R : Y × [0, 1] → K(Y ) with

Rt ∈ AC(Y, Y ) for each t ∈ [0, 1], R1 = F and R0 = {p} (here Rt(x) = R(x, t)).

Theorem 2.16. Let Y be a completely regular topological space, U an open subset

of Y and u0 ∈ U . Let F (x) = {u0} for each x ∈ U . Assume the following property

holds:
{

for any Φ ∈ AC(Y, Y ) and any p ∈ Y with Φ ∼= {p}

in AC(Y, Y ) we have that Φ has a fixed point in Y.
(2.6)

Then F is essential in AC∂U(U, Y ).

Proof. Take any G ∈ AC∂U(U, Y ) with G|∂U = F |∂U and G ∼= {u0} in AC∂U(U, Y ).

To show F is essential in AC∂U(U, Y ) we must show G has a fixed point in U .

We know there exists a upper semicontinuous compact map Λ : U×[0, 1] → K(Y )

with Λt ∈ AC∂U(U, Y ) for each t ∈ [0, 1], Λ0 = {u0} and Λ1 = G. Now let

D =
{

x ∈ U : x ∈ Λt(x) for some t ∈ [0, 1]
}

.

Notice D 6= ∅ (since u0 ∈ U) is closed and compact and D ∩ (Y \U) = ∅. Thus there

exists a continuous map σ : Y → [0, 1] with σ(D) = 1 and σ(Y \U) = 0. Define

Ψ : Y × [0, 1] → K(Y ) by

Ψ(x, t) =

{

Λ(x, t σ(x)), x ∈ U

{u0}, x ∈ Y \U.
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Clearly Ψ : Y × [0, 1] → K(Y ) is an upper semicontinuous compact map with Ψt ∈

AC(Y, Y ) for each t ∈ [0, 1] and as a result Ψ1
∼= {u0} in AC(Y, Y ). Now (2.6)

guarantees that there exists x ∈ Y with x ∈ Ψ1(x). If x ∈ Y \U then x ∈ {u0} which

is a contradiction since u0 ∈ U . Thus x ∈ U so x ∈ Λ(x, σ(x)) and as a result x ∈ D

which implies σ(x) = 1 and so x ∈ Λ(x, 1) = G(x).

Remark 2.17. Condition (2.6) was discussed in [3] and we refer the reader to that

paper.

Combining Theorem 2.6 and Theorem 2.16 yields the following result.

Theorem 2.18. Let Y be a completely regular topological space, U an open subset of

Y and u0 ∈ U . Let F (x) = {u0} for each x ∈ U and assume (2.6) holds. In addition

suppose exists a upper semicontinuous compact map H : U × [0, 1] → K(Y ) with

Ht ∈ AC(U, Y ) for each t ∈ [0, 1], H0 = F and x /∈ Ht(x) for x ∈ ∂U and t ∈ (0, 1].

Then H1 is essential in AC∂U(U, Y ) (in particular H1 has a fixed point in U).

Let X be a completely regular topological vector space, Y a topological vector

space, and U an open subset of X. Also let L : dom L ⊆ X → Y be a linear (not

necessarily continuous) single valued map; here dom L is a vector subspace of X.

Finally T : X → Y will be a linear, continuous single valued map with L + T :

dom L → Y an isomorphism (i.e. a linear homeomorphism); for convenience we say

T ∈ HL(X, Y ).

A map F : U → 2Y is said to be (L, T ) acyclic if (L + T )−1F : U → K(X) is

an upper semicontinuous map (i.e. an acyclic map). Also F : U → 2Y is said to be

(L, T ) compact if (L + T )−1F : U → 2X is a compact map.

Definition 2.19. We let F ∈ AC(U, Y ; L, T ) if (L + T )−1 F ∈ AC(U, X).

Definition 2.20. We say F ∈ AC∂U(U, Y ; L, T ) if F ∈ AC(U, Y ; L, T ) with L x /∈

F (x) for x ∈ ∂U ∩ dom L.

Definition 2.21. Two maps F, G ∈ AC∂U(U, Y ; L, T ) are homotopic in AC∂U(U, Y ;

L, T ), written F ∼= G in AC∂U(U, Y ; L, T ), if there exists a (L, T ) upper semicontinu-

ous, (L, T ) compact mapping N : U× [0, 1] → 2Y such that Nt(u) = N(u, t) : U → 2Y

belongs to AC∂U(U, Y ; L, T ) for each t ∈ [0, 1] and N0 = F with N1 = G.

Definition 2.22. A map F ∈ AC∂U(U, Y ; L, T ) is said to be L-essential in AC∂U(U, Y ;

L, T ) if for every map G ∈ AC∂U(U, Y ; L, T ) with G|∂U = F |∂U and with F ∼= G in

AC∂U(U, Y ; L, T ) we have that there exists x ∈ U∩dom L with L x ∈ G(x). Otherwise

F is L-inessential in AC∂U(U, Y ; L, T ) i.e. there exists G ∈ AC∂U(U, Y ; L, T ) with

G|∂U = F |∂U and with F ∼= G in AC∂U(U, Y ; L, T ) and L x /∈ G(x) for x ∈ U∩dom L.

Theorem 2.23. Let X, Y , U , L and T be as above, and let F ∈ AC∂U(U, Y ; L, T ).

Then the following conditions are equivalent:
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(i). F is L-inessential in AC∂U(U, Y ; L, T );

(ii). there exists a map G ∈ AC∂U(U, Y ; L, T ) with L x /∈ G(x) for x ∈ U ∩ dom L

and F ∼= G in AC∂U(U, Y ; L, T ).

Proof. We just need to show (ii) implies (i). Let N : U× [0, 1] → 2Y be a (L, T ) upper

semicontinuous, (L, T ) compact map with Nt ∈ AC∂U(U, Y ; L, T ) for each t ∈ [0, 1]

and with N0 = F and N1 = G [In particular L x /∈ Nt(x) for x ∈ ∂U ∩ dom L and for

t ∈ [0, 1]]. Let

B =
{

x ∈ U ∩ dom L : L x ∈ N(x, t) for some t ∈ [0, 1]
}

.

Of course, it is immediate that

B =
{

x ∈ U : x ∈ (L + T )−1 (Nt + T ) (x) for some t ∈ [0, 1]
}

.

If B = ∅ then F is L-inessential in AC∂U(U, Y ; L, T ). So it remains to consider the

case when B 6= ∅. Now B is closed and ∂U ∩ B = ∅ so there exists a continuous

function µ : U → [0, 1] with µ(∂U) = 0 and µ(B) = 1. Define a map J by J(x) =

N(x, µ(x)) = N ◦ j(x) where j : U → U × [0, 1] is given by j(x) = (x, µ(x)). Clearly J

is a (L, T ) upper semicontinuous, (L, T ) compact map. Also (L+T )−1J ∈ AC(U, X),

J |∂U = F |∂U , L x /∈ J(x) for x ∈ U ∩ dom L (since if L x ∈ J(x) for x ∈ U ∩ dom L

then x ∈ B and so µ(x) = 1 i.e. L x ∈ G(x), a contradiction) and J ∼= F in

AC∂U(U, Y ; L, T ).

Theorem 2.24. Let X, Y , U , L and T be as above and suppose F and G are two

maps in AC∂U(U, Y ; L, T ) with F ∼= G in AC∂U(U, Y ; L, T ). Then F is L-essential

in AC∂U(U, Y ; L, T ) if and only if G is L-essential in AC∂U(U, Y ; L, T ).

Remark 2.25. One could also easily replace AC∂U(U, Y ; L, T ) with the class A∂U(U, Y ;

L, T ) (note F ∈ A(U, Y ; L, T ) if (L + T )−1 F ∈ A(U, X)) in Theorem 2.24.
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