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1. INTRODUCTION

The notion of an essential map in a Banach (or Fréchet) space setting introduced
by Granas in [2] is more general than the notion of degree. In [2] he showed for single
valued maps that if F' is essential and F' = G then G is essential. In this paper we
extend this notion to acyclic maps between topological spaces. Also in this general
setting we show that if F'is essential and F' = G then G is essential. In particular
we note that the result holds for maps between Hausdorff topological spaces (i.e. the

spaces need not be vector spaces).

Let X and Z be subsets of Hausdorff topological spaces. We will consider maps
F : X — K(Z); here K(Z) denotes the family of nonempty compact subsets of Z.
A nonempty topological space is said to be acyclic if all its reduced Cech homology
groups over the rationals are trivial. Now F' : X — K(Z) is acyclic if F' is upper

semicontinuous with acyclic values.

2. CONTINUATION THEORY

Throughout this section Y will be a completely regular topological space and U

will be an open subset of Y.

Definition 2.1. We say F' € AC(U,Y) if F : U — K(Y) is an acyclic compact map;
here U denotes the closure of U in Y.

Definition 2.2. We say F € ACyy(U,Y) if F € AC(U,Y) with x ¢ F(x) for
x € OU; here OU denotes the boundary of U in Y.
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Definition 2.3. Let F,G € ACyy(U,Y). Wesay F = G in ACyy(U,Y) if there exists
a upper semicontinuous compact map ¥ : U x [0,1] — K(Y) with ¥; € ACyy(U,Y)
for each t € [0,1], ¥y = F and ¥y = G (here Uy (z) = V(t, x)).

Notice 2 is an equivalence relation in ACyy(U,Y).

Definition 2.4. We say a map F € ACyy(U,Y) is essential in ACyy(U,Y) if every
map G € ACyy(U,Y) with G|ay = Floy and with G = F in ACyy(U,Y) has a fixed
point in U. Otherwise F is inessential in ACy;(U,Y) i.e. there exists a fixed point
free map G € ACyy(U,Y) with Glay = Floy and G = F in ACyy(U,Y).

Theorem 2.5. Let Y be a completely reqular topological space, U an open subset of
Y, and let F € ACy(U,Y). Then the following are equivalent:

(i). F is inessential in ACyy(U,Y);
(ii). there exists a fived point free map G € ACyy(U,Y) with G = F in ACyy(U,Y).

Proof. (i) implies (ii) is immediate. Now we prove (ii) implies (i). Let H : U x [0, 1] —
K(Y) be a upper semicontinuous compact map with H, € ACs;(U,Y) for each
t €10,1) and with Hy = F and H; = G. Let

B={ze€U: z€ Hyzx) forsome te|0,1]}.

If B = () then in particular z ¢ H(x,0) = F(x) for z € U so F is inessential in
ACyy(U,Y). Now suppose B # ). Clearly B is closed (note H is upper semicontin-
uous) and in fact compact (note H is compact). Also note x ¢ Hy(z) for z € OU and
t €10,1) so BNoU = (). Now since Y is completely regular there exists a continuous
map p : U — [0,1] with u(B) = 1 and pu(0U) = 0. Define a map R : U — K(Y)
by R(z) = H(z, u(z)). Clearly R € ACyy(U,Y) since R|oy = Holoy = Floy. Also
v ¢ R(z) for x € U since if € R(z) for some x € U then x € B so u(z) = 1 i.e.
x € H(z,1) = G(z), a contradiction. We claim

R=F in ACy(U,Y). (2.1)
If (2.1) is true then (i) holds, so it remains to check (2.1). Let Q : U x [0,1] — K(Y)
be given by
Q(x,t) = H(z,t p(x)).
Now Qp = Hy = F and Q,(z) = H(x, u(z)) = R(x) and clearly Q : Ux[0,1] — K(Y)
is an upper semicontinuous compact map with Q; € AC(U,Y) for each t € [0, 1].
Also @ is fixed point free on OU for each t € [0, 1] since if there exists t € [0, 1] and

x € 0U with x € Q;(z) then x € H(z,tu(x)) so x € B and as a result u(z) =1 i.e.
x € H(z,t), a contradiction. Thus (2.1) holds. O

Now Theorem 2.5 immediately guarantees the following continuation theorem.
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Theorem 2.6. Let Y be a completely reqular topological space and U an open subset
of Y. Suppose F and G are two maps in ACyy(U,Y) with F = G in ACy(U,Y).
Then F is essential in ACay(U,Y) iff G is essential in ACsy(U,Y).

Proof. F is inessential in ACpy(U,Y) iff there exists a fixed point free map ® €
ACay(U,Y) with F = @ in ACyy(U,Y) iff (since = is an equivalence relation in
ACa;(U,Y)) there exists a fixed point free map ® € ACyy(U,Y) with G = & in
ACay(U,Y) iff G is inessential in ACy(U,Y). O

In particular we mention two special cases of Theorem 2.6. We say F' € C(U,Y)
if F: U — Y is a continuous single valued compact map. We can also write the
analogue of Cyp(U,Y), essential in Coy(U,Y) and = in Cyyy(U,Y).

Theorem 2.7. Let'Y be a completely reqular topological space and U an open subset
of Y. Suppose F and G are two maps in Coy(U,Y) with F = G in Cay(U,Y). Then
F is essential in Coy(U,Y) iff G is essential in Coy(U,Y).

Next we suppose Y is a convex subset of a locally convex linear topological space
(so in particular Y is completely regular). We say F' € K(U,Y) if F: U — CK(Y)
is a upper continuous compact map; here CK(Y') denotes the family of nonempty,

convex, compact subsets of Y. We can also write the analogue of Ky (U,Y), essential
in Koy(U,Y) and 2 in Koy (U,Y).

Theorem 2.8. LetY be a a convex subset of a locally convex linear topological space
and U an open subset of Y. Suppose F' and G are two maps in Koy (U,Y) with F = G
in Koy (U,Y). Then F is essential in Koy(U,Y) iff G is essential in Koy (U,Y).

An obvious question is if the condition F & G in ACyy(U,Y) automatically
satisfied in Definition 2.4 i.e. if F' and G are in ACyy(U,Y) with Gloy = Flav is
F = G in ACyy(U,Y)? If the maps are in Koy (U,Y) and Y is a convex subset of

locally convex linear topological space then it is easy to see that
U(z,t) =t F(x)+ (1 —1t)G(x)

guarantees that F' = G in Ky (U,Y). However the acyclic map case seems to be
much more difficult. Let Y be a infinite dimensional normed linear space and U an
open convex subset of Y with 0 € U. Let F, G be in ACy;(U,Y) with Gloy = F|av.
We know [1] there exists a continuous retraction r : U — 9U. Let the map F™* be
given by F*(x) = F(r(z)) for z € U. Of course F*(x) = G(r(z)) for x € U since
Gloy = Flov. With

1

H(z,\)=G2Ar(z)+(1—-2N)2)=Goj(x,\) for (z,\) €U x {0,5]
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(here j : U x [0,4] — U is given by j(z,A) = 2Ar(z) + (1 — 2X\)z) it is easy to see
that

G=F in ACy (U, E); (2.2)
notice if there exists z € U and A € [0, 3] with € H,(z) then since r(z) = = we
have z € G(2\z + (1 — 2\)x) = G(x), a contradiction. Similarly with

Qz,\)=F(2-2Nr(z)+ (2A—1)z) for (z,)\) €U x [%,1]

it is easy to see that
F*=F in ACyy (U, E). (2.3)
Combining (2.2) and (2.3) gives G = F in ACyy (U, E).
It is possible to we generalize the above by considering a subclass of the U* maps
of Park. Let X and Y be Hausdorff topological spaces. Given a class X of maps,

X(X,Y) denotes the set of maps F': X — 2¥ (nonempty subsets of Y) belonging to
X, and X, the set of finite compositions of maps in X. We let

F(X)={Z: Fix F 40 forall FeX(Z 2)}

where Fliz, ' denotes the set of fixed points of F.
The class U of maps is defined by the following properties:
(i). A contains the class C of single valued continuous functions;
(ii). each F' € A. is upper semicontinuous and compact valued; and
(iii). B" € F(A,) for all n € {1,2,...}; here B" = {x € R": ||z|| < 1}.
We say F' € UF(X,Y) if for any compact subset K of X thereis a G € U.(K,Y)
with G(z) C F(z) for each z € K.

Recall U¥ is closed under compositions. Finally we consider a subclass A of the

U* maps. The following condition will be assumed:

for Hausdorff topogical spaces X, X5 and Xj,
if FEA(Xl,Xg) and f c C(XQ,X1>, (24)
then F o f S A(Xg,Xg).

Definition 2.9. We say F € A(U,Y) if F € A(U,Y)) is a upper semicontinuous

compact map.
Definition 2.10. We say F € Ay (U,Y) if F € A(U,Y) with = ¢ F (z) for z € oU.

Definition 2.11. Let F,G € Apy(U,Y). We say F = G in Agy(U,Y) if there exists
a upper semicontinuous compact map ¥ : U x [0,1] — 2¥ with ¥, € Ay, (U,Y) for
each t € [0,1], ¥; = F and ¥y = G (here Wy(x) = V(¢ x)).
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Definition 2.12. We say a map F' € Ayy(U,Y) is essential in Agy(U,Y) if every
map G € Agy(U,Y) with Gloy = Flay and with G = F in Agy(U,Y) has a fixed
point in U. Otherwise F is inessential in Ay (U,Y) i.e. there exists a fixed point free
map G € Apy(U,Y) with Gloy = Floy and G = F in Ay (U,Y).

The following condition will be assumed:

>~ s an equivalence relation in Ay (U,Y). (2.5)

Essentially the same reasoning as in Theorem 2.5 and Theorem 2.6 yield the

following result.

Theorem 2.13. Suppose (2.4) and (2.5) hold. LetY be a completely reqular topolog-
ical space and U an open subset of Y. Suppose F' and G are two maps in Agy(U,Y)
with F = G in Agy(U,Y). Then F is essential in Agy(U,Y) iff G is essential in
Ay (U, Y).

We now discuss essential maps in a little more detail.

Definition 2.14. We say F' € AC(Y,Y) if F : Y — K(Y) is an acyclic compact

map.

Definition 2.15. If F' € AC(Y,Y) and p € Y then we say F' = {p} in AC(Y,Y)
if there exists an upper semicontinuous compact map R : Y x [0,1] — K(Y) with
R, € AC(Y,Y) for each t € [0,1], Ry = F and Ry = {p} (here R;(z) = R(z,1)).

Theorem 2.16. Let Y be a completely reqular topological space, U an open subset
of Y and uy € U. Let F(x) = {uo} for each x € U. Assume the following property

holds:
forany ® € AC(Y,Y) and any p€Y with ® = {p}

in AC(Y,Y) we have that ® has a fized point in Y.
Then F is essential in ACyy(U,Y).

(2.6)

Proof. Take any G € ACyy(U,Y) with Gloy = Flay and G = {ug} in ACHy(U,Y).
To show F is essential in ACyy(U,Y) we must show G has a fixed point in U.
We know there exists a upper semicontinuous compact map A : U x[0,1] — K(Y)
with A; € ACyy(U,Y) for each t € [0,1], Ag = {ug} and A; = G. Now let
D={zeU: z € Af(x) forsome te[0,1]}.

Notice D # () (since ug € U) is closed and compact and D N (Y\U) = 0. Thus there
exists a continuous map o : Y — [0,1] with o(D) = 1 and o(Y\U) = 0. Define
U:Y x[0,1] - K(Y) by

) Az, to(x)), 2€U
W@J%—{{%L z e Y\U.
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Clearly ¥ : Y x [0,1] — K(Y) is an upper semicontinuous compact map with ¥, €
AC(Y,Y) for each t € [0,1] and as a result ¥; = {ug} in AC(Y,Y). Now (2.6)
guarantees that there exists z € Y with x € U, (z). If x € Y\U then = € {uy} which
is a contradiction since ug € U. Thus x € U so v € A(x,0(x)) and as a result x € D
which implies o(z) = 1 and so z € Az, 1) = G(z). O

Remark 2.17. Condition (2.6) was discussed in [3] and we refer the reader to that
paper.
Combining Theorem 2.6 and Theorem 2.16 yields the following result.

Theorem 2.18. Let Y be a completely reqular topological space, U an open subset of
Y and ug € U. Let F(z) = {uo} for each x € U and assume (2.6) holds. In addition
suppose exists a upper semicontinuous compact map H : U x [0,1] — K(Y) with
H; € AC(U,Y) for each t € [0,1], Hy = F and x ¢ Hy(x) for x € U and t € (0, 1].
Then Hy is essential in ACyy(U,Y) (in particular H, has a fived point in U).

Let X be a completely regular topological vector space, Y a topological vector
space, and U an open subset of X. Also let L : dom L C X — Y be a linear (not
necessarily continuous) single valued map; here dom L is a vector subspace of X.
Finally T : X — Y will be a linear, continuous single valued map with L + T :
dom L — Y an isomorphism (i.e. a linear homeomorphism); for convenience we say
Te H(X,Y).

A map F : U — 2" is said to be (L,T) acyclic if (L +T)7'F : U — K(X) is
an upper semicontinuous map (i.e. an acyclic map). Also F': U — 2Y is said to be
(L, T) compact if (L +T)™'F : U — 2% is a compact map.

Definition 2.19. We let FF € AC(U,Y;L,T)if (L+T)'F € AC(U, X).

Definition 2.20. We say F € ACyy(U,Y; L, T) if F € AC(U,Y;L,T) with Lz ¢
F(z) for x € 90U Ndom L.

Definition 2.21. Two maps F,G € ACyy(U,Y; L, T) are homotopic in ACyy (U, Y;
L,T), written F = G in ACpy(U,Y; L,T), if there exists a (L, T) upper semicontinu-
ous, (L, T) compact mapping N : U x [0, 1] — 2 such that N;(u) = N(u,t) : U — 2¥
belongs to ACsy(U,Y; L, T) for each t € [0,1] and Ny = F with N; = G.

Definition 2.22. Amap F € ACyy(U,Y; L, T) is said to be L-essential in ACy; (U, Y;
L,T) if for every map G € ACy(U,Y; L, T) with G|oy = F|or and with FF = G in
ACyy(U,Y; L, T) we have that there exists * € UNdom L with Lz € G(x). Otherwise
F is L-inessential in ACy;(U,Y; L, T) i.e. there exists G € ACyy(U,Y; L, T) with
Glov = Floy and with F = G in ACyy(U,Y; L, T) and Lz ¢ G(x) for x € UNdom L.

Theorem 2.23. Let X, Y, U, L and T be as above, and let F € ACy;(U,Y; L, T).

Then the following conditions are equivalent:
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(i). F is L-inessential in ACpy(U,Y;L,T);
(ii). there exists a map G € ACy(U,Y;L,T) with Lx ¢ G(x) for x € UNdom L
and F = G in ACyy(U,Y; L, T).

Proof. We just need to show (ii) implies (i). Let N : U x [0, 1] — 2¥ be a (L, T) upper
semicontinuous, (L, T) compact map with N; € ACyy(U,Y; L, T) for each t € [0,1]
and with Ny = F' and N; = G [In particular Lz ¢ N;(x) for x € OU Ndom L and for
t € [0,1]]. Let

B={zeUnNdomL: Lz € N(z,t) forsome t€[0,1]}.
Of course, it is immediate that
B={zecU: 2€(L+T) (N, + T)(z) forsome te0,1]}.

If B = () then F is L-inessential in ACpy(U,Y; L, T). So it remains to consider the
case when B # (). Now B is closed and U N B = () so there exists a continuous
function p : U — [0,1] with u(0U) = 0 and u(B) = 1. Define a map J by J(x) =
N(z,u(z)) = Noj(z) where j : U — U x [0, 1] is given by j(x) = (x, u(z)). Clearly J
is a (L, T) upper semicontinuous, (L, T) compact map. Also (L+T)"'J € AC(U, X),
Jlov = Flou, Lz ¢ J(x) for z € U Ndom L (since if Lz € J(x) for z € U Ndom L
then x € B and so p(z) = 1 ie. Lz € G(x), a contradiction) and J = F in
ACyy (U,Y; L, T). O

Theorem 2.24. Let X, Y, U, L and T be as above and suppose F' and G are two
maps in ACyy(U,Y; L, T) with F = G in ACyy(U,Y; L, T). Then F is L-essential
in ACoy(U,Y; L, T) if and only if G is L-essential in ACsy(U,Y; L, T).

Remark 2.25. One could also easily replace ACyy(U,Y; L, T) with the class Ay (U, Y;
L,T) (note F € A(U,Y; L, T)if (L+T)'F e AU, X)) in Theorem 2.24.
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