CONTINUATION THEOREMS FOR ACYCLIC MAPS IN TOPOLOGICAL SPACES

DONAL O'REGAN 1

 1 Department of Mathematics, National University of Ireland, Galway Ireland $$E\text{-mail:}$ donal.oregan@nuigalway.ie}$

ABSTRACT. This paper discusses acyclic maps between topological spaces and we present a definition of an essential map in this setting. In addition we show that if F is essential and $F \cong G$ then G is essential.

AMS (MOS) Subject Classification. 47H10.

1. INTRODUCTION

The notion of an essential map in a Banach (or Fréchet) space setting introduced by Granas in [2] is more general than the notion of degree. In [2] he showed for single valued maps that if F is essential and $F \cong G$ then G is essential. In this paper we extend this notion to acyclic maps between topological spaces. Also in this general setting we show that if F is essential and $F \cong G$ then G is essential. In particular we note that the result holds for maps between Hausdorff topological spaces (i.e. the spaces need not be vector spaces).

Let X and Z be subsets of Hausdorff topological spaces. We will consider maps $F: X \to K(Z)$; here K(Z) denotes the family of nonempty compact subsets of Z. A nonempty topological space is said to be acyclic if all its reduced Čech homology groups over the rationals are trivial. Now $F: X \to K(Z)$ is <u>acyclic</u> if F is upper semicontinuous with acyclic values.

2. CONTINUATION THEORY

Throughout this section Y will be a completely regular topological space and U will be an open subset of Y.

Definition 2.1. We say $F \in AC(\overline{U}, Y)$ if $F : \overline{U} \to K(Y)$ is an acyclic compact map; here \overline{U} denotes the closure of U in Y.

Definition 2.2. We say $F \in AC_{\partial U}(\overline{U}, Y)$ if $F \in AC(\overline{U}, Y)$ with $x \notin F(x)$ for $x \in \partial U$; here ∂U denotes the boundary of U in Y.

Received January 26, 2009

1083-2564 \$15.00 ©Dynamic Publishers, Inc.

Definition 2.3. Let $F, G \in AC_{\partial U}(\overline{U}, Y)$. We say $F \cong G$ in $AC_{\partial U}(\overline{U}, Y)$ if there exists a upper semicontinuous compact map $\Psi : \overline{U} \times [0, 1] \to K(Y)$ with $\Psi_t \in AC_{\partial U}(\overline{U}, Y)$ for each $t \in [0, 1], \Psi_1 = F$ and $\Psi_0 = G$ (here $\Psi_t(x) = \Psi(t, x)$).

Notice \cong is an equivalence relation in $AC_{\partial U}(\overline{U}, Y)$.

Definition 2.4. We say a map $F \in AC_{\partial U}(\overline{U}, Y)$ is essential in $AC_{\partial U}(\overline{U}, Y)$ if every map $G \in AC_{\partial U}(\overline{U}, Y)$ with $G|_{\partial U} = F|_{\partial U}$ and with $G \cong F$ in $AC_{\partial U}(\overline{U}, Y)$ has a fixed point in U. Otherwise F is inessential in $AC_{\partial U}(\overline{U}, Y)$ i.e. there exists a fixed point free map $G \in AC_{\partial U}(\overline{U}, Y)$ with $G|_{\partial U} = F|_{\partial U}$ and $G \cong F$ in $AC_{\partial U}(\overline{U}, Y)$.

Theorem 2.5. Let Y be a completely regular topological space, U an open subset of Y, and let $F \in AC_{\partial U}(\overline{U}, Y)$. Then the following are equivalent:

(i). F is inessential in $AC_{\partial U}(\overline{U}, Y)$;

(ii). there exists a fixed point free map $G \in AC_{\partial U}(\overline{U}, Y)$ with $G \cong F$ in $AC_{\partial U}(\overline{U}, Y)$.

Proof. (i) implies (ii) is immediate. Now we prove (ii) implies (i). Let $H : \overline{U} \times [0, 1] \to K(Y)$ be a upper semicontinuous compact map with $H_t \in AC_{\partial U}(\overline{U}, Y)$ for each $t \in [0, 1]$ and with $H_0 = F$ and $H_1 = G$. Let

$$B = \left\{ x \in \overline{U} : x \in H_t(x) \text{ for some } t \in [0, 1] \right\}.$$

If $B = \emptyset$ then in particular $x \notin H(x,0) = F(x)$ for $x \in \overline{U}$ so F is inessential in $AC_{\partial U}(\overline{U},Y)$. Now suppose $B \neq \emptyset$. Clearly B is closed (note H is upper semicontinuous) and in fact compact (note H is compact). Also note $x \notin H_t(x)$ for $x \in \partial U$ and $t \in [0,1]$ so $B \cap \partial U = \emptyset$. Now since Y is completely regular there exists a continuous map $\mu : \overline{U} \to [0,1]$ with $\mu(B) = 1$ and $\mu(\partial U) = 0$. Define a map $R : \overline{U} \to K(Y)$ by $R(x) = H(x,\mu(x))$. Clearly $R \in AC_{\partial U}(\overline{U},Y)$ since $R|_{\partial U} = H_0|_{\partial U} = F|_{\partial U}$. Also $x \notin R(x)$ for $x \in \overline{U}$ since if $x \in R(x)$ for some $x \in \overline{U}$ then $x \in B$ so $\mu(x) = 1$ i.e. $x \in H(x,1) = G(x)$, a contradiction. We claim

$$R \cong F$$
 in $AC_{\partial U}(\overline{U}, Y)$. (2.1)

If (2.1) is true then (i) holds, so it remains to check (2.1). Let $Q: \overline{U} \times [0,1] \to K(Y)$ be given by

$$Q(x,t) = H(x,t\,\mu(x)).$$

Now $Q_0 = H_0 = F$ and $Q_1(x) = H(x, \mu(x)) = R(x)$ and clearly $Q : \overline{U} \times [0, 1] \to K(Y)$ is an upper semicontinuous compact map with $Q_t \in AC(\overline{U}, Y)$ for each $t \in [0, 1]$. Also Q_t is fixed point free on ∂U for each $t \in [0, 1]$ since if there exists $t \in [0, 1]$ and $x \in \partial U$ with $x \in Q_t(x)$ then $x \in H(x, t\mu(x))$ so $x \in B$ and as a result $\mu(x) = 1$ i.e. $x \in H(x, t)$, a contradiction. Thus (2.1) holds.

Now Theorem 2.5 immediately guarantees the following continuation theorem.

Theorem 2.6. Let Y be a completely regular topological space and U an open subset of Y. Suppose F and G are two maps in $AC_{\partial U}(\overline{U}, Y)$ with $F \cong G$ in $AC_{\partial U}(\overline{U}, Y)$. Then F is essential in $AC_{\partial U}(\overline{U}, Y)$ iff G is essential in $AC_{\partial U}(\overline{U}, Y)$.

Proof. F is inessential in $AC_{\partial U}(\overline{U}, Y)$ iff there exists a fixed point free map $\Phi \in AC_{\partial U}(\overline{U}, Y)$ with $F \cong \Phi$ in $AC_{\partial U}(\overline{U}, Y)$ iff (since \cong is an equivalence relation in $AC_{\partial U}(\overline{U}, Y)$) there exists a fixed point free map $\Phi \in AC_{\partial U}(\overline{U}, Y)$ with $G \cong \Phi$ in $AC_{\partial U}(\overline{U}, Y)$ iff G is inessential in $AC_{\partial U}(\overline{U}, Y)$.

In particular we mention two special cases of Theorem 2.6. We say $F \in C(\overline{U}, Y)$ if $F : \overline{U} \to Y$ is a continuous single valued compact map. We can also write the analogue of $C_{\partial U}(\overline{U}, Y)$, essential in $C_{\partial U}(\overline{U}, Y)$ and \cong in $C_{\partial U}(\overline{U}, Y)$.

Theorem 2.7. Let Y be a completely regular topological space and U an open subset of Y. Suppose F and G are two maps in $C_{\partial U}(\overline{U}, Y)$ with $F \cong G$ in $C_{\partial U}(\overline{U}, Y)$. Then F is essential in $C_{\partial U}(\overline{U}, Y)$ iff G is essential in $C_{\partial U}(\overline{U}, Y)$.

Next we suppose Y is a convex subset of a locally convex linear topological space (so in particular Y is completely regular). We say $F \in K(\overline{U}, Y)$ if $F : \overline{U} \to CK(Y)$ is a upper continuous compact map; here CK(Y) denotes the family of nonempty, convex, compact subsets of Y. We can also write the analogue of $K_{\partial U}(\overline{U}, Y)$, essential in $K_{\partial U}(\overline{U}, Y)$ and \cong in $K_{\partial U}(\overline{U}, Y)$.

Theorem 2.8. Let Y be a convex subset of a locally convex linear topological space and U an open subset of Y. Suppose F and G are two maps in $K_{\partial U}(\overline{U}, Y)$ with $F \cong G$ in $K_{\partial U}(\overline{U}, Y)$. Then F is essential in $K_{\partial U}(\overline{U}, Y)$ iff G is essential in $K_{\partial U}(\overline{U}, Y)$.

An obvious question is if the condition $F \cong G$ in $AC_{\partial U}(\overline{U}, Y)$ automatically satisfied in Definition 2.4 i.e. if F and G are in $AC_{\partial U}(\overline{U}, Y)$ with $G|_{\partial U} = F|_{\partial U}$ is $F \cong G$ in $AC_{\partial U}(\overline{U}, Y)$? If the maps are in $K_{\partial U}(\overline{U}, Y)$ and Y is a convex subset of locally convex linear topological space then it is easy to see that

$$\Psi(x,t) = t F(x) + (1-t) G(x)$$

guarantees that $F \cong G$ in $K_{\partial U}(\overline{U}, Y)$. However the acyclic map case seems to be much more difficult. Let Y be a infinite dimensional normed linear space and U an open convex subset of Y with $0 \in U$. Let F, G be in $AC_{\partial U}(\overline{U}, Y)$ with $G|_{\partial U} = F|_{\partial U}$. We know [1] there exists a continuous retraction $r : \overline{U} \to \partial U$. Let the map F^* be given by $F^*(x) = F(r(x))$ for $x \in \overline{U}$. Of course $F^*(x) = G(r(x))$ for $x \in \overline{U}$ since $G|_{\partial U} = F|_{\partial U}$. With

$$H(x,\lambda) = G(2\lambda r(x) + (1-2\lambda)x) = G \circ j(x,\lambda) \text{ for } (x,\lambda) \in \overline{U} \times \left[0,\frac{1}{2}\right]$$

(here $j: \overline{U} \times [0, \frac{1}{2}] \to \overline{U}$ is given by $j(x, \lambda) = 2\lambda r(x) + (1 - 2\lambda)x$) it is easy to see that

$$G \cong F^{\star}$$
 in $AC_{\partial U}(\overline{U}, E);$ (2.2)

notice if there exists $x \in \partial U$ and $\lambda \in [0, \frac{1}{2}]$ with $x \in H_{\lambda}(x)$ then since r(x) = x we have $x \in G(2\lambda x + (1 - 2\lambda)x) = G(x)$, a contradiction. Similarly with

$$Q(x,\lambda) = F((2-2\lambda)r(x) + (2\lambda-1)x) \text{ for } (x,\lambda) \in \overline{U} \times \left[\frac{1}{2}, 1\right]$$

it is easy to see that

$$F^{\star} \cong F$$
 in $AC_{\partial U}(\overline{U}, E)$. (2.3)

Combining (2.2) and (2.3) gives $G \cong F$ in $AC_{\partial U}(\overline{U}, E)$.

It is possible to we generalize the above by considering a subclass of the \mathbf{U}_c^k maps of Park. Let X and Y be Hausdorff topological spaces. Given a class **X** of maps, $\mathbf{X}(X,Y)$ denotes the set of maps $F: X \to 2^Y$ (nonempty subsets of Y) belonging to **X**, and \mathbf{X}_c the set of finite compositions of maps in **X**. We let

$$\mathbf{F}(\mathbf{X}) = \{ Z : Fix F \neq \emptyset \text{ for all } F \in \mathbf{X}(Z, Z) \}$$

where Fix, F denotes the set of fixed points of F.

The class **U** of maps is defined by the following properties:

- (i). A contains the class C of single valued continuous functions;
- (ii). each $F \in \mathbf{A}_c$ is upper semicontinuous and compact valued; and
- (iii). $B^n \in \mathbf{F}(\mathbf{A}_c)$ for all $n \in \{1, 2, ...\}$; here $B^n = \{x \in \mathbf{R}^n : ||x|| \le 1\}$.

We say $F \in \mathbf{U}_c^k(X, Y)$ if for any compact subset K of X there is a $G \in \mathbf{U}_c(K, Y)$ with $G(x) \subseteq F(x)$ for each $x \in K$.

Recall \mathbf{U}_c^k is closed under compositions. Finally we consider a subclass \mathbf{A} of the \mathbf{U}_c^k maps. The following condition will be assumed:

for Hausdorff topogical spaces
$$X_1, X_2$$
 and X_3 ,
if $F \in \mathbf{A}(X_1, X_3)$ and $f \in \mathbf{C}(X_2, X_1)$, (2.4)
then $F \circ f \in \mathbf{A}(X_2, X_3)$.

Definition 2.9. We say $F \in A(\overline{U}, Y)$ if $F \in \mathbf{A}(\overline{U}, Y)$ is a upper semicontinuous compact map.

Definition 2.10. We say $F \in A_{\partial U}(\overline{U}, Y)$ if $F \in A(\overline{U}, Y)$ with $x \notin F(x)$ for $x \in \partial U$.

Definition 2.11. Let $F, G \in A_{\partial U}(\overline{U}, Y)$. We say $F \cong G$ in $A_{\partial U}(\overline{U}, Y)$ if there exists a upper semicontinuous compact map $\Psi : \overline{U} \times [0, 1] \to 2^Y$ with $\Psi_t \in A_{\partial U}(\overline{U}, Y)$ for each $t \in [0, 1], \Psi_1 = F$ and $\Psi_0 = G$ (here $\Psi_t(x) = \Psi(t, x)$). **Definition 2.12.** We say a map $F \in A_{\partial U}(\overline{U}, Y)$ is essential in $A_{\partial U}(\overline{U}, Y)$ if every map $G \in A_{\partial U}(\overline{U}, Y)$ with $G|_{\partial U} = F|_{\partial U}$ and with $G \cong F$ in $A_{\partial U}(\overline{U}, Y)$ has a fixed point in U. Otherwise F is inessential in $A_{\partial U}(\overline{U}, Y)$ i.e. there exists a fixed point free map $G \in A_{\partial U}(\overline{U}, Y)$ with $G|_{\partial U} = F|_{\partial U}$ and $G \cong F$ in $A_{\partial U}(\overline{U}, Y)$.

The following condition will be assumed:

$$\cong$$
 is an equivalence relation in $A_{\partial U}(\overline{U}, Y)$. (2.5)

Essentially the same reasoning as in Theorem 2.5 and Theorem 2.6 yield the following result.

Theorem 2.13. Suppose (2.4) and (2.5) hold. Let Y be a completely regular topological space and U an open subset of Y. Suppose F and G are two maps in $A_{\partial U}(\overline{U}, Y)$ with $F \cong G$ in $A_{\partial U}(\overline{U}, Y)$. Then F is essential in $A_{\partial U}(\overline{U}, Y)$ iff G is essential in $A_{\partial U}(\overline{U}, Y)$.

We now discuss essential maps in a little more detail.

Definition 2.14. We say $F \in AC(Y, Y)$ if $F : Y \to K(Y)$ is an acyclic compact map.

Definition 2.15. If $F \in AC(Y, Y)$ and $p \in Y$ then we say $F \cong \{p\}$ in AC(Y, Y) if there exists an upper semicontinuous compact map $R : Y \times [0, 1] \to K(Y)$ with $R_t \in AC(Y, Y)$ for each $t \in [0, 1]$, $R_1 = F$ and $R_0 = \{p\}$ (here $R_t(x) = R(x, t)$).

Theorem 2.16. Let Y be a completely regular topological space, U an open subset of Y and $u_0 \in U$. Let $F(x) = \{u_0\}$ for each $x \in \overline{U}$. Assume the following property holds:

 $\begin{cases} \text{for any } \Phi \in AC(Y,Y) \text{ and any } p \in Y \text{ with } \Phi \cong \{p\} \\ \text{in } AC(Y,Y) \text{ we have that } \Phi \text{ has a fixed point in } Y. \end{cases}$ (2.6)

Then F is essential in $AC_{\partial U}(\overline{U}, Y)$.

Proof. Take any $G \in AC_{\partial U}(\overline{U}, Y)$ with $G|_{\partial U} = F|_{\partial U}$ and $G \cong \{u_0\}$ in $AC_{\partial U}(\overline{U}, Y)$. To show F is essential in $AC_{\partial U}(\overline{U}, Y)$ we must show G has a fixed point in U.

We know there exists a upper semicontinuous compact map $\Lambda : \overline{U} \times [0, 1] \to K(Y)$ with $\Lambda_t \in AC_{\partial U}(\overline{U}, Y)$ for each $t \in [0, 1]$, $\Lambda_0 = \{u_0\}$ and $\Lambda_1 = G$. Now let

$$D = \left\{ x \in \overline{U} : x \in \Lambda_t(x) \text{ for some } t \in [0, 1] \right\}.$$

Notice $D \neq \emptyset$ (since $u_0 \in U$) is closed and compact and $D \cap (Y \setminus U) = \emptyset$. Thus there exists a continuous map $\sigma : Y \to [0,1]$ with $\sigma(D) = 1$ and $\sigma(Y \setminus U) = 0$. Define $\Psi : Y \times [0,1] \to K(Y)$ by

$$\Psi(x,t) = \begin{cases} \Lambda(x,t\,\sigma(x)), & x \in \overline{U} \\ \{u_0\}, & x \in Y \setminus U. \end{cases}$$

Clearly $\Psi : Y \times [0,1] \to K(Y)$ is an upper semicontinuous compact map with $\Psi_t \in AC(Y,Y)$ for each $t \in [0,1]$ and as a result $\Psi_1 \cong \{u_0\}$ in AC(Y,Y). Now (2.6) guarantees that there exists $x \in Y$ with $x \in \Psi_1(x)$. If $x \in Y \setminus \overline{U}$ then $x \in \{u_0\}$ which is a contradiction since $u_0 \in U$. Thus $x \in U$ so $x \in \Lambda(x, \sigma(x))$ and as a result $x \in D$ which implies $\sigma(x) = 1$ and so $x \in \Lambda(x, 1) = G(x)$.

Remark 2.17. Condition (2.6) was discussed in [3] and we refer the reader to that paper.

Combining Theorem 2.6 and Theorem 2.16 yields the following result.

Theorem 2.18. Let Y be a completely regular topological space, U an open subset of Y and $u_0 \in U$. Let $F(x) = \{u_0\}$ for each $x \in \overline{U}$ and assume (2.6) holds. In addition suppose exists a upper semicontinuous compact map $H : \overline{U} \times [0,1] \to K(Y)$ with $H_t \in AC(\overline{U}, Y)$ for each $t \in [0,1]$, $H_0 = F$ and $x \notin H_t(x)$ for $x \in \partial U$ and $t \in (0,1]$. Then H_1 is essential in $AC_{\partial U}(\overline{U}, Y)$ (in particular H_1 has a fixed point in U).

Let X be a completely regular topological vector space, Y a topological vector space, and U an open subset of X. Also let $L : dom L \subseteq X \to Y$ be a linear (not necessarily continuous) single valued map; here dom L is a vector subspace of X. Finally $T : X \to Y$ will be a linear, continuous single valued map with L + T: $dom L \to Y$ an isomorphism (i.e. a linear homeomorphism); for convenience we say $T \in H_L(X, Y)$.

A map $F: \overline{U} \to 2^Y$ is said to be (L,T) acyclic if $(L+T)^{-1}F: \overline{U} \to K(X)$ is an upper semicontinuous map (i.e. an acyclic map). Also $F: \overline{U} \to 2^Y$ is said to be (L,T) compact if $(L+T)^{-1}F: \overline{U} \to 2^X$ is a compact map.

Definition 2.19. We let $F \in AC(\overline{U}, Y; L, T)$ if $(L+T)^{-1} F \in AC(\overline{U}, X)$.

Definition 2.20. We say $F \in AC_{\partial U}(\overline{U}, Y; L, T)$ if $F \in AC(\overline{U}, Y; L, T)$ with $Lx \notin F(x)$ for $x \in \partial U \cap dom L$.

Definition 2.21. Two maps $F, G \in AC_{\partial U}(\overline{U}, Y; L, T)$ are homotopic in $AC_{\partial U}(\overline{U}, Y; L, T)$, written $F \cong G$ in $AC_{\partial U}(\overline{U}, Y; L, T)$, if there exists a (L, T) upper semicontinuous, (L, T) compact mapping $N : \overline{U} \times [0, 1] \to 2^Y$ such that $N_t(u) = N(u, t) : \overline{U} \to 2^Y$ belongs to $AC_{\partial U}(\overline{U}, Y; L, T)$ for each $t \in [0, 1]$ and $N_0 = F$ with $N_1 = G$.

Definition 2.22. A map $F \in AC_{\partial U}(\overline{U}, Y; L, T)$ is said to be L-essential in $AC_{\partial U}(\overline{U}, Y; L, T)$ if for every map $G \in AC_{\partial U}(\overline{U}, Y; L, T)$ with $G|_{\partial U} = F|_{\partial U}$ and with $F \cong G$ in $AC_{\partial U}(\overline{U}, Y; L, T)$ we have that there exists $x \in \overline{U} \cap dom L$ with $L x \in G(x)$. Otherwise F is L-inessential in $AC_{\partial U}(\overline{U}, Y; L, T)$ i.e. there exists $G \in AC_{\partial U}(\overline{U}, Y; L, T)$ with $G|_{\partial U} = F|_{\partial U}$ and with $F \cong G$ in $AC_{\partial U}(\overline{U}, Y; L, T)$ and $L x \notin G(x)$ for $x \in \overline{U} \cap dom L$.

Theorem 2.23. Let X, Y, U, L and T be as above, and let $F \in AC_{\partial U}(\overline{U}, Y; L, T)$. Then the following conditions are equivalent: (i). F is L-inessential in $AC_{\partial U}(\overline{U}, Y; L, T)$;

(ii). there exists a map $G \in AC_{\partial U}(\overline{U}, Y; L, T)$ with $Lx \notin G(x)$ for $x \in \overline{U} \cap dom L$ and $F \cong G$ in $AC_{\partial U}(\overline{U}, Y; L, T)$.

Proof. We just need to show (ii) implies (i). Let $N : \overline{U} \times [0, 1] \to 2^Y$ be a (L, T) upper semicontinuous, (L, T) compact map with $N_t \in AC_{\partial U}(\overline{U}, Y; L, T)$ for each $t \in [0, 1]$ and with $N_0 = F$ and $N_1 = G$ [In particular $L x \notin N_t(x)$ for $x \in \partial U \cap dom L$ and for $t \in [0, 1]$]. Let

$$B = \left\{ x \in \overline{U} \cap dom \, L : \, L \, x \in N(x, t) \text{ for some } t \in [0, 1] \right\}.$$

Of course, it is immediate that

$$B = \left\{ x \in \overline{U} : x \in (L+T)^{-1} \left(N_t + T \right) (x) \text{ for some } t \in [0,1] \right\}.$$

If $B = \emptyset$ then F is L-inessential in $AC_{\partial U}(\overline{U}, Y; L, T)$. So it remains to consider the case when $B \neq \emptyset$. Now B is closed and $\partial U \cap B = \emptyset$ so there exists a continuous function $\mu : \overline{U} \to [0,1]$ with $\mu(\partial U) = 0$ and $\mu(B) = 1$. Define a map J by $J(x) = N(x,\mu(x)) = N \circ j(x)$ where $j: \overline{U} \to \overline{U} \times [0,1]$ is given by $j(x) = (x,\mu(x))$. Clearly J is a (L,T) upper semicontinuous, (L,T) compact map. Also $(L+T)^{-1}J \in AC(\overline{U},X)$, $J|_{\partial U} = F|_{\partial U}, Lx \notin J(x)$ for $x \in \overline{U} \cap dom L$ (since if $Lx \in J(x)$ for $x \in \overline{U} \cap dom L$ then $x \in B$ and so $\mu(x) = 1$ i.e. $Lx \in G(x)$, a contradiction) and $J \cong F$ in $AC_{\partial U}(\overline{U},Y;L,T)$.

Theorem 2.24. Let X, Y, U, L and T be as above and suppose F and G are two maps in $AC_{\partial U}(\overline{U}, Y; L, T)$ with $F \cong G$ in $AC_{\partial U}(\overline{U}, Y; L, T)$. Then F is L-essential in $AC_{\partial U}(\overline{U}, Y; L, T)$ if and only if G is L-essential in $AC_{\partial U}(\overline{U}, Y; L, T)$.

Remark 2.25. One could also easily replace $AC_{\partial U}(\overline{U}, Y; L, T)$ with the class $A_{\partial U}(\overline{U}, Y; L, T)$ (note $F \in A(\overline{U}, Y; L, T)$ if $(L+T)^{-1} F \in A(\overline{U}, X)$) in Theorem 2.24.

REFERENCES

- R.P. Agarwal and D.O'Regan, A note on the topological transversality theorem for acyclic maps, Appl. Math. Letters 18 (2005), 17–22.
- [2] A. Granas, Sur la méthode de continuité de Poincare, C.R. Acad. Sci. Paris 282 (1976), 983–985.
- [3] Multivalued H-essential maps of acyclic type on Hausdorff topological spaces, Jour. Applied Math. Stoch. Anal. Volume 2006, Art. Id. 36461, 1–4.