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ABSTRACT. We investigate the periodic nature of the solutions of the second order nonlinear

difference equation

yn+1 = α|yn| + βyn−1 + γ, n = 0, 1, 2, . . .

with real parameters, α, β, γ, and real initial condition, y
−1, y0. Indeed, we show that if γ 6= 0,

then all solutions are periodic of the same period p if and only if α = 0 and β = −1, in which case,

p = 4. Also, we identify all periodic solutions of minimal period 2 and 3.

AMS (MOS) Subject Classification. 39A10, 39A20.

1. INTRODUCTION

The present work complements an earlier work done by the first author in [1] and

is motivated by Open Problem 3.4.3 in [5, page 50]. This open problem is concerned

with the global periodicity of the difference equation

yn+1 = α|yn| + βyn−1 + γ, n = 0, 1, 2, . . . (1.1)

with real parameters α, β, γ and real initial conditions y−1, y0.

Eq. (1.1) is known in the literature by the name Lozi equation [4, page 40].

Its dynamic behavior is rich, and for some values of the parameters, it was proved

by Misiurewicz [7] that it possesses a strange attractor (See also the paper by Liu

et. al. [6]). The special case with α = 1, β = −1 and γ = 1 is also called the

Gingerbreadman Map and was investigated by Devaney in [3].

Our main objective in this paper is to investigate the periodic nature of the

solutions of Eq. (1.1). In particular, we are concerned with the global periodicity,

i.e., we would like to develop necessary and sufficient conditions on the parameters

α, β, γ so that every solution of Eq. (1.1) is periodic of the same period p.
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The case γ = 0 was investigated in [1]. Therefore, we assume that γ 6= 0. Since

periodicity is preserved under the transformation yn = |γ|zn, and zn satisfies the

difference equation

zn+1 =
yn+1

|γ|
= α

|yn|

|γ|
+ β

yn−1

|γ|
+

γ

|γ|
= α|zn| + βzn−1 + δ; δ =

γ

|γ|
= ±1,

it is enough to consider γ = ±1. Furthermore, the transformation wn = −zn also

preserves periodicity, and wn satisfies the difference equation

wn+1 = −zn+1 = −α|zn| − βzn−1 − δ = −α|wn| + βwn−1 − δ.

Therefore, it is sufficient to consider the case δ = 1. Finally, in view of Theorem 3.1

in [2], f(x, y) = α|x| + βy + 1 is self inverse in y if and only if β = −1. Hence, we

focus our attention to the difference equation

yn+1 = α|yn| − yn−1 + 1; α ∈ R. (1.2)

In the next section, we develop necessary and sufficient conditions for the ex-

istence of a periodic solution of a given period p. These conditions are used to

characterize all solution of Eq. (1.2) of minimal period p = 2, 3. In Section 3, we

further utilize these conditions and develop necessary and sufficient conditions for

the existence of a minimal period p that works for all solutions of Eq. (1.2), that is,

every solution of Eq. (1.2) is periodic of the same period p.

2. CONDITIONS FOR THE EXISTENCE

OF A PERIODIC SOLUTION

In this section, we give necessary and sufficient conditions for a solution of

Eq. (1.2) to be periodic of period p. These conditions will prove to be useful in

the sequel. However, we first establish the following lemma.

Lemma 2.1. If {yn}
∞
n=−1 is a solution of Eq. (1.2), then

yn = y0 + n (y0 − y−1) +
n(n + 1)

2
−

n−1
∑

j=0

(n − j) (2yj − α|yj|) ; n = −1, 0, 1, 2, . . .

Proof. Observe that Eq. (1.2) can be written as

∆2yn−1 = yn+1 − 2yn + yn−1 = − (2yn − α|yn|) + 1; n = 0, 1, 2, . . .

Thus, by the telescoping sum,

∆yn−1 − ∆y−1 =
n−1
∑

j=0

∆2yj−1 = −
n−1
∑

j=0

(2yj − α|yj|) + n.
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Again, by the telescoping sum,

yn − y0 − n∆y−1 = −
n
∑

k=1

k−1
∑

j=0

(2yj − α|yj|) +
n
∑

k=1

k

= −

n−1
∑

j=0

n
∑

k=j+1

(2yj − α|yj|) +
n(n + 1)

2

= −

n−1
∑

j=0

(n − j) (2yj − α|yj|) +
n(n + 1)

2
.

Rearranging the terms, the result follows for n = 1, 2, . . . . Since an empty sum is

equal to 0, the result holds for n = −1, 0, 1, 2, . . . as required.

Using Lemma (2.1), we obtain the following necessary and sufficient conditions

for a solution to be periodic of period p.

Theorem 2.2. Suppose {yn}
∞
n=−1 is a solution of Eq. (1.2). Then yn is periodic of

period p if and only if

p−1
∑

j=0

(2yj − α|yj|) = p (2.1)

and

p−1
∑

j=0

(p − j) (2yj − α|yj|) = p (y0 − y−1) +
p(p + 1)

2
(2.2)

or, equivalently,

p−1
∑

j=0

j (2yj − α|yj|) =
p(p − 1)

2
− p (y0 − y−1) . (2.3)

Proof. A solution yn of Eq. (1.2) is periodic of period p if and only if yp = y0 and

yp−1 = y−1. Therefore, using Lemma 2.1, yn is periodic of period p if and only if

y0 = yp = y0 + p (y0 − y−1) +
p(p + 1)

2
−

p−1
∑

j=0

(p − j) (2yj − α|yj|)
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which gives Condition (2.2), and

y−1 = yp−1 = y0 + (p − 1) (y0 − y−1) +
(p − 1)p

2
−

p−2
∑

j=0

(p − 1 − j) (2yj − α|yj|)

= y0 + p (y0 − y−1) + (y−1 − y0) +
p(p + 1)

2
− p

−

p−1
∑

j=0

(p − 1 − j) (2yj − α|yj|)

= y0 + p (y0 − y−1) + (y−1 − y0) +
p(p + 1)

2
− p −

p−1
∑

j=0

(p − j) (2yj − α|yj|)

+

p−1
∑

j=0

(2yj − α|yj|)

= y−1 − p +

p−1
∑

j=0

(2yj − α|yj|)

which gives Condition (2.1).

The following results illustrate the applicability of Theorem 2.2.

Lemma 2.3. Eq. (1.2) has a periodic solution of minimal period 2 if and only if

α ≤ −2. In fact, the periodic solutions of minimal period 2 are the ones with

(y−1, y0) ∈

{

(y−1, y0) ∈ R
2

+ : y−1 6= y0 and y0 + y−1 =
1

2

}

if α = −2

and the ones with

(y−1, y0) ∈

{(

2 − α

4 + α2
,

2 + α

4 + α2

)

,

(

2 + α

4 + α2
,

2 − α

4 + α2

)}

if α < −2.

Proof. Using Conditions (2.1) and (2.3), a solution {yn} of Eq. (1.2) is periodic of

minimal period 2 if and only if

2y0 − α|y0| + 2y−1 − α|y−1| = 2 and 2y−1 − α|y−1| = 1 − 2(y0 − y−1).

Equivalently,

2y−1 − α|y0| = 1 and − α|y−1| + 2y0 = 1.

If α ≥ 0, then both y0 and y−1 must be positive, and so

2y−1 − αy0 = 1 and − αy−1 + 2y0 = 1.

Solving we get

(4 − α2)y0 = 2 + α = (4 − α2)y−1

which leads to a contradiction.
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Suppose that α < 0. If both y0 and y−1 are nonnegative, then

(4 − α2)y0 = 2 + α = (4 − α2)y−1,

and if both y0 and y−1 are negative, then

(4 − α2)y0 = 2 − α = (4 − α2)y−1.

If α 6= −2, we reach a contradiction in either case. However, if α = −2, we obtain

periodic solutions of minimal period 2 whenever y0, y−1 ≥ 0 such that y0 6= y−1 and

y0 + y−1 = 1

2
. Thus it remains to investigate the case y0y−1 < 0. In this case, the

conditions of periodicity can be written in the matrix form
[

2 −αu0

−αu−1 2

][

y−1

y0

]

=

[

1

1

]

; uj = sign(yj), j = 0, −1.

Since u0u−1 = −1, we have
[

y−1

y0

]

=
1

4 + α2

[

2 αu0

αu−1 2

][

1

1

]

=
1

4 + α2

[

2 + αu0

2 + αu−1

]

.

Observe that the signs will be consistent if and only if α < −2. This completes the

proof.

Lemma 2.4. Eq. (1.2) has a periodic solution of minimal period 3 if and only if one

of the following hold.

1. α = −1 with y0, y−1 ≥ 0 and y0 + y−1 ≤ 1,

2. α < −1 with

(y0, y−1) ∈

{(

1 − α

α2 − α + 2
,

1 − α

α2 − α + 2

)

,

(

1 + α

α2 + α + 2
,

1 + α

α2 + α + 2

)}

⋃

{(

1 + α

α2 ± α + 2
,

1 − α

α2 ± α + 2

)

,

(

1 − α

α2 ± α + 2
,

1 + α

α2 ± α + 2

)}

Proof. First, using conditions (2.1) and (2.3), a solution {yn}
∞
n=−1 of Eq. (1.2) is

periodic of period 3 if and only if

y0 − y−1 + α (|y0| − |y−1|) = 0 (2.4)

and

y0 + y−1 − α
∣

∣

∣
α|y0| − y−1 + 1

∣

∣

∣
= 1. (2.5)

Now, we consider four cases, namely

y0 ≥ 0 & y−1 ≥ 0, y0 ≥ 0 & y−1 < 0, y0 < 0 & y−1 < 0, and y0 < 0 & y−1 ≥ 0.

Due to similarity of arguments, we consider the first case and omit the other cases.

Suppose y0 ≥ 0, y−1 ≥ 0. In this case Condition (2.4) holds if and only if

y0 = y−1 or α = −1.
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If y0 = y−1, then Condition (2.5) reduces to

2y0 − α
∣

∣

∣
(α − 1)y0 + 1

∣

∣

∣
= 1.

Furthermore, if (α−1)y0 +1 ≥ 0, then y0 =
1

2 − α
. Since y0 ≥ 0, we need α < 2. But

in this case, we end up with an equilibrium solution! However, if (α − 1)y0 + 1 < 0,

then y0 =
1 − α

α2 − α + 2
. Since y0 ≥ 0, we need α ≤ 1. Moreover, we also need

0 > (α − 1)
1 − α

α2 − α + 2
+ 1 =

1 + α

α2 − α + 2

which is satisfied if α < −1.

On the other hand, if α = −1, then Condition (2.5) reduces to

(y0 + y−1) + |1 − (y0 + y−1)| = 1

which has a solution if and only if y0 + y−1 ≤ 1.

3. NECESSARY AND SUFFICIENT CONDITIONS

FOR GLOBAL PERIODICITY

In this section, we first develop necessary conditions for all solutions of Eq. (1.2)

to be periodic of the same minimal period p. However, in view of Lemmas 2.3 and

2.4, p is at least 4.

Lemma 3.1. If every solution of Eq. (1.2) is periodic of minimal period p, then

α ∈ (−2, 2).

Proof. Observe that Condition (2.1) can be written as

2

p−2
∑

j=−1

yj = α

p−2
∑

j=−1

|yj| + p. (3.1)

Since −|yj| ≤ yj ≤ |yj|,

−2

p−2
∑

j=−1

|yj| ≤ α

p−2
∑

j=−1

|yj| + p ≤ 2

p−2
∑

j=−1

|yj|.

Furthermore, we can have at most two consecutive zero terms. Thus, we have
∑p−2

j=−1
|yj| > 0, and so

−2 ≤ α +
p

∑p−2

j=−1
|yj|

≤ 2.

Since p
Pp−2

j=−1
|yj |

> 0, we conclude that α < 2. On the other hand, since y0 and y−1

can be arbitrarily large, we conclude α ≥ −2. Furthermore, if α = −2, then Eq. (3.1)

reduces to

2

p−2
∑

j=−1

(yj + |yj|) = p
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which is impossible to hold for all solutions. Hence, −2 < α < 2 as claimed.

Extensive computer simulations made us believe that only for α = 0, the global

periodicity is preserved. Below, we present a proof that is of a computational and

geometric nature.

Theorem 3.2. Every solution of Eq. (1.2) is of minimal period p if and only if α = 0,

in which case p = 4.

Proof. First, let {e1, e2} denote the standard basis of R
2, yn =

[

yn−1

yn

]

, and

An =































[

0 1

−1 α

]

if yn ≥ 0

[

0 1

−1 −α

]

if yn ≤ 0

.

Then Eq. (1.2) can be written in the form

yn+1 = Anyn + e2. (3.2)

Using an inductive argument one can show that

yn =

(

n−1
∏

j=0

Aj

)

y0 +
n−1
∑

i=0

(

n−1
∏

j=n−i

Aj

)

e2 (3.3)

where
m
∏

j=k

Aj = Am · · ·Ak if k ≤ m, and
m
∏

j=k

Aj = I if k > m.

Now, suppose that every solution is periodic of minimal period p, and assume to

the contrary that α 6= 0. Then by Eq. (3.3)
(

I −

p−1
∏

j=0

Aj

)

y0 =

p−1
∑

i=0

(

p−1
∏

j=p−i

Aj

)

e2 for all y0 ∈ R
2. (3.4)

Since there can be at most 2p products of the form

p−1
∏

j=0

Aj, we can find at least two

distinct positive constants c1 and c2 (say 0 < c1 < c2) such that the matrices Aj for

y0 = c1e2 and y0 = c2e2 are identical. Thus
(

I −

p−1
∏

j=0

Aj

)

c1e2 =

p−1
∑

i=0

(

p−1
∏

j=p−i

Aj

)

e2

and
(

I −

p−1
∏

j=0

Aj

)

c2e2 =

p−1
∑

i=0

(

p−1
∏

j=p−i

Aj

)

e2,
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and so
(

I −

p−1
∏

j=0

Aj

)

e2 = 0 and

p−1
∑

i=0

(

p−1
∏

j=p−i

Aj

)

e2 = 0.

But then

Ap−1

p−1
∑

i=1

(

p−2
∏

j=p−i

Aj

)

e2 = −e2.

Since A−1

p−1e2 = −e1, by shifting the index i down by 1, we conclude

p−2
∑

i=0

(

p−2
∏

j=p−1−i

Aj

)

e2 = e1.

By Eq. (3.3),

yp−1 =

(

p−2
∏

j=0

Aj

)

y0 +

p−2
∑

i=0

(

p−2
∏

j=p−1−i

Aj

)

e2 =

(

p−2
∏

j=0

Aj

)

y0 + e1

for y0 = c1e2 or c2e2. For ease of reference, we shall use the following labels:

qk =

(

p−2
∏

j=0

Aj

)

cke2, k = 1, 2.

To this end, since each Aj is nonsingular, q1 and q2 point in the same direction but

they are of different lengths. This, in turn, implies that the vectors q1+e1 and q2+e1

do not point in the same direction unless both q1 and q2 are parallel to e1, that is in

the same or opposite direction of e1. Also, by Lemma 3.1 we know that −2 < α < 2.

Thus, Ap−1 is a rotation map, actually conjugate to a rotation map, with a rotation

angle θ ∈ (0, π) \ {π/2}.

If the vectors qk + e1, k = 1, 2 are parallel to e1, then the rotated vectors

Ap−1 (qk + e1), k = 1, 2 are not parallel to e2. So for each k ∈ {1, 2}, yp =

Ap−1 (qk + e1) + e2 is not pointing in the direction of e2 which is a contradiction.

On the other hand, if the vectors qk +e1, k = 1, 2 do not point in the same direction,

then neither do the rotated vectors Ap−1 (qk + e1), k = 1, 2. Thus, at most one of

the vectors yp = Ap−1 (qk + e1) + e2, k = 1, 2 will be parallel to e2, which is again a

contradiction. Hence, α must be equal to 0.

Finally, if α = 0, then Eq. (1.2) reduces to yn+1 = 1 − yn−1 for which, it is

well-known, every solution is periodic of period 4. This completes the proof.

REFERENCES

[1] R. Abu-Saris, On the periodicity of the difference equation xn+1 = α|xn|+ βxn−1, Journal of

Difference Equations and Applications 5 (1999), 57–69.

[2] R. Abu-Saris, A Self-invertibility condition for global periodicity of difference equations, Ap-

plied Mathematics Letters , 19 (2006), 1078–1082.

[3] R. Devaney, A piecewise linear model for the zones of instability of an area preserving map,

Physica D 10 (1984), 387–393.



PERIODICITY OF LOZI’S EQUATION 55

[4] E. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman & Hall /

CRC, New York, 2005.

[5] M. Kulenovic and G. Ladas, Dynamics of Second Order Rational Difference Equations, Chap-

man & Hall / CRC, New York, 2002.

[6] Z. Liu, H. Xie, Z. Zhu and Q. Lu, The strange attractor of Lozi mapping, International Journal

of Bifurcation and Chaos 2 (1992), 831–839.

[7] M. Misiurewicz, Strange attractors for the Lozi mapping, Nonlinear Dynamics, Annals of the

New York Academy of Sciences 357 (1980), 348–358.


