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ABSTRACT. We establish some sufficient conditions for the oscillations of all solutions of fourth

order functional differential equations

d

dt

(

a (t)

(

d3

dt3
x (t)

)α)

+ q (t) f (x [g (t)]) = 0

and
d

dt

(

a (t)

(

d3

dt3
x (t)

)α)

= q (t) f (x [g (t)]) + p (t)h (x [σ (t)])

when
∫

∞

a−1/α (s) ds < ∞. The case when
∫

∞

a−1/α (s) ds = ∞ is also included.

1. Introduction

This paper deals with the oscillatory behavior of solutions of fourth order func-

tional differential equations

d

dt

(

a (t)

(

d3

dt3
x (t)

)α)

+ q (t) f (x [g (t)]) = 0 (1)

and
d

dt

(

a (t)

(

d3

dt3
x (t)

)α)

= q (t) f (x [g (t)]) + p (t)h (x [σ (t)]) (2)

where the following conditions are assumed to hold:

(i) α is the ratio of two positive odd integers;

(ii) a (t), p (t) and q (t) ∈ C ([t0,∞) , (0,∞)) ;

(iii) g (t) and σ (t) ∈ C1 ([t0,∞) , R), g (t) < t, σ (t) > t, g′ (t) > 0 and σ′ (t) > 0 for

t > t0 and lim
t→∞

g (t) = ∞;
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(iv) f , h ∈ C (R, R), xf (x) > 0, xh (x) > 0, f ′ (x) > 0 and h′ (x) > 0 for x 6= 0 and

f and g satisfy

−f (−xy) > f (xy) > f (x) f (y) , for xy > 0 (3)

and

−h (−xy) > h (xy) > h (x) h (y) , for xy > 0. (4)

By a solution of Equation (1) (respectively (2)) is meant a function x : [Tx,∞) →

R, Tx > t0 such that x (t), x′ (t), x′′ (t) and a (t)
(

d3

dt3
x (t)

)α

are continuously differen-

tiable and satisfy equation (1) (respectively (2)) on [Tx,∞). Our attention will be re-

stricted to those solutions of equations (1) and (2) which satisfy sup {x (t) : t > T} > 0

for any T > Tx. Such a solution is said to be oscillatory if it has a sequence of zeros

tending to infinity and nonoscillatory otherwise.

In the last three decades there has been an increasing interest in studying the

oscillatory and nonoscillatory behavior of solutions of functional differential equations.

Most of the work on the subject, however, has been restricted to first and second order

differential equations of the form
(

a (t) (x′ (t))
α)′

+ q (t) f (x [g (t)]) = 0

when
∫

∞

a−1/α (s) ds = ∞, (5)

as well as higher order equations with n > 2. For recent contributions we refer to

[1]–[9] and the references cited therein.

It seems that little is known concerning the oscillations of equations (1) and (2)

particularly when
∫

∞

a−1/α (s) ds < ∞. (6)

Therefore, our aim is to present some sufficient conditions for the oscillation of equa-

tions (1) and (2) via comparison with first order delay and/or advanced equations

whose oscillatory characters are known.

In Section 2 we establish results for the oscillation of equation (1) when (6) holds,

and from these deduce the results when (5) holds. Similar results for equation (2) are

presented in Section 3.

2. Oscillations for equation (1.1)

In this section we shall establish sufficient conditions in which all solutions of

equation (1) are oscillatory.

For t > t0, we let

A [t, t0] =

∫ t

t0

∫ s

t0

ua−1/α (u) duds
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and

m (t) =

∫

∞

t

a−1/α (s) ds.

Theorem 1. Let conditions (i)–(iv) and (6) hold and assume that there exists a

function ξ (t) ∈ C1 ([t0,∞) , R) such that ξ′ (t) > 0 and g (t) < ξ (t) < t for t > t0. If

both the first order delay equations

y′ (t) + cq (t) f (A [g (t) , t1]) f
(

y1/α [g (t)]
)

= 0 (7)

for every t > t1 > t0 and any constant c, 0 < c < 1 and

z′ (t) + cq (t) f (g (t)) f

(

∫ ξ(t)

g(t)

(s − g (t)) a−1/α (s) ds

)

f
(

z1/α [ξ (t)]
)

= 0 (8)

for any constant c > 0, are oscillatory,

∫

∞
(

1

a (s)

∫ s

t0

q (u) f
(

g2 (u)
)

f (m [g (u)]) du

)1/α

ds = ∞ (9)

and

∫

∞

(

1

a (s)

∫ s

t0

q (u) f

(

[ξ (u) − g (u)]2

2!

)

f (m [ξ (u)]) du

)1/α

ds = ∞ (10)

then the equation (1) is oscillatory.

Proof. Let x (t) be a nonoscillatory solution of equation (1), say x (t) > 0 and

x [g (t)] > 0 for t > t0 > 0. Now,
(

a (t)
(

x(3) (t)
)α)′

6 0 for t > t0. There exists

a t1 > t0 such that x(i) (t), i = 1, 2, 3 are of one sign for all t > t1. There are eight

possibilities to consider. The following four cases hold:

(I) x(i) (t) > 0, i = 1, 2, 3 for t > t1;

(II) (−1)i+1
x(i) (t) > 0, i = 1, 2, 3 for t > t1;

(III) x(3) (t) < 0, x(i) (t) > 0, i = 1, 2 for t > t1

and

(IV) (−1)i
x(i) (t) > 0, i = 1, 2, 3 for t > t1;

while the other four cases, namely

x(i) (t) > 0, i = 2, 3 and x′ (t) < 0 for t > t1;

x(3) (t) > 0, x(i) (t) < 0, i = 1, 2 for t > t1:

x(i) (t) < 0, i = 2, 3 and x′ (t) > 0 for t > t1;

and

x(i) (t) < 0, i = 1, 2, 3 for t > t1;

are obviously disregarded. Next, we consider:
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Case (I). There exist a constant k, 0 < k < 1 and a t2 > t1 such that

x′′ (t) > ktx(3) (t) for t > t2

=: k
t

a1/α (t)
y1/α (t) for t > t2 (11)

where y (t) = a (t)
(

x(3) (t)
)α

, t > t2.

Integrating (11) twice from t2 to t we have

x (t) > kA [t, t2] y
1/α (t) for t > t2. (12)

There exists a t3 > t2 such that

x [g (t)] > kA [g (t) , t2] y
1/α [g (t)] for t > t3. (13)

Using (13) and (3) in equation (1) we have

y′ (t) + cq (t) f (A [g (t) , t2]) f
(

y1/α [g (t)]
)

6 0 for t > t3 (14)

where c = f (k), 0 < c < 1.

Integrating (14) from t > t3 to u > t and letting u → ∞ we find

y (t) > c

∫

∞

t

q (s) f (A [g (s) , t2]) f
(

y1/α [g (s)]
)

ds.

The function y (t) is strictly decreasing on [t3,∞). Hence by Theorem 1 in [9], we

conclude that there exists a positive solution y (t) of equation (7) with lim
t→∞

y (t) = 0,

which is a contradiction.

Case (II). There exist a t2 > t1 and a constant k, 0 < k < 1, such that

x (t) > ktx′ (t) for t > t2.

There exist a t3 > t2 such that

x [g (t)] > kg (t) x′ [g (t)] for t > t3. (15)

Using (15) and (3) in equation (1), we have

(

a (t) (y′′ (t))
α)′

+ cq (t) f (g (t)) f (y [g (t)]) 6 0 for t > t3 (16)

where y (t) = x′ (t) for t > t3 and c = f (k). Clearly

y′′ (t) > 0, y′ (t) < 0 and y (t) > 0 for t > t3.

By Taylor’s series, for t > s > t3 we find

y (s) >

∫ t

s

(u − s) y′′ (u) du.
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Replacing s and t by g (t) and ξ (t) respectively we get

y [g (t)] >

∫ ξ(t)

g(t)

(u − g (t)) a−1/α (u)
(

a (u) (y′′ (u))
α)1/α

du for t > t4 > t3

=:

(

∫ ξ(t)

g(t)

(u − g (t)) a−1/α (u) du

)

z1/α [ξ (t)] for t > t4 (17)

where z (t) = a (t) (y′′ (t))α for t > t4.

Using (17) and (3) in (16), we have

z′ (t) + cq (t) f (g (t)) f

(

∫ ξ(t)

g(t)

(u − g (t)) a−1/α (u) du

)

f
(

z1/α [ξ (t)]
)

6 0

for t > t4. (18)

The rest of the proof is similar to the Case (I) and hence omitted.

Case (III). There exist a constant k, 0 < k < 1, and a t2 > t1 such that

x′ (t) > ktx′′ (t) for t > t2.

Integrating this inequality from t2 to t, there exist a constant k, 0 < k < 1 and a

t3 > t2 such that

x [g (t)] > kg2 (t) x′′ [g (t)] for t > t3. (19)

Using (19) and (3) in equation (1), one can easily find
(

a (t) (w′ (t))
α)′

+ bq (t) f
(

g2 (t)
)

f (w [g (t)]) 6 0 for t > t3, (20)

where b = f
(

k
)

and w (t) = x′′ (t), t > t3. Clearly, w (t) > 0 and w′ (t) < 0 for t > t3.

For s > t > t3, we have

a (s) (−w′ (s))
α

> a (t) (−w′ (t))
α
,

or

−w′ (s) >
1

a1/α (s)

(

−a1/α (t)w′ (t)
)

. (21)

Integrating (21) from t > t3 to u > t and letting u → ∞ we obtain

w (t) >

(
∫

∞

t

a−1/α (s) ds

)

(

−a−1/α (t) w′ (t)
)

for t > t3. (22)

Combining (22) with the inequality

−a1/α (t) w′ (t) > −a1/α (t3)w′ (t3) for t > t3,

there exist a t4 > t3 and a constant ℓ > 0 such that

w [g (t)] > ℓm [g (t)] for t > t4. (23)

Using (23) and (3) in (1), we get

−
(

a (t) (w′ (t))
α)′

> bf (ℓ) q (t) f
(

g2 (t)
)

f (m [g (t)]) for t > t4. (24)
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Integrating (24) from t3 to t, we obtain

a (t3) (w′ (t3))
α
− a (t) (w′ (t))

α
> bf (ℓ)

∫ t

t3

q (s) f
(

g2 (s)
)

f (m [g (s)]) ds

or

−a (t) (w′ (t))
α

> bf (ℓ)

∫ t

t3

q (s) f
(

g2 (s)
)

f (m [g (s)]) ds

or

−w′ (t) > (bf (ℓ))1/α

(

1

a (t)

∫ t

t3

q (s) f
(

g2 (s)
)

f (m [g (s)]) ds

)1/α

for t > t3.

(25)

Integrating (25) from t3 to t, we have

∞ > w (t3) > w (t3) − w (t)

> (bf (ℓ))1/α

∫ t

t3

(

1

a (s)

∫ s

t3

q (u) f
(

g2 (u)
)

f (m [g (u)]) du

)1/α

ds

→ ∞ as t → ∞,

which is a contradiction.

Case (IV). By Taylor’s expansion, for t > s > t1 we find

x (s) >
(t − s)2

2!
x′′ (t) .

Replacing s and t by g (t) and ξ (t) respectively, we obtain

x [g (t)] >
[ξ (t) − g (t)]2

2!
x′′ [ξ (t)] for t > t2 > t1

=:
[ξ (t) − g (t)]2

2!
v [ξ (t)] for t > t2 (26)

where v (t) = x′′ (t) for t > t2.

Using (26) and (3) in equation (1), we have

(

a (t) (v′ (t))
α)′

+ q (t) f

(

[ξ (t) − g (t)]2

2!

)

f (v [ξ (t)]) 6 0 for t > t2.

The rest of the proof is similar to the Case (III) above and hence omitted.

We note that when condition (5) holds, Cases (III) and (IV) in the proof of

Theorem 1 are disregarded. In fact, we have the following result.

Theorem 2. Let conditions (i)–(iv) and (5) hold and assume that there exists a

function ξ (t) ∈ C1 ([t0,∞) , R) such that ξ′ (t) > 0 and g (t) < ξ (t) < t for t > t0. If

both the first order delay equations (7) and (8) are oscillatory, then the equation (1)

is oscillatory.

By using known results for the oscillation of first order delay equations (see [8]),

the following corollary is immediate.



FOURTH ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS 99

Corollary 3. Let conditions (i)–(iv), (6), (9) and (10) hold and assume that there

exists a nondecreasing function ξ (t) ∈ C1 ([t0,∞) , R) such that g (t) < ξ (t) < t for

t > t0. Then equation (1) is oscillatory if one of the following conditions holds

(I1)
f
(

u1/α
)

u
> k > 0 for u 6= 0 where k is a constant

and

lim
t→∞

inf

∫ t

ξ(t)

Q (s) ds >
1

ek
,

where

Q (t) = min

{

cq (t) f (A [g (t) , t1]) , cq (t) f (g (t)) f

(

∫ ξ(t)

g(t)

(s − g (t)) a−1/α (s) ds

)}

,

c > 0 is any constant and 0 < c < 1.

(I2)
∫

±0

f−1
(

u1/α
)

du < ∞ and

∫

∞

Q (s) ds = ∞.

Remark 4. The technique of the proof of Theorem 1 may allow to obtain criteria

for equations similar to (1) on time scale, for example the dynamic equation
(

a
(

x∆∆∆
)α)∆

+ q (t) xβ (g (t)) = 0,

where β is the ratio of two positive odd integers. Also, it will be of interest to consider

the forced equation
(

a
(

x(3)
)α
)′

+ q (t) f (x [g (t)]) = e (t) ,

where e (t) ∈ C ([t0,∞) , R).

For bounded solutions of equation (1) one can easily prove the following result.

Theorem 5. Let conditions (i)–(iv), (6) and (10) hold and assume that there exists a

nondecreasing function ξ (t) ∈ C ([t0,∞) , R) such that g (t) < ξ (t) < t for t > t0. If

the delay first order equation (8) is oscillatory, then all bounded solutions of equation

(1) are oscillatory.

3. Oscillations for equation (1.2)

In this section we are interested in obtaining criteria for the oscillation of all

solutions of equation (2).

Theorem 6. Let conditions (i)–(iv) and (6) hold and assume that there exist non-

decreasing functions ξ (t) and ζ (t) ∈ C1 ([t0,∞) , R) such that g (t) < ξ (t) < t and

σ (t) > ζ (t) > t for t > t0. If the advanced first order equation

y′ (t) − p (t)h

(

∫ σ(t)

ζ(t)

[σ (t) − s]2

2!
a−1/α (s) ds

)

h
(

y1/α [ζ (t)]
)

= 0 (27)
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both delay first order equations

z′ (t) + cq (t) f
(

g2 (t)
)

f

(

ξ (t) − g (t)

a1/α [ξ (t)]

)

f
(

z1/α [ξ (t)]
)

= 0 (28)

for every constant c, 0 < c < 1 and

w′ (t) + q (t) f

(

∫ ξ(t)

g(t)

[s − g (t)]2

2!
a−1/α (s) ds

)

f
(

w1/α [ξ (t)]
)

= 0 (29)

are oscillatory, and

∫

∞

t0

(

1

a (s)

∫ s

t0

q (u) f (g (u)) f (ξ (u) − g (u)) f (m [ξ (u)]) du

)1/α

ds = ∞ (30)

then equation (2) is oscillatory.

Proof. Let x (t) be a nonoscillatory solution of equation (2), say x (t) > 0, x [g (t)] > 0

and x [σ (t)] > 0 for t > t0 > 0. Now,
(

a (t)
(

x(3) (t)
)α)′

> 0 for t > t0. There exists

a t1 > t0 such that x(i) (t), i = 1, 2, 3 are of one sign for all t > t1. There are eight

possibilities to consider. The following four cases hold:

(I) x(i) (t) > 0, i = 1, 2, 3 for t > t1;

(II) x(3) (t) < 0, x(i) (t) > 0, i = 1, 2 for t > t1;

(III) (−1)i
x(i) (t) > 0, i = 1, 2, 3 for t > t1

and

(IV) (−1)i+1
x(i) (t) > 0, i = 1, 2, 3 for t > t1.

It is easy to see that the following four cases are obviously disregarded:

x(i) (t) > 0, i = 2, 3 and x′ (t) < 0 for t > t1;

x(3) (t) > 0, and x(i) (t) < 0, i = 1, 2 for t > t1;

x(i) (t) < 0, i = 2, 3 and x′ (t) > 0 for t > t1;

and

x(i) (t) < 0, i = 1, 2, 3 for t > t1.

Now, we consider:

Case (I). By the Taylor’s expansion, for t > s > t1 we get

x (t) >

∫ t

s

(t − u)2

2!
x(3) (u) du

=:

∫ t

s

(t − u)2

2!
a−1/α (u)

(

a (u)
(

x(3) (u)
)α
)1/α

du

>

(

∫ t

s

(t − u)2

2!
a−1/α (u) du

)

y1/α (s) (31)
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where y (t) = a (t)
(

x(3) (t)
)α

for t > t1. Replacing t and s in (31) by σ (t) and ζ (t)

respectively, we have

x [σ (t)] >

(

∫ σ(t)

ζ(t)

[σ (t) − u]2

2!
a−1/α (u) du

)

y1/α (ζ (t)) for t > t2 > t1. (32)

Using (32) and (4) in equation (2) we obtain

y′ (t) > p (t) h

(

∫ σ(t)

ζ(t)

[σ (t) − u]2

2!
a−1/α (u) du

)

h
(

y1/α [ζ (t)]
)

for t > t2.

By known results, see [2], [3] and [9], we arrive at the desired contradiction.

Case (II). There exist a constant k, 0 < k < 1 and a t2 > t1 such that

x′ (t) > ktx′′ (t) for t > t2.

Integrating the above inequality from t2 to t we have

x (t) >
k

2

(

t2 − t22
)

x′′ (t) for t > t2.

Now, there is a constant c, 0 < c < 1 and a t3 > t2 such that

x [g (t)] > cg2 (t) y [g (t)] for t > t3 (33)

where y (t) = x′′ (t) for t > t3. Using (33) and (3) in equation (2) we have

(

a (t) (y′ (t))
α)′

> f (c) q (t) f
(

g2 (t)
)

f (y [g (t)]) for t > t3. (34)

Clearly y (t) > 0 and y′ (t) < 0 for t > t3. Thus there exists a t4 > t3 such that

y [g (t)] > (ξ (t) − g (t)) (−y′ [ξ (t)]) for t > t4,

or

y [g (t)] > (ξ (t) − g (t)) a−1/α [ξ (t)]
(

z1/α [ξ (t)]
)

for t > t4, (35)

where z (t) = −a (t) (y′ (t))α
> 0 for t > t4.

Using (35) and (3) in (34) we get

z′ (t) + f (c) q (t) f
(

g2 (t)
)

f

(

ξ (t) − g (t)

a1/α [ξ (t)]

)

f
(

z1/α [ξ (t)]
)

6 0 for t > t4.

The rest of the proof is similar to the Theorem 1-Case (I) and hence omitted.

Case (III). By Taylor’s expansion, one can easily see that there exists a t2 > t1

such that

x [g (t)] >

(

∫ ξ(t)

g(t)

[s − g (t)]2

2!
a−1/α (s) ds

)

(

w1/α [ξ (t)]
)

for t > t2, (36)

where

w (t) = −a (t)
(

x(3) (t)
)α

> 0 for t > t2.
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Now, using (36) and (3) in equation (2) we find

w′ (t) + q (t) f

(

∫ ξ(t)

g(t)

[s − g (t)]2

2!
a−1/α (s) ds

)

f
(

w1/α [ξ (t)]
)

6 0 for t > t2.

The rest of the proof is similar to the Theorem 1-Case (I) and hence omitted.

Case (IV). There exist a constant k, 0 < k < 1 and a t2 > t1 such that

x [g (t)] > kg (t) y [g (t)] for t > t2 (37)

where y (t) = x′ (t) > 0 for t > t2. Using (37) and (3) in equation (2) we get
(

a (t) (y′′ (t))
α)′

> f (k) q (t) f (g (t)) f (y [g (t)]) for t > t2. (38)

Clearly y (t) > 0, y′ (t) < 0 and y′′ (t) > 0 for t > t2. Thus, there exists a t3 > t2 such

that

y [g (t)] > (ξ (t) − g (t)) z [ξ (t)] for t > t3, (39)

where z (t) = −y′ (t) > 0 for t > t3. Using (39) and (3) in equation (38) we have
(

a (t) (z′ (t))
α)′

+ f (k) q (t) f (g (t)) f (ξ (t) − g (t)) f (z [ξ (t)]) 6 0.

The rest of the proof is exactly the same as that of Theorem 1-Case (III) and hence

omitted. This completes the proof.

From the proof of the above theorem, one can easily obtain the following result

when condition (5) holds.

Theorem 7. Let conditions (i)–(iv) and (5) hold and assume that there exist non-

decreasing functions ξ (t) and ζ (t) ∈ C1 ([t0,∞) , R) such that g (t) < ξ (t) < t and

σ (t) > ζ (t) > t for t > t0. If the advanced first order equation (27) and both the delay

first order equations (28) and (29) are oscillatory, then equation (2) is oscillatory.

By applying well known criteria for the oscillation of first order equations, the

following corollary is immediate.

Corollary 8. Let conditions (i)–(iv), (6) and (30) hold and assume that there exist

nondecreasing functions ξ (t) and ζ (t) ∈ C1 ([t0,∞) , R) such that g (t) < ξ (t) < t

and σ (t) > ζ (t) > t for t > t0. Then equation (2) is oscillatory if one of the following

conditions holds

(II1)

h
(

u1/α
)

u
> k > 0 for u 6= 0 and k is a constant,

lim
t→∞

inf

∫ ζ(t)

t

p (s) h

(

∫ ξ(t)

g(t)

[σ (s) − v]2

2!
a−1/α (v) dv

)

ds >
1

ek
,

f
(

u1/α
)

u
> k1 > 0 for u 6= 0 and k1 is a constant,
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and

lim
t→∞

inf

∫ t

ξ(t)

Q̃ (s) ds >
1

ek1

where

Q̃ (t) = min

{

cq (t) f
(

g2 (t)
)

f

(

ξ (t) − g (t)

a1/α [ξ (t)]

)

, q (t) f

(

∫ ξ(t)

g(t)

[s − g (t)]2

2!a1/α (s)
ds

)}

for t > t0. (40)

(I2)
∫

±∞

h−1
(

u1/α
)

du < ∞.

and
∫

∞

p (s)h

(

∫ ξ(t)

g(s)

[σ (s) − v]2

2!
a−1/α (v) dv

)

ds = ∞,

∫

±0

f−1
(

u1/α
)

du < ∞ and

∫

∞

Q̃ (s) ds = ∞.

We note that many other criteria similar to above can be obtained. The details

are left to the reader.

When we are concerned with bounded solutions of equation (2), the term

p(t)h (x [σ (t)]) may be disregarded. In this case we have

Theorem 9. Let conditions (i)–(iv), (6) and (30) hold and assume that there exist a

nondecreasing functions ξ (t) ∈ C ([t0,∞) , R) such that g (t) < ξ (t) < t for t > t0. If

the first order delay equation (29) is oscillatory, all bounded solutions of equation (2)

are oscillatory.
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